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Abstract: This paper proposes an analytical solution to the problem of two-region flow induced
by constant-head pumping tests in an unconfined aquifer based on the Dupuit assumption. The
two-region flow includes a finite non-Darcian pattern near the pumping well and a semi-finite
Darcian pattern in the rest region. By Izbash’s equation, the solution to the two-region flow is
derived using the Boltzmann method. The reliability of the proposed solution is investigated through
comparisons with the numerical solution by COMSOL Multiphysics and the hydraulic head−time
data from the pumping test in Wisconsin. The influences of the finite non-Darcian flow pattern on the
hydraulic head and pumping rate are also discussed. The results demonstrate that a greater degree
of non-Darcian turbulence can effectively increase the pumping flow rate, although such influence
can be reduced over time. A method for determining the range of the non-Darcian region has been
developed and validated by the specific discharge and Reynolds number.
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1. Introduction

Constant-head test is a special pumping test that maintains a fixed drawdown in a
pumping well [1,2]. It is typically conducted in formations of low hydraulic conductivity
where it would be difficult to sustain a constant rate of pumping [3–5]. The constant-head
test is valuable for the determination of hydraulic parameters or for solving environmental
damage in landfills [3]. Since 1950, the mechanics of such pumping flow induced by
the constant-head test have been especially studied by hydrogeologists. In 1950, Jacob
proposed the first analytical solution for the investigation of Darcian flow behavior during
the constant-head pumping test [6]. After then, substantial effective work has been done
on numerical and analytical modeling of the constant-head pumping flow [7–10].

In general, the pumping-induced flow is obeyed by Darcian law with a linear flow
assumption [11–13]. However, many scholars have to note that the specific discharge can
be nonlinearly related to the hydraulic gradient when the gradient is sufficiently large or
small [14–16]. Such nonlinear pumping flow is defined as non-Darcian flow [12], which
is commonly depicted by Izbash’s equation or Forchheimer’s equation. The choice be-
tween the two equations depends on the field conditions [14,15]. By the two methods, the
issues of the non-Darcian effect on flow behaviors induced by constant-head pumping
have been studied via in situ tests and numerical modeling in the last decade [8,16]. For
example, Quinn et al. [16] carried out a constant-head slug test in fractured dolostone and
sandstone near the city of Guelph, Ontario, Canada, and suggested that using a linear
type of Darcian flow to fit experimental data could produce a large error. Specifically,
the hydraulic gradient−time curve of the pumping data was expressed by an obvious
exponential relationship, and the deviation of its comparison with the Darcian solution
was found to be increased with time. Dan et al. [8] evaluated the parameters of unbound
graded aggregates based on the drawdown data of constant-head tests and found that the
non-Darcian flow was widespread even under a low hydraulic gradient. Liu et al. [10]
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conducted a constant-head test in a saturated clay aquifer using an improved permeability
test device and proposed a numerical solution using the finite difference method to simulate
the flow induced by constant-head pumping. The results indicated an obvious non-Darcian
characteristic of the pumping-induced flow. These studies have also noticed that neglecting
the non-Darcian effect can introduce severe errors in pumping-flow simulation and aquifer
parameter determination. Thus far, few studies have been conducted to analytically inves-
tigate such non-Darcian flows in response to constant-head pumping. To our knowledge,
Li et al. [17] proposed the first analytical solution to the non-Darcian flow induced by
the constant-head test using an aquifer injection well. Their model with time-dependent
conductivity was developed using the Laplace transform based on Izbash’s equation with
a constant non-Darcian coefficient in the entire confined aquifer.

Based on the careful literature review, the authors noted that the existing solutions for
the constant-head test are generally proposed based on the assumption that the pumped
aquifer is confined. However, many pumping wells are located in unconfined aquifers
worldwide [18–20], and there has been a lack of studies on flow mechanics related to
constant-head pumping in unconfined aquifers. So far, existing pumping flow models
in the unconfined aquifer are mainly proposed by considering (1) with and (2) without
vertical flow components. With the vertical flow component, the release of gravity storage
takes a long time to complete, which further leads to the formation of an unsaturated region
above the hydraulic head and to the vertical replenishment of the aquifer [21]. Without the
vertical flow component, the flow is horizontal and uniform everywhere in a vertical section.
Gravity storage is considered to be released instantaneously. The solution considering the
vertical recharge flow is more accurate than that without vertical flow. However, such
solutions are extremely complex and have empirical parameters that cannot be tested,
which inhibits their applicability. In a constant-head test with a small drawdown inside the
pumping well or long enough pumping time, the influence of the vertical flow is limited.
In this case, the use of the Dupuit assumption assuming that the gravity storage is an
instantaneous release, is reasonable [22,23]. The Dupuit assumption insists that the effect of
vertical flow can be ignored when the drawdown of the unconfined aquifer changes slowly
and considers that all recharge flow comes from the horizontal direction. Hence, it can
be used to simplify the unconfined flow problem and makes it analytically tractable [23].
Practically, the use of flow modeling by considering the Dupuit assumption is preferred to
meet the engineering requirements when the drawdown is significantly smaller than the
initial hydraulic head in the unconfined aquifer [24–27].

Otherwise, previous studies have generally assumed that the non-Darcian flow hap-
pens in the entire pumped aquifer [17]. Such an assumption is doubtful by field observa-
tions [28]. Theoretically speaking, at the beginning of the pumping, the specific discharge
nearby the pumping well is sufficiently large, which cannot be ignored owing to an in-
tensive decline of the hydraulic head. A sufficiently large specific discharge can make
the Reynolds number greater than the critical Reynolds number, suggesting the presence
of a non-Darcian flow. As the radial distance increases, the Reynolds number gradually
decreased with the specific discharge. Thus, it can further result in the conversion from
non-Darcian flow to Darcian one, indicating the development of a two-region flow in the
pumped aquifer [28–30]. So far, the mechanics of such two-region flow by constant-head
tests in an unconfined aquifer have remained unclearly.

In order to address the issues mentioned above, this paper proposes an analytical
two-region, non-Darcian and Darcian, model for the flow induced by the constant-head
pumping test in an unconfined aquifer when the drawdown inside the pumping well is
small. Izbash’s equation is used to depict the relationship between the specific discharge
and hydraulic gradient for mathematical modeling purposes. The solution is derived using
the Boltzmann transform, and the Dupuit assumption can make the equation more concise.
The acceptability of the two-region model is verified by comparing it with the numerical
solution of COMSOL Multiphysics and the measured data from a constant-head pumping
in Wisconsin. Such investigation on the mechanics of the two-region flow by constant-head
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tests in an unconfined aquifer has significant engineering values, which can provide a
concise and reliable method for solving environmental damage in landfills.

2. Problem Statement

Figure 1 shows a schematic of the constant-head pumping test in an unconfined aquifer
considering two-region, non-Darcian and Darcian, flow. Since the hydraulic gradient near
the pumping well is usually large, a faster specific discharge can make the Reynolds number
greater than the critical Reynolds number, which further converts this region of the Darcian
pattern into a non-Darcian pattern. Such non-Darcian turbulence effect is diminished with
distance from the pumping well. Therefore, the assumption of two-region flow is preferred
to simulate the pumping flow under the influence of such non-Darcian turbulence. For
convenience, the regions of the non-Darcian pattern and Darcian pattern are hereinafter
referred to as the region N and region D, respectively. The assumptions of the mathematical
model are mainly mentioned as follows: (1) the aquifer is unconfined, homogeneous, and
isotropic; the initial hydraulic head is identical in the entire aquifer; (2) the pumping well
fully penetrates the unconfined aquifer and the hydraulic head inside the pumping well is
invariable from the start of pumping; (3) the finite non-Darcian region, such as the region
N, is mainly developed around the pumping well, and the semi-infinite Darcian region,
such as the region D, is sequentially located near the region N; and (4) the radius of the
wellbore is the same as the effective radius with a fixed positive number [31].
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Figure 1. Schematic of the constant-head test in an unconfined aquifer considering the two-
region transform.

Based on the law of mass conservation and Dupuit assumption, the Boussinesq equa-
tion is used to describe the pumping flow in the regions N and D as Equations (1a) and
(1b), respectively.

∂q1

∂r
+

q1

r
=

S1

h1

∂h1

∂t
, (1a)

∂q2

∂r
+

q2

r
=

S2

h2

∂h2

∂t
, (1b)

where q1 and q2 are the specific discharges in the regions N and D [L/T], respectively,
h1(r, t) and h2(r, t) are the hydraulic heads in the regions N and D [L], respectively, and the
above parameters are functions of time t [T] and distance r [L] from the pumping well. S1
and S2 are the storativity in the regions N and D, respectively. Considering that the values
of storativity are determined by the aquifer medium, in general, it should be considered
that S1 = S2.
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Assuming that the groundwater in the regions N and D are under the non-Darcian
and Darcian conditions, respectively [28], the specific discharges in the regions N and D
are expressed using the Izbash’s and Darcian equations, respectively.

q1 =

(
−K1

∂h1

∂r

) 1
n1

, (2a)

q2 = −K2
∂h2

∂r
, (2b)

where K1 is the quasi-hydraulic conductivity in the region N [Ln1 /Tn1 ], K2 is the hydraulic
conductivity in the region D [L/T], and n1 is the non-Darcian coefficient representing
the turbulent flow in the region N. Based on Izbash’s equation, the flow is non-Darcian
when 1 < n1 ≤ 2, which means that the Reynolds number of the flow is greater than
the critical Reynolds number [24]. When n1 = 1, Equation (2a) becomes an expression
of Darcian’s law, and K1 is the hydraulic conductivity [12]. The values of K1 and n1 are
both constant empirical parameters, which can be evaluated by approximating aquifer
drawdown-time measured data [32–36]. For example, Sen [34] derived the value of the
non-Darcian coefficient, n1, by an automatic program according to Simpson’s rule through
a set of constant rate pumping data in a leakage aquifer located in the Kingdom of Saudi
Arabia, and the quasi-hydraulic conductivity, K1, was obtained by further substituting
other parameters into the proposed analytical solution. This method has been widely used
in non-Darcian studies, and its reliability can be assured [28,32–35,37].

The initial condition before pumping starts is

lim
t→0

h1 = lim
t→0

h2 = b, (3)

where b is the initial hydraulic head [L].
In the pumping test without the wellbore storage, the boundary conditions represent-

ing the fully penetrating well are as follows:

lim
r→rw

h1 = hw, (4)

lim
r→rw

2πrhw

(
K1

∂h1

∂r

) 1
n1

= −Q, (5)

where rw is the effective radius of the pumping well [L], hw is the constant hydraulic head
inside the pumping well [L], and Q is the flow rate changing with time [L3/T].

The far-field boundary condition is

lim
r→∞

h1 = b. (6)

The conversion interface between the regions N and D is assumed to be located in
the radial distance with r = R, and the boundary conditions for the flow continuity are
obtained as follows:

q1|r→R = q2|r→R, (7)

h1|r→R = h2|r→R, (8)

where R is the distance of the conversion interface between the regions N and D [L], which
is a function that varies with time.
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3. Solution Derivation

Substituting Equations (2a) and (2b) into Equations (1a) and (1b) yields

∂2h1

∂r2 +
n1

r
∂h1

∂r
=

S1

h1

n1

K1
1

n1

(
−∂h1

∂r

) n1−1
n1 ∂h1

∂t
, (9a)

∂2h2

∂r2 +
1
r

∂h2

∂r
=

S2

h2K2

∂h2

∂t
. (9b)

The flow rate in region N is assumed to be equal to the specific discharge multiplied
by the discharge section area as described in the following equation.

Q ≈ −Aq1 = 2πrh1

(
−K1

∂h1

∂r

) 1
n1

, (9c)

where q1 =
(

K1
∂h1
∂r

) 1
n1 is the specific discharge [L/T], and A = 2πrh1 is the discharge

section area [L2]. To simplify the derivation of the solution, the items of S1
h1

n1

K1
1

n1
≈ S1

b
n1

K1
1

n1
,

S2
h2K2

≈ S2
bK2

and 2πrh1 ≈ 2πrb are introduced to Equations (9a), (9b), and (9c), respec-
tively, which can be used to linearize the Dupuit equation. The errors caused by such
approximations have been found to be relatively small. Hence, they can be neglected
for modeling purposes [36]. Thus, Equations (9a), (9b), and (9c) can be approximately
written as

∂2h1

∂r2 +
n1

r
∂h1

∂r
=

S1

b
n1

K1
1

n1

(
−∂h1

∂r

) n1−1
n1 ∂h1

∂t
, (10a)

∂2h2

∂r2 +
1
r

∂h2

∂r
=

S2

bK2

∂h2

∂t
, (10b)

∂h1

∂r
= −

(
Q

2πrb

)n1

K1
. (10c)

Combining Equations (10a) with (10c), the governing equations in the regions N and
D are expressed as Equations (11a) and (11b), respectively.

∂2h1

∂r2 +
n1

r
∂h1

∂r
= ε1r1−n1 Qn1−1 ∂h1

∂t
, (11a)

∂2h2

∂r2 +
1
r

∂h2

∂r
= ε2

∂h2

∂t
, (11b)

where ε1 = S1
b

n1
K1

(
1

2πb

)n1−1
and ε2 = S2

bK2
.

The analytical solution of the mathematical model with Equations (3), (7), and (11a) for
the region N and with Equations (5), (6), (8), and (11b) for the region D are derived using
the Boltzmann transformation method. The detailed derivation is provided in Appendix A,
by which the expressions of the hydraulic head in regions N and D can be obtained as
Equations (12a) and (12b), respectively.

h1 = b− F1

∫ η

0.1
m−1 exp

(
− ε1r1−n1

4
m2
)

dm + F2W(vR) + F1

∫ ηR

0.1
m−1 exp

(
− ε1R1−n1

4
m2
)

dm, (12a)

h2 = b− F2W(v), (12b)
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where

F1 =
Qn1 exp

(
ε1rw

1−n1
4 ηw

2
)

r1−n1

(2π)n1 hwn1−1bK1
, (13a)

F2 =
Q exp

(
ε1rw

1−n1
4n1

ηw
2
)

4πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
−ε1R1−n1

4n1
ηR

2
)

, (13b)

v =
ε2

4
η2, (13c)

vR =
ε2

4
ηR

2, (13d)

η = rt−
1
2 , (13e)

ηR = Rt−
1
2 , (13f)

ηw = rwt−
1
2 , (13g)

W(x) =
∫ ∞

x

e−y

y
dy. (13h)

The constant-head pumping test can make the hydraulic head near the pumping well
declines rapidly at the early pumping time and approaches to hw in a short time. After that,
the magnitude of the hydraulic head change can slow down considerably. Therefore, the
proposed analytical solution based on the Dupuit assumption is acceptable except for a
short period of time when the pumping starts.

In a constant-head test, since the turbulence of the flow can be weakened with in-
creasing radial distance from the pumping well, the region N can be defined as the area
with Reynolds number, Re, greater than the critical Reynolds number, Rec, and the R value
can be determined by investigating the position of Re = Rec|r→R at any interesting time.
In addition, it should be noted that the proposed solution can also be used to assess the
drawdown behavior of pure Darcian flow with R = rw and pure non-Darcian flow with
R = ∞. The equation for calculating the Reynolds number is as follows [28]:

Re =
qd
υ

, (14a)

where Re is the Reynolds number, q is the specific discharge [L/T], and d is the characteristic
diameter of the medium [L]. υ is the kinematic viscosity of water [L2/T], the value of which
is generally 1× 106 m2/s. Substituting Equation (12b) into Equation (14a), the critical
Reynolds number at the conversion interface of Darcian and non-Darcian regions can be
obtained as

Rec =
d
υ
[b− F2W(v)]

∣∣r→R, (14b)

where Rec is the critical Reynolds number, which is generally considered that Rec = 10.
Therefore, in order to determine the value of R, Equation (14b) can be rewritten as follows:

QW
(

ε2R2

4t

)
exp

(
− ε2R2

4t

) exp
(
−ε1R3−n1

4n1t

)
=

4πhw

n1−1
n1 b

1
n1 K2

(
b− υ

d Rec
)

exp
(

ε1rw
1−n1

4n1
ηw2

) . (15a)

Equation (15a) is an implicit function of R and Q at the time t constant. Based on
Equations (4) and (12a), another implicit expression for the interface distance R and dis-
charge rate Q can be obtained as

[
b− hw + F1

∫ ηw

0.1
m−1 exp

(
− ε1rw

1−n1

4
m2
)

dm− F2W(vR)− F1

∫ ηR

0.1
m−1 exp

(
− ε1R1−n1

4
m2
)

dm
]∣∣r→rw = 0. (15b)
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Then, the interface distance R and pumping rate Q at each given time point t is
assumed to be the root of Equations (15a) and (15b), which can be solved using the built-in
module called Equations and System Solver in MATLAB.

Constant-head tests are often used to investigate the characteristics of hydraulic
parameters in confined and unconfined aquifers. In the section, a model for the constant-
head pumping flow in the confined aquifer can be degenerated based on the proposed
solution by Equations (12a,b) and (15a,b). With the Dupuit assumption, the main difference
between the models in the unconfined and the confined aquifers is depicted in the boundary
condition at the pumping wellbore, which is formulated in the confined aquifer as

lim
r→rw

2πrB
(

K1
∂h1

∂r

) 1
n1

= −Q, (16)

where B is the thickness of the confined aquifer [L].
Replacing Equation (5) with Equation (16), the solutions of the hydraulic head in

regions N and D at the confined aquifer can be given as Equation (17a,b) by the same
derivation method of Equation (12a,b), respectively.

h1 = h0 − F3

∫ η

0.1
m−1 exp

(
− ε1r1−n1

4
m2
)

dm + F4W(vR) + F3

∫ ηR

0.1
m−1 exp

(
− ε1R1−n1

4
m2
)

dm, (17a)

h2 = h0 − F4W(v), (17b)

and

F3 =
Qn1 exp

(
ε1rw

1−n1
4 ηw

2
)

r1−n1

(2π)n1 Bn1 K1
, (18a)

F4 =
Q exp

(
ε1rw

1−n1
4n1

ηw
2
)

4πBK2 exp
(
− ε2

4 ηR2
) exp

(
−ε1R1−n1

4n1
ηR

2
)

, (18b)

where h0 is the initial hydraulic head in the confined aquifer [L].
Similarly, substituting Equation (17a,b) into Equations (4) and (14a,b) can obtain two

implicit functions as

QW
(

ε2R2

4t

)
exp

(
− ε2R2

4t

) exp
(
−ε1R3−n1

4n1t

)
=

4πB
n1−1

n1 h0
1

n1 K2
(
h0 − υ

d Rec
)

exp
(

ε1rw
1−n1

4n1
ηw2

) . (19a)

[
h0 − B + F3

∫ ηw

0.1
m−1 exp

(
− ε1rw

1−n1

4
m2
)

dm− F4W(vR)− F3

∫ ηR

0.1
m−1 exp

(
− ε1R1−n1

4
m2
)

dm
]∣∣∣∣r→rw = 0. (19b)

Equations (19a) and (19b) can be solved by MATLAB software to obtain the flow rate
Q and the distance of interface R at each given time point.

4. Verification

In order to investigate the acceptability of the proposed analytical solution, Case
A in Table 1 is conducted to compare the simulation results of the hydraulic head and
development of region N by the analytical solution with that of the numerical solution. In
addition, a series of drawdown data from the constant-head pumping test in Wisconsin,
USA, has been presented to demonstrate the reliability of the proposed solution in practice.
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Table 1. Parameter values for hypothetical cases.

Parameters Case A Case B Case C

hw (m) 9 7, 8, 9 9
K1
[
(m/day)n1

]
1.1 1.1 1.1

K2 (m/day) 1.1 1.1 1.1
n1 1.1 1.2 1, 1.2, 1.4
S1 0.01 0.01 0.01
S2 0.01 0.01 0.01
b (m) 12 10 12
rw (m) 0.2 0.2 0.2
r (m) 3 5 2
d (mm) 0.3 0.3 0.3

The numerical solution is performed by using the finite element method via COMSOL
Multiphysics, which has proven to be one of the most useful software for multiphysics
simulations [38]. The finite element solution is derived based on Equations (3), (4), and
(9a) for the region N and Equations (3), (6), and (9b) for the region D. It should be noted
that the distance of infinity boundary in Equation (6) is depicted by r = 2000 m in the
COMSOL solution. A MATLAB program is developed to automatically solve the proposed
analytical solutions of Equations (12a,b) and (15a,b). A hypothetical unconfined aquifer
is assumed to be a sandy medium. Generally, the range of storativity in an unconfined
aquifer is 0.01–0.3, and the hydraulic conductivity of fine sand unconfined aquifer ranges
from 1 to 5 m3/day [23]. Hence, a set of parameters is reasonably selected for Case A, as
listed in Table 1. Considering the requirement of the Dupuit assumption, the drawdown
inside the pumping well needs to take a relatively smaller value so that the parameters of
b = 12 m and hw = 9 m are chosen.

The comparison of the hydraulic head−time curves of the two-region flow (R is
a variable), pure Darcian flow (R = 0.2 m), and pure non-Darcian flow (R = ∞) are
demonstrated in Figure 2. The pure non-Darcian COMSOL solution is approximated by
R = 2000 m. It is noticed that K1 and S1 are meaningless for the simulation of pure Darcian
flow, when K2 and S2 are meaningless for the simulation of pure non-Darcian flow. Such
comparison clearly indicates that the deviations between the simulation results by both
proposed and finite element solutions are small under all three flow conditions. Certain
deviations in the first hour after pumping starts are assumed to be induced by the neglect
of the vertical flow of the proposed analytical solution, which can gradually disappeared
with time. Such errors should be acceptable in case the drawdown inside the pumping well
is relatively small. It verifies the validity of the use of the proposed analytical solution for
the simulation of the hydraulic head for the two-region flow.
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Moreover, the hydraulic head of the two-region flow is found to be substantially
greater than that of pure Darcian one and to be smaller than that of pure non-Darcian
one (Figure 2), suggesting a negative non-Darcian effect on the decline of the hydraulic
head. It is because the greater n1 and R values lead to a greater turbulence degree in the
pumped unconfined aquifer. A greater degree of turbulence means a relatively larger
specific discharge so that the recharge from the far-away region can be enhanced and the
release of gravity storage can be improved [15].

In order to verify the reliability of Equation (15a,b), the R–t curves based on the
parameters in Case A by both analytical and numerical solutions are simulated, as shown
in Figure 3. The results suggest that the fitting degree by different solutions is relatively
high. Hence, the R value calculated by two implicit functions of Equation (15a,b) should be
considered to be accurate. Otherwise, R value is found to be decreased with time, indicating
that the influence of non-Darcian in the two-region flow is weakened as pumping continues.
It is explained that after the pumping starts, the hydraulic head of the aquifer gradually
declined and is approached to be hw. Its further results in a reduction in hydraulic gradient
and specific discharge. The smaller specific discharge results in a slower flow rate and
smaller Reynolds number, which ultimately leads to the degeneration of region N [28].
When the pumping time is long enough, region N can disappear completely, and the
two-region flow can be transformed into pure Darcian flow.
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Afterward, the constant-head pumping test in Wisconsin, USA, reported by Jones
et al. [39], is used to demonstrate the engineering application of the proposed solution. The
unconfined aquifer with a thickness of 2.5 m is composited of shallow weathered glacial till
of low clay content and high sand content [39]. The pumping well with an effective radius
of 0.051 m is fully penetrating the unconfined aquifer, of which the bottom is filled by pea
gravel. During the 24-h pumping period, the hydraulic head inside the constant-head
well is 1.5 m [34]. The two drawdown data series have been collected in observation wells
with a radial distance of 0.87 m and 3.62 m, respectively. Based on the work from Chen
and Chang [3], the ranges of gravity storage and hydraulic conductivity in the horizontal
direction can be considered as 0.014–0.042 and 0.241–0.362 m/day, respectively. Therefore,
after careful investigation, the best-fitting results based on Equation (12a,b) can be obtained
when S1 = S2 = 0.031, K1 = 0.285 m/day, K2 = 0.32 m/day and n1 = 1.3. The comparison
curves shown in Figure 4 matched well with each other, suggesting the acceptability of
the use of the proposed solution in practice. However, similar to the results in Figure 2,
the simulation curves by the analytical solution rarely deviate from the measured data
at the beginning of pumping, and such deviation is gradually disappeared with time. It
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further verifies that the proposed solution is applicable even at a 40% relative drawdown
( b−hw

b = 40%) inside the pumping well in the aquifer investigated.
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5. Discussion

Accurate evaluation of the dynamic development of the pumping rate Q is vital
for designing a practical constant-head test. In this section, the effect of the hydraulic
head inside the pumping well, hw, and the degree of turbulence in the non-Darcian flow,
represented by n1, on the dynamic development of the pumping rate is investigated using
hypothetical case studies: Case B and Case C. The parameters for the two case studies are
listed in Table 1.

Figure 5 shows the simulation results for Q–t curves ith different hw. The results
indicate that the development of Q is negatively correlated with the hw value and it
confirms the fact that a small decrease in hw value can greatly increase the flow rate. It is
due to that the flow rate is essentially caused by the hydraulic gradient resulting from the
hydraulic head decline inside the pumping well. Therefore, a greater hw means a slower
specific discharge, which can lead to a lower flow rate.
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Figure 6 represents the effect of non-Darcian turbulence on the pumping flow accord-
ing to Case C. The Q–t curves at a fixed radial distance r = 2 m are shown in Figure 6a),
which indicates that the flow rate at a given time point is found to be increased by n1 at
the early pumping time. As the pumping continues, the deviations of the flow rates with
different n1 values can be decreased. Theoretically, it is understandable. The flow rate
is dominated by the recharge from gravity storage, which is assumed to be equal to the
specific discharge multiplied by the discharge section area as described in Equation (9c).
The higher the specific discharge is, the higher the pumping rate is. Thus, at the early
pumping time, the release of gravity storage of the aquifer gradually replenishes the water
level nearby the pumping well, causing a greater turbulence flow with a greater n1 value
can result in a faster specific discharge and a larger flow rate in the unconfined aquifer. As
the pumping continues, the range of the region N is degenerated, which further reduces
the influence of n1 and the gradual agreement of the Q–t curves.
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Figure 6b presents the h–r curves at the same pumping time t = 1 day to investigate
the development characteristics of non-Darcian turbulence with radial distance. It shows
that there is a positive correlation between the non-Darcian coefficient and the hydraulic
head, of which effect is suppressed at a larger radial distance. The larger n1 value means
the larger the hydraulic gradient, leading to a larger flow rate. Nearby the pumping well,
the hydraulic head fluctuated greatly, but there is no unreasonable mutation, which can
prove the continuity of the proposed solution.

Subsequently, a comparison of the proposed model with Li et al.’s [17] solution has
been demonstrated in Figure 7. It shows the results for the proposed models in an un-
confined aquifer based on Equation (12a,b), labeled as the Proposed solution in U, and
in a confined aquifer based on Equation (17a,b), entitled as the Proposed solution in C.
By Li et al.’s [17] hypothetical case, a set of parameters is given as hw = 40 m, r = 0.2 m,
b = B = 20 m and S1 = S2 = 0.004. Li et al. [17] propose a semi-analytical model
for a constant-head pumping test in the confined aquifer by considering the hydraulic
conductivity as a variable related exponentially with time and assuming that the pump-
ing flow is obeyed by non-Darcian law. Therefore, to allow the proposed solution in
the confined aquifer to be fully consistent with the actual situation of Li et al.’s [17] re-
search, it can be assumed that R = ∞ and K1 = 0.006 + 0.054e−0.05t m/hr. Otherwise, in
the case of K1 = 0.06 m/hr and K2 = 0.006 m/hr, the hydraulic head increment−time curve
for the two-region flow is also simulated based on the proposed solution of
Equations (12a,b) and (15a,b), which can be used to demonstrate the difference between the
proposed model and Li et al.’s [17] work.
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In Figure 7, the hydraulic head increment−time curves for the three models show a
significant deviation, and the use of the proposed solution in the unconfined aquifer can
yield a higher hydraulic head when the pumping time is long enough. It is because the
wetted cross-section for pumping flow at the constant-head test in an unconfined aquifer is
larger than in a confined aquifer (h ≥ b). It means that the hydraulic head can increase more
rapidly. The result of the proposed solution in the confined aquifer is fitted with that of Li
et al. [17] after 0.1 s, which indicates that the analytical solution obtained by Equation (17a,b)
is applicable in the confined aquifer. Otherwise, it is noted that the pumping rate is set
to be constant for simplified calculations by Li et al. [17], which is assumed to introduce
errors for hydraulic head assessment at the early pumping time. It further results in the
difference between the two curves before 0.1 s after the pumping starts. The comparison
demonstrates that the analytical models can be used to characterize the constant-head test
in both confined and unconfined aquifers.

6. Conclusions

This paper proposes an analytical solution for two-region flow induced by constant-
head pumping tests. Based on the Dupuit assumption, the proposed model is available for
an unconfined aquifer when the constant drawdown inside the pumping well is small. The
nonlinear relationship between the specific discharge and hydraulic gradient in the non-
Darcian region is expressed using Izbash’s equation, and the analytical solution is derived
using the Boltzmann transform. The reliability of the analytical solution is verified through
a numerical model via COMSOL Multiphysics and a set of hydraulic head−time data in a
pumping test in Wisconsin. The non-Darcian effect on both the hydraulic head decline and
dynamic development of the pumping rate is investigated during constant-head tests. The
main conclusions are as follows:

(1) The proposed analytical solution can be used for drawdown simulations in the cases
of two-region, pure Darican, and pure non-Darcian flows induced by constant-head
pumping tests. In the case of the two-regions flow, the proposed solution can also be
used for the assessment of the dynamic development of the pumping flow rate and
non-Darcian region.

(2) The neglect of the finite expansion of the non-Darcian region may introduce errors
to the hydraulic head simulation of a two-region flow. The turbulence flow in the
finite non-Darcian region can lead to positive and negative deviations of the hydraulic
head−time curves from pure non-Darcian and pure Darcian flows, respectively. The
range of non-Darcian regions can decrease with time.



Appl. Sci. 2022, 12, 11493 13 of 17

(3) Using Izbash’s equation, the transient pumping rate−time behavior can be signifi-
cantly controlled by the hydraulic head inside the pumping well hw and non-Darcian
coefficient n1. The decrease in hw value or increase of n1 value can improve the pump-
ing rate at a given time point. Such effect is gradually weakened and be disappeared
towards the end of pumping time.

Consequently, the proposed model provides a concise method for quantitatively
investigating the good hydraulics around the pumping well under the combined effect
of both non-Darcian and Darcian flows and offers a theoretical basis for designing the
pumping rate during the constant-head test.
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Appendix A

The initial-value problems of the mathematical model of Equations (3), (7), and (11a)
for the region N and of Equations (5), (6), (8), and (11b) for the region D are solved by
Boltzmann transform as following. To convert Equation (11a,b) from partial differential
equations to ordinary differential equations, a similar item is introduced as

η = rt−
1
2 , (A1)

where η is a similar item of radius r and time t. Using Equation (A1),
Equations (A2), (A3) and (A4) can be obtained in terms of η.

∂hn

∂r
= t−

1
2

dhn

dη
, (A2)

∂2hn

∂r2 = t−1 d2hn

dη2 , (A3)

∂hn

∂t
= −1

2
rt−

3
2

dhn

dη
, (A4)

where hn represents the similarity items of h1 or h2.
Thus, Equations (11a) and (11b) can be rewritten as

d2h1

dη2 +

(
n1

η
+

ε1Qn1−1r1−n1

2
η

)
dh1

dη
= 0, (A5)

d2h2

dη2 +

(
1
η
+

ε2

2
η

)
dh2

dη
= 0. (A6)
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After variable separations and integration of Equations (A5) and (A6), the item of dh1
dη

and dh2
dη can be expressed as Equations (A7) and (A8), respectively.

dh1

dη
= D1η−n1 exp

(
− ε1Qn1−1r1−n1

4
η2
)

, (A7)

dh2

dη
= D2η−1 exp

(
− ε2

4
η2
)

, (A8)

where D1 and D2 are integration constants. Similarly, substituting
Equations (A2), (A3), and (A4) into Equations (3), (5), (6), (7), and (9), the initial and
boundary conditions can be established in term of η as

h2(η → ∞) = b, (A9)

lim
η→ηw

2πbK1

(
Q

2πrwhw

)1−n1

η
dh1

dη
= −Q, (A10)

dh1

dη

∣∣r→R =
K2

n1

K1
t−

1
2 (n1−1)

(
dh2

dη

)n1 ∣∣r→R, (A11)

h1|r→R = h2|r→R. (A12)

Combining Equation (A10) with Equation (A7), the item of D1 can be determined and
Equation (A7) can be given as

dh1

dη
= −

Qn1 t
1−n1

2 exp
(

ε1Qn1−1rw
1−n1

4 ηw
2
)

(2π)n1 hwn1−1bK1
η−n1 exp

(
− ε1Qn1−1r1−n1

4
η2
)

. (A13)

Applying Equations (A13) and (A11) to Equation (A8), the item of D2 can be assessed
and Equation (A8) can be obtained as

dh2

dη
=

Q exp
(

ε1Qn1−1rw
1−n1

4n1
ηw

2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
− ε1Qn1−1R1−n1

4n1
ηR

2
)

η−1 exp
(
− ε2

4
η2
)

. (A14)

After variable separations and integration of Equation (A13), the equation of hydraulic
head in the region N is derived as

h1 =
Qn1 exp

(
ε1Qn1−1rw

1−n1
4 ηw

2
)

r1−n1

(2π)n1 hwn1−1bK1

∫ η

0.1
m−1 exp

(
− ε1Qn1−1r1−n1

4
m2
)

dm + B1. (A15)

Similarly, after separation and integration of Equation (A14), the governing equation
with an arbitrary constant in the region D is

h2 =
Q exp

(
ε1Qn1−1rw

1−n1
4n1

ηw
2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
− ε1Qn1−1R1−n1

4n1
ηR

2
) ∫ η

0.1
m−1 exp

(
− ε2

4
m2
)

dm + B2, (A16)

where ηR is defined as Rt−
1
2 , ηw is depicted as rwt−

1
2 , B1 and B2 are integration constants.

Substituting Equation (A9) into Equation (A16), the arbitrary constant of B2 can be
expressed as

B2 = b−
Q exp

(
ε1Qn1−1rw

1−n1
4n1

ηw
2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
− ε1Qn1−1R1−n1

4n1
ηR

2
) ∫ ∞

0.1
m−1 exp

(
− ε2

4
m2
)

dm. (A17)
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Hence, Equation (A16) can be obtained as

h2 = b−
Q exp

(
ε1Qn1−1rw

1−n1
4n1

ηw
2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
− ε1Qn1−1R1−n1

4n1
ηR

2
) ∫ ∞

η
m−1 exp

(
− ε2

4
m2
)

dm. (A18)

Substituting Equations (A15) and (A18) into Equation (A12), the item of B1 can be
evaluated as

B1 = b−
Q exp

(
ε1Qn1−1rw

1−n1
4n1

ηw
2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
− ε1Qn1−1R1−n1

4n1
ηR

2
) ∫ ∞

ηR

m−1 exp
(
− ε2

4
m2
)

dm−

Qn1 exp
(

ε1Qn1−1rw
1−n1

4 ηw
2
)

r1−n1

(2π)n1 hwn1−1bK1

∫ ηR

0.1
m−1 exp

(
− ε1Qn1−1r1−n1

4
m2
)

dm. (A19)

Combining Equation (A19) with Equation (A15) leads to

h1 =
Qn1 exp

(
ε1Qn1−1rw

1−n1
4 ηw

2
)

r1−n1

(2π)n1 hwn1−1bK1

∫ η

0.1
m−1 exp

(
− ε1Qn1−1r1−n1

4
m2
)

dm + [b−
Q exp

(
ε1Qn1−1rw

1−n1
4n1

ηw
2
)

2πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
)

exp
(
− ε1Qn1−1R1−n1

4n1
ηR

2
) ∫ ∞

ηR

m−1 exp
(
− ε2

4
m2
)

dm−
Qn1 t

1−n1
2 exp

(
ε1Qn1−1rw

1−n1
4 ηw

2
)(

rt−
1
2

)1−n1

(2π)n1 hwn1−1bK1

∫ ηR

0.1
m−1 exp

(
− ε1Qn1−1R1−n1

4
m2
)

dm]. (A20)

For simplification, Equations (A20) and (A18) can be rewritten Equations (A21) and
(A22), respectively, by introduction of a series of expressions of Equations (A23)–(A27).

h1 = b + F1

∫ η

0.1
m−1 exp

(
− ε1r1−n1

4
m2
)

dm− F2W(vR)− F1

∫ ηR

0.1
m−1 exp

(
− ε1R1−n1

4
m2
)

dm, (A21)

h2 = b− F2W(v), (A22)

and

F1 =
Qn1 exp

(
ε1rw

1−n1
4 ηw

2
)

r1−n1

(2π)n1 hwn1−1bK1
, (A23)

F2 =
Q exp

(
ε1rw

1−n1
4n1

ηw
2
)

4πhw

n1−1
n1 b

1
n1 K2 exp

(
− ε2

4 ηR2
) exp

(
−ε1R1−n1

4n1
ηR

2

)
, (A24)

v =
ε2

4
η2, (A25)

vR =
ε2

4
ηR

2, (A26)

W(x) =
∫ ∞

x

e−y

y
dy, (A27)

where x can represent any real number.
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