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Abstract: Predicting the wafer material removal rate (MRR) is an important step in semiconductor
manufacturing for total quality control. This work proposes a deep learning model called a fusion
network to predict the MRR, in which we consider separating features into shallow and deep features
and use the characteristics of deep learning to perform a fusion of these two kinds of features. In
the proposed model, the deep features go through a sequence of nonlinear transformations and the
goal is to learn the complex interactions among the features to obtain the deep feature embeddings.
Additionally, the proposed method is flexible and can incorporate domain knowledge into the model
by encoding the knowledge as shallow features. Once the learning of deep features is completed,
the proposed model uses the shallow features and the learned deep feature embeddings to obtain
new features for the subsequent layers. This work performs experiments on a dataset from the
2016 Prognostics and Health Management Data Challenge. The experimental results show that the
proposed model outperforms the competition winner and three ensemble learning methods. The
proposed method is a single model, whereas the comparison methods are ensemble models. Besides
the experimental results, we conduct extensive experiments to analyze the proposed method.

Keywords: chemical mechanical polishing (CMP); material removal rate (MRR); fusion network;
deep learning; semiconductor manufacturing

1. Introduction

As with the popularity of electronic equipment, semiconductor manufacturing is
becoming increasingly important these days. Many complex and sophisticated processes
are involved in semiconductor manufacturing, among which chemical mechanical polishing
(CMP) is the foundation of wafer fabrication [1,2]. It is worth mentioning that CMP has been
recognized as a critical process for improving the production efficiency of semiconductor
manufacturing processes [3]. Unlike pure mechanical and pure chemical polishing, CMP
combines mechanical and chemical functions to avoid the surface damage and lengthy
polishing process of pure mechanical polishing [4]. In the presence of pressure and a
polishing slurry, the wafer and polishing pad rotate in opposite directions to synergistically
combine the abrasive action of the particles in the slurry and the corrosive action of the
oxidant to form a smooth surface on the wafer [5]. With a smooth surface, the wafers
will be allowed to set up additional circuit elements on their flat surfaces in subsequent
semiconductor manufacturing processes. Note that the output of the CMP process is the
material removal rate (MRR), which refers to the surface quality of the polished wafers and
the quality of the CMP process [6]. The unit of the MRR is usually expressed in nm/min to
represent the thickness (nanometer) of the film removed per minute.
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Taking into account the complicated interactions of the chemical and mechanical
processes, many relevant parameters are related to the MRR including the slurry (e.g., flow
rate and cohesion), operating environment (e.g., humidity and temperature), mechanism
(e.g., rotational speed and pressure), polishing pad (e.g., thickness and heat resistance
level), and membrane (e.g., hardness) [7–9]. Therefore, developing a predictive model with
enormous process parameters is a valuable and challenging task.

The last decade has witnessed the outstanding progress of deep learning, which
enables models to learn feature representations and perform classifications simultane-
ously [10]. This can reduce the overhead caused by manual feature extraction, which is
used by traditional machine learning methods. Thus, this work proposes a deep learning
model called the fusion network to predict the MRR in which data science approaches
are used to analyze the data. We consider separating the features into shallow and deep
features instead of using the samples with all the features as inputs. Our developed model
aims to use the characteristics of deep learning to merge these two types of features. In the
developed model, the deep features go through a sequence of nonlinear transformations
and the goal is to learn the complex interactions among the features to obtain the deep
feature embeddings. Additionally, the proposed method incorporates domain knowledge
into the model by encoding the knowledge as shallow features. Once the learning of deep
features is completed, the proposed model combines the shallow features and the deep
feature embeddings learned to obtain new features for the subsequent layers.

We conduct experiments on the dataset obtained from the 2016 Prognostic and Health
Management (PHM) Data Challenge, collected by virtual metrology (VM) technology to
evaluate the proposed method. In the experiments, we compare our proposed method
with the winner of the competition and with three ensemble learning methods. Compared
to the comparison methods that use ensemble learning to combine several base models to
boost model performance, our proposed fusion network comprises only a single model.
However, the proposed model can still outperform the alternatives.

The contributions of this work are as follows:

• The proposed method is a deep learning model that can incorporate domain knowl-
edge into the model by encoding the knowledge as shallow features. Additionally,
the remaining features can go through a deep neural network to learn discriminative
feature embeddings.

• The experiments are performed on the dataset from the 2016 PHM Data Challenge.
To the best of our knowledge, the performance based on the proposed model outper-
forms all other methods in the existing literature.

• Finally, the prediction accuracy of the proposed method is demonstrated through
extensive experiments.

The rest of this paper is organized as follows. Section 2 presents related surveys and
techniques. Section 3 introduces the proposed method. Section 4 shows the experimental
results and detailed discussions. Finally, the conclusions and future work are summarized
in Section 5.

2. Related Work

Over the past decade, many studies have been proposed that consider the parameters
and circumstances involved in the polishing process from the perspectives of the physical
and chemical processes. Wang et al. [11] investigated the effects of the pH, oxidizer concen-
tration, and slurry flow rate on the MRR. They showed that a higher oxidizer concentration
or a higher slurry flow rate resulted in a higher MRR when the CMP was completed. This
can be explained by an adhesive removal mechanism on the molecular scale. Jeng and
Huang [12] discovered the cross-effect between the abrasion, wafer, particle size, and pad in
the microcontact view, in which the sources of pressure are the pad deformation and num-
ber of abrasive particles. They also considered the relationship between the wafer surface
hardness, slurry concentration, and slurry particle size. Oliver et al. [13] and Park et al. [14]
investigated how the roughness of the pad surface affected the material removal process



Appl. Sci. 2022, 12, 11478 3 of 14

in CMP and discovered and explained the relationship between the MRR and the level
of surface roughness of the pad. Ng et al. [15] developed an analytical MRR model to
scale key process variables and replicated the surface finishing task performed by the
manual operator. Dambon et al. [16] investigated how the wafer material affects the MRR
by conducting mechanistic experiments and showed that the removal level is determined
by the wafer deformation capability rather than the material hardness of the wafer. Thus,
if the wafer material has a higher deformation ability, a higher MRR is obtained. Oh and
Seok [17] presented an integrated MRR model of the MRR for silicon dioxide in CMP
with the slurry chemical diffusion model. By comparing the results with the experimental
dataset in the literature, the validity of the proposed model was supported.

The last decade has witnessed great progress in machine learning because of the
advances in machine learning and the presence of big data [18–20]. The key idea behind
machine learning is to learn predictive models from the data [21]. Once the learning process
has been completed, the learned models make predictions on unseen data. Due to the
growing demand for the accuracy, stability, and reliability of VM, many machine learning
models, such as linear regression (LR), multivariate linear regression (MLR), multitask
learning, and artificial neural networks, are commonly used in VM [22–25].

To cope with the problem that a model involves enormous features, feature selection
is a commonly used technique. The goal is to select a subset of features from the original
feature set. For example, to avoid the negative effects of many features, Hirai and Kano [26]
used partial least squares (PLS) and variable importance in the projection to process
57,600 features, in which PLS was applied to find the fundamental relationship between
features and output. Their proposed model tried to find the multidimensional direction in
the feature space that explained the maximum multidimensional variance direction in the
output space by removing the redundant features until the remaining number of features
reached the target number. Tsai et al. [27] focused on the chemical–mechanical process
for polishing a color filter (CMP-CF). They proposed an adaptive network-based fuzzy
inference system with sliding-level particle swarm optimization (SL-PSO) to optimize the
CMP-CF parameters.

In the 2016 PHM Data Challenge, Di et al. [28] discovered two new types of features
that can improve prediction accuracy. The first feature was the “Time Neighbor Features”
since they found out that there exists a strong correlation between the MRR at time t, that
is, MRR(t), and MRR at t− 1, that is, MRR(t− 1). The relationship can be extended to
the previous time steps. The second feature was the “Usage Neighbor Features”, which is
based on the usage of wafers. To obtain the usage neighbors, one has to calculate the mean
values for the usage variables of each wafer; then, the K-nearest neighbors can be obtained
based on the mean values.

Using the statistical features and the two types of features mentioned above, the
authors significantly improved the prediction of the MRR. Their proposed method was
an ensemble of multiple machine learning algorithms and won the first prize in the com-
petition. In addition, another data-driven technique in the competition was proposed by
Wang et al. [29], in which they used a deep belief network (DBN) to develop the model.
The developed model was a stack of restricted Boltzmann machines (RBMs) with two
layers, including visible and hidden layers, to extract the features, followed by a predictive
model with a feed-forward three-layer neural network to make the predictions. Yu et al. [30]
employed a physics-informed machine learning approach to forecasting the MRR more
precisely. The proposed model determined the two attributes, the contact between the
polishing pad and the abrasive, as well as the contact between abrasives and wafers,
by combining a physics-based model and a data-driven model.

3. Proposed Method

We followed the flow of data science to design the predictive model, as shown in
Figure 1. First, we removed outliers to avoid model bias toward those data samples with
extreme values. The next step was to use the feature engineering technique to extract more



Appl. Sci. 2022, 12, 11478 4 of 14

meaningful features from the data. Once the feature engineering process was completed,
the final step was to train the proposed fusion network using the available data samples
with new features.

Figure 1. Data Analysis Flow.

3.1. Dataset

The dataset used in the experiments was from the 2016 PHM Data Challenge, which
was held by the PHM Society. Over the last few decades, the PHM has attracted much atten-
tion as an effective method of avoiding unnecessary maintenance operations and advancing
safety reliability and availability [31]. The dataset comprises data collected during the
various runs of the CMP tool for specific wafers over time. The 2016 PHM Data Challenge
focused on tracking the health status of components within a wafer chemical mechanical
polishing (CMP) system, which plays a critical role in improving the production efficiency
of semiconductor manufacturing processes. Detailed information on the available process
features is available on the PHM Data Challenge website (2016 PHM Data Challenge:
https://www.phmsociety.org/events/conference/phm/16/data-challenge (accessed on
29 April 2021)). Data are presented in the form of comma-separated values (CSV) in which
each row of data represents an instance of all measurement variables at any given time.
In addition to the data, the competition separately provided an average rate of material
removal from a wafer, which was measured in terms of the thickness of the material before
and after CMP polishing.

In the dataset, the wafers are separated into two groups according to the MRR range:
low-speed mode and high-speed mode. The MRR range for low-speed mode is about
50–110 (nm/min) and about 140–170 (nm/min) for high-speed mode. Moreover, the group
of low-speed mode data can be further segmented into two different groups based on stage
ID: Stages A and B. Figure 2 shows the MRR distribution of the dataset. The segmentation
information and sample size for each group are listed in Table 1.

Figure 2. Removal Rate Distribution.

https://www.phmsociety.org/events/conference/phm/16/data-challenge
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Table 1. Segmentation information and sample size for each group in which the unit for the MRR
range is nm/min.

Group Chamber ID Stage ID MRR Range
Sample Size

Training Testing

High-speed 1, 2, 3 A 138–163 431 73
Low-speed (A) 4, 5, 6 A 53–89 983 165
Low-speed (B) 4, 5, 6 B 53–102 987 186

3.2. Outlier Detection

Data pre-processing is essential in data science since data samples may comprise
outliers or noise. Data cleaning can remove these data samples to help the subsequent data
analysis. Besides data cleaning, data transformation and integration are also essential to
data pre-processing, and the goal is to obtain a dataset that is ready for model training.

Outlier detection is an essential process in data analysis and this work used data
visualization techniques to observe the data, as the information can be clearly and effectively
analyzed through graphical means. Figure 3 shows the visualization results of the data
samples in the 2016 PHM Data Challenge dataset. It is apparent that several data points are
far from the rest of the data points so they are the outliers of the data samples. This work
simply removed these outliers from the data samples since the MRRs of most wafers were
below 170, whereas the MRRs for these outliers were more than 4000.

Figure 3. Outlier Detection with Data Visualization.

3.3. Feature Engineering

Once the data pre-processing was completed, we applied the feature engineering
technique to extract the statistical measures from the pre-processed features, and the goal
was to create more valuable features. In particular, feature engineering was crucial to the
performance of the subsequent machine learning algorithms.

In addition to the original features, we included the descriptive statistics of the fea-
tures in the feature set, including the maximum, minimum, mean, median, and standard
deviation of the feature values. In addition, this work also included the aforementioned
features, “Time Neighbor Features” and “Usage Neighbor Features”, in the feature set.
The number of neighbor features was 20.

As seen in Table 1, it is apparent that the stage feature helped the model to make
predictions since when the stage was B, the MRR was in low-speed mode. In contrast,
the MRR could be in high- or low-speed modes when the stage was A. The stage is a
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discrete variable so we applied the one-hot-encoding technique to transform the stage
feature into two features, “STAGE_A” and “STAGE_B”, and their values could be 1 or 0.
Next, we removed the stage feature from the original features.

3.4. Fusion Network

In the previous section, we used the feature engineering technique to create more
features. A practitioner can typically understand which features are essential for model
training using visualization techniques or statistical analysis. For those identified as
essential features, the model should use them directly during model training. In contrast,
the model can use a deep neural network to extract essential features from the remaining
features that do not have explicit information.

Thus, this work proposes a deep learning model called a fusion network to realize the
idea. We separated the features into shallow and deep features, where the shallow features
were those considered important, whereas the deep features required further nonlinear
transformation. Figure 4 shows the architecture of the fusion network. This work used
the neighbor features and one-hot-encoding of the stage feature as the shallow features,
whereas the remaining features were considered deep features. All data samples comprised
22 shallow features and 84 deep features.

Figure 4. Fusion Network Architecture.

In our developed model, we used a series of fully connected layers, namely the linear
layer shown in Figure 4, to perform the nonlinear transformation. It can be seen in Figure 4
that the deep features had to go through four layers so this work used several approaches
to prevent the model from overfitting.
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First, we applied the min-max normalization technique to transform the features
by scaling each feature to the range of −1 and 1 so that features with large values did
not dominate the model training. Second, each linear layer was followed by a batch
normalization layer. Training a deep neural network tends to use a batch size of data
samples as input and this can inject noise into each gradient update while achieving
relatively fast convergence [32,33] from GPU parallelism. However, when the weights
are updated, the distribution of the inputs to the deep layers of the network may change.
This phenomenon is called the internal covariate shift, which leads to a decrease in actual
learning efficiency. Ioffe et al. [34] presented batch normalization to mitigate the effect of
unstable gradients within deep neural networks. Given the batch input x, the formula is
shown below in Equation (1):

x∗ =
x− E[x]√
Var[x] + ε

× γ + β, (1)

where x∗ is the new value after normalization, E[x] is the mean within a batch, Var[x] is
the variance within a batch, ε is an arbitrarily small constant for numerical stability, and γ
and β are learnable parameters.

Third, we used the rectified linear unit (ReLU) [35] activation function to perform the
nonlinear transformation. ReLU is probably one of the most commonly used activation
functions, as it can significantly accelerate model convergence [36] and alleviate the problem
of the vanishing gradient. The formula of the ReLU function is shown below in Equation (2):

ReLU(x) = max(0, x) (2)

Finally, we applied the dropout [37] technique to the layers to randomly drop out neu-
rons during the model training phase. At each training epoch, neurons were ignored with
a probability p, forcing the neural network to learn more robust features. In particular, we
applied batch normalization, the ReLU activation function, and dropout with a probability
of 0.1 to all the layers of the deep neural network, as shown in Figure 4, in which p = 0.1
was obtained from cross-validation. The experiments further analyzed the influence of the
dropout probability and batch normalization on model performance.

Once the learning of deep features was completed, we concatenated the shallow
features and deep feature embeddings that passed through the deep neural network.
Subsequently, we used two simple linear layers to fuse these two kinds of features. The final
output was a scale value, as the prediction of the MRR is a regression problem. The loss
function L used in the proposed model was the mean square loss, as shown in Equation (3):

L =
1
B

B

∑
i=1

(yi − ŷi)
2, (3)

where B is the batch size, yi is the label, and ŷi is the prediction result.

4. Results and Discussions

This work performed several experiments to evaluate and analyze the proposed
method. First, we compared the proposed method with the winner of the 2016 PHM
Data Challenge. Additionally, we compared our proposed method with several previous
works on this dataset, including the methods proposed by Di et al. [28], Jia et al. [38],
and Zhang et al. [39], respectively. Besides these methods, we used three state-of-the-art
ensemble methods as the comparison methods. It is worth mentioning that the work
conducted by Di et al. was also an ensemble method that comprised several base methods.
In addition, we conducted extensive experiments to analyze our proposed method, which
are discussed in this section.
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4.1. Comparison Methods

Di et al. [28] combined the persistent model, K-nearest neighbor (kNN), linear regres-
sion, tree bagging, and support vector regression (SVR) models to develop an integrated
model. The weight for each base model was defined by the prediction error obtained from
the cross-validation, and the model that yielded better performance in the cross-validation
was given a higher weight.

Jia et al. [38] employed a group method of data handling (GMDH)-type polynomial
neural network for MRR prediction. The GMDH-type polynomial neural network was
designed to effectively capture manufacturing information and address the problem of the
high data dimensionality of the VM data. The final results indicated that their proposed
method could further improve the prediction accuracy and outperform the random forest
(RF), SVR, kNN, and logistic regression models.

Zhang et al. [39] constructed the convolutional neural network (CNN) and the residual
convolutional neural network (ResCNN) to implement automatic feature extraction and
weight sharing through the convolution and pooling layers from which superior prediction
performance was obtained. ResCNN achieved the best performance in their experiments.

In addition, we further used three state-of-the-art ensemble methods as comparison
methods. The first was RF, an ensemble method for classification, regression, and other
tasks, which combines numerous decision trees. The key idea behind RF is to use a
bootstrap sampling technique to generate enormous training sets, each of which is used
to train a decision tree. To increase the diversity of the decision trees, the features of each
decision tree are also obtained from a feature sampling set.

The second one was the gradient-boosting regressor, based on the gradient-boosted
decision tree (GBDT). It combines many weak learners to form a strong learner iteratively.
At each iteration, a regression tree is fitted to the negative gradient of the loss function.
The final one was extreme gradient boosting (XGBoost) [40], which is an extension of the
GBDT. It has become one of the most popular algorithms in data science competitions.
The objective function of XGBoost comprises training loss and regularization, in which
regularization can help the model avoid overfitting. On the other hand, XGBoost has
improved this problem by using the second-order Taylor expansion of the loss function,
making the tree more complex and powerful in learning. Moreover, XGBoost uses `1 and
`2 as the regularization terms to help prevent the model from overfitting.

4.2. Evaluation Metric

This work used the mean squared error (MSE) shown in Equation (4) to evaluate the
performance of the model, as the prediction of the MRR is a regression problem. Notably,
the MSE was also the metric used in the competition. A smaller MSE means that an estimate
is more accurate.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (4)

where n is the size of the estimates, yi is the ground truth, and ŷi is the predicted result.
Besides the MSE, the mean absolute error (MAE) that measures the difference between

yi and ŷi is another metric for the evaluation of our proposed method. Equation (5)
shows the definition of the MAE. Like the MSE, a smaller MAE means that an estimate is
more accurate.

MAE =
1
n

n

∑
i=1
|yi − ŷi|. (5)

4.3. Experimental Results

This section compares our proposed model with several state-of-the-art methods and
the 2016 PHM Data Challenge winner. In the experiments, we used the training data
provided by the competition and further split them into a training set and a validation set.
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The splitting ratio for the two sets was 9:1. Then, we used the training set to train the model
and the validation set to tune the model parameters.

In our proposed model, the dropout probability p was 0.1 during the training phase.
In addition, we used the Adam optimizer with an initial learning rate of 0.01 and a weight
decay of 0.01. Setting the learning rate is a key step in deep learning and this work used a
learning rate scheduler to control the learning rate, where the learning rate decreased by a
factor of 10 when there was no improvement for five epochs. The batch size was 16 and the
number of epochs was 100 for the fusion network in all experiments. The hyperparameters
used by our proposed model are listed in Table 2. As for the other comparison methods,
the best combination of hyperparameters was obtained using the grid search technique.

Additionally, Figure 5 shows the loss curves of our proposed model in which the
y-axis is the loss value, whereas the x-axis denotes the number of epochs. It can be seen that
both the training loss and the validation loss decreased as the number of epochs increased.

Figure 5. The loss curves of our proposed model.

The experimental results are listed in Table 3, indicating that our proposed method
outperformed the alternatives. We conclude that the reasons why our proposed model
outperformed that of Di et al. [28] are twofold. First, we used the data science approach to
identify outliers and generate more discriminative features using the feature engineering
technique. Second, the proposed model allowed practitioners to incorporate the findings
from the data exploration step or knowledge into the network. Subsequently, the proposed
fusion network used different routes to deal with shallow and deep features. Combining
these two features enabled the model to benefit from the characteristics of deep neural net-
works to learn discriminative features. It is worth mentioning that the work of Di et al. [28]
and the other three ensemble methods are based on ensemble learning, whereas the pro-
posed method is a single model.

Table 2. Hyperparameters of the Proposed Model.

Parameter Description

Dropout probability 0.1
Optimizer Adam
Initial learning rate 0.01
Batch size 16
Number of epochs 100
Activation function ReLU
Loss function `1 Loss
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Table 3. Experimental results on the 2016 PHM dataset.

Methods MSE MAE

Di et al. [28] 7.07 N/A
Jia et al. [38] 6.62 N/A
Zhang et al. [39] 6.72 N/A
Random Forest 6.69 1.96
Gradient Boosting Regressor 6.78 1.96
XGBoost 6.66 1.94
Our proposed method 6.36 1.87

4.4. Fusion Network vs. Shallow Network vs. Deep Network

The proposed fusion network comprises two networks: a shallow network and a deep
network. We conducted experiments to investigate the performance improvement caused
by these two networks. In the design of the deep network, all features go through the deep
network, namely the right network of the fusion network, as presented in Figure 4. On the
other hand, the shallow network uses the inputs with all features to go through the left
network of our proposed architecture, as shown in Figure 4.

Figure 6 shows the experimental results measured by MSE and MAE, which indicate
that the shallow network achieved superior performance to the deep network. This is
consistent with our intuition, as a shallow network can directly digest important features,
whereas a deep network aims at learning feature embeddings from the remaining features.
Although deep neural networks have achieved promising results in many applications,
a deeper deep network does not guarantee better performance [41]. Furthermore, the ex-
perimental results showed that the proposed fusion network outperformed the other two
networks, meaning that the proposed method benefited from the characteristics of the
two networks to further improve performance. The fusion network enabled features with
different characteristics to go through different networks. A deep network can use a deep
neural network to perform a series of nonlinear transformations to learn important feature
embeddings from raw data. On the contrary, a shallow network can retain domain knowl-
edge or important features. The combination of these two features can initiate a fusion
process by using subsequent layers, which explains why the proposed fusion network
yielded promising results.

Figure 6. Performance of different network architectures, where a lower value is better.
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4.5. Ensemble Learning

Ensemble learning is an important technique for model improvement and is also a
widely used technique in data science competitions. Ensemble learning can be further
divided into three categories, boosting, bagging, and stacking. In the comparison methods,
the gradient boosting regressor and XGBoost models belong to the boosting category,
random forest is a bagging method, and the work conducted by Di et al. used a stacking
approach to combine several base models. This work conducted a simple experiment to
explore whether the proposed method benefited from ensemble learning. For the ensemble
of fusion networks, we used the training set to train ten fusion networks. For each test
sample, the ten models had to make their predictions, and the final prediction outcome was
simply the average of the ten predictions. It is apparent that this approach is very simple,
but it is also one of the most commonly used techniques to combine multiple base models.
We used the same architecture with random initialization weights to train the ten fusion
networks, which means that each fusion network was slightly different from the others.

Figure 7 shows the experimental results measured by MSE and MAE, each of which
is the average of ten experiments. It can be seen from the results that the ensemble of
the fusion network still worked well but the performance difference between these two
approaches was very minor. Thus, the proposed method did not benefit from a simple
ensemble approach. We conclude that the main reason for the result is that the difference
between the fusion networks in the ensemble was very minor. Note that ensemble learning
tended to yield better results than the underlying base models when there was significant
diversity among the base models. However, the diversity of the fusion networks in the
ensemble model was expected to be minor, which is why a simple ensemble approach did
not result in a significant performance improvement.

Figure 7. Single fusion network vs. ensemble of fusion network, where a lower value is better.

4.6. The Impact of Dropout Probability and Batch Normalization

Dropout is a commonly used technique in deep learning to regularize and prevent
the co-adaptation of neurons [37]. It can randomly zero some neurons in the layer with
probability p, which is a hyperparameter. We performed a sensitivity analysis of p to
investigate the performance impact caused by different values of p. We changed the
value of p from 0 to 0.9, and each setting repeated the experiment ten times to avoid the
randomness effect of the weight initialization. We used the average of ten experiments as
the performance result. Figure 8 shows the experimental results. The model gave the best
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performance when p was 0.1 but the performance difference between the different settings
was minor.

Figure 8. Results with different dropout probabilities.

In addition to the dropout mechanism, batch normalization is another technique
that can speed up model training, reduce the internal covariant shift, and regularize the
model. We conducted experiments to explore the importance of batch normalization in
our proposed model. Based on the previous experimental results, we set the dropout
probability to 0.1 and designed a new model by removing all batch normalizations from the
network. The experimental results measured by the MSE and MAE are listed in Figure 9,
which indicated that batch normalization was an essential step in our proposed model.
In contrast, the importance of the dropout was much less than that of batch normalization.
These results also conform to the conclusions of the previous work [34], that is, the dropout
can be removed or reduced in strength in a batch-normalized network.

Figure 9. The impact of batch normalization, where a lower value is better.
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5. Conclusions

In this work, we propose a deep learning model called a fusion network to predict
the MRR. Central to our proposed model is the separation of the features into shallow
and deep features, respectively, and the use of the characteristics of deep learning to
perform a fusion of these two types of features. It is worth mentioning that the proposed
method is flexible and can incorporate domain knowledge into the model. We conduct
experiments on the PHM dataset and the experimental results indicate that the proposed
model outperforms the winner of the 2016 PHM Data Challenge and three ensemble
learning methods. In addition to the experimental results, a detailed analysis of the
proposed method is also provided in this work. In one of our future works, we plan to
identify new features based on the mechanism of CMP. Furthermore, it is worth applying
our proposed method to other processing steps in semiconductor manufacturing.

Author Contributions: Conceptualization, C.-L.L. and S.-H.W.; methodology, C.-L.L.; software,
C.-L.L.; validation, C.-J.T. and S.-R.L.; investigation, C.-J.T.; data curation, S.-R.L.; writing—original
draft preparation, S.-H.W.; writing—review and editing, C.-L.L., C.-J.T. and W.-H.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Science and Technology Council, Taiwan,
R.O.C., under Grant no. MOST 109-2628-E-009-009-MY3 and 111-2221-E-A49-083-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. Data can be
found in the 2016 PHM Data Challenge at https://www.phmsociety.org/events/conference/phm/
16/data-challenge (accessed on 29 April 2021).

Acknowledgments: We are grateful to the National Center for High-Performance Computing for the
computer time and facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, W.T.; Blue, J.; Roussy, A.; Pinaton, J.; Reis, M.S. A Structure Data-Driven Framework for Virtual Metrology Modeling. IEEE

Trans. Autom. Sci. Eng. 2019, 17, 1297–1306. [CrossRef]
2. Cho, Y.; Liu, P.; Jeon, S.; Lee, J.; Bae, S.; Hong, S.; Kim, Y.H.; Kim, T. Simulation and Experimental Investigation of the Radial

Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing. Appl. Sci. 2022, 12, 4339. [CrossRef]
3. Duan, Y.; Liu, M.; Dong, M.; Wu, C. A two-stage clustered multi-task learning method for operational optimization in chemical

mechanical polishing. J. Process Control 2015, 35, 169–177. [CrossRef]
4. Zhao, Y.; Chang, L.; Kim, S. A mathematical model for chemical–mechanical polishing based on formation and removal of weakly

bonded molecular species. Wear 2003, 254, 332–339. [CrossRef]
5. Jeong, S.; Jeong, K.; Choi, J.; Jeong, H. Analysis of correlation between pad temperature and asperity angle in chemical mechanical

planarization. Appl. Sci. 2021, 11, 1507. [CrossRef]
6. Evans, C.J.; Paul, E.; Dornfeld, D.; Lucca, D.A.; Byrne, G.; Tricard, M.; Klocke, F.; Dambon, O.; Mullany, B.A. Material removal

mechanisms in lapping and polishing. CIRP Ann. 2003, 52, 611–633. [CrossRef]
7. Qin, C.; Hu, Z.; Tang, A.; Yang, Z.; Luo, S. An efficient material removal rate prediction model for cemented carbide inserts

chemical mechanical polishing. Wear 2020, 452, 203293. [CrossRef]
8. Park, S.; Lee, H. Electrolytically Ionized Abrasive-Free CMP (EAF-CMP) for Copper. Appl. Sci. 2021, 11, 7232. [CrossRef]
9. Son, J.; Lee, H. Contact-area-changeable CMP conditioning for enhancing pad lifetime. Appl. Sci. 2021, 11, 3521. [CrossRef]
10. Liu, H.; Wang, F.; Guo, D.; Liu, X.; Zhang, X.; Sun, F. Active Object Discovery and Localization Using Sound-Induced Attention.

IEEE Trans. Ind. Inform. 2020, 17, 2021–2029. [CrossRef]
11. Wang, Y.G.; Zhang, L.C.; Biddut, A. Chemical effect on the material removal rate in the CMP of silicon wafers. Wear 2011,

270, 312–316. [CrossRef]
12. Jeng, Y.R.; Huang, P.Y. Impact of Abrasive Particles on the Material Removal Rate in CMP A Microcontact Perspective. Electrochem.

Solid State Lett. 2004, 7, 40–43. [CrossRef]
13. Oliver, M.R.; Schmidt, R.E.; Robinson, M. CMP pad surface roughness and CMP removal rate. In Proceedings of the 198th

Meeting of the Electrochemical Society, 4th International Symposium on CMP, Phoenix, AZ, USA, 23–25 October 2000; Volume 26,
pp. 77–83.

https://www.phmsociety.org/events/conference/phm/16/data-challenge
https://www.phmsociety.org/events/conference/phm/16/data-challenge
http://doi.org/10.1109/TASE.2019.2941047
http://dx.doi.org/10.3390/app12094339
http://dx.doi.org/10.1016/j.jprocont.2015.06.005
http://dx.doi.org/10.1016/S0043-1648(03)00015-2
http://dx.doi.org/10.3390/app11041507
http://dx.doi.org/10.1016/S0007-8506(07)60207-8
http://dx.doi.org/10.1016/j.wear.2020.203293
http://dx.doi.org/10.3390/app11167232
http://dx.doi.org/10.3390/app11083521
http://dx.doi.org/10.1109/TII.2020.3000240
http://dx.doi.org/10.1016/j.wear.2010.11.006
http://dx.doi.org/10.1149/1.1637561


Appl. Sci. 2022, 12, 11478 14 of 14

14. Park, K.H.; Kim, H.J.; Chang, O.M.; Jeong, H.D. Effects of pad properties on material removal in chemical mechanical polishing.
J. Mater. Process. Technol. 2007, 187, 73–76. [CrossRef]

15. Ng, W.X.; Chan, H.K.; Teo, W.K.; Chen, I.M. Programming a robot for conformance grinding of complex shapes by capturing the
tacit knowledge of a skilled operator. IEEE Trans. Autom. Sci. Eng. 2015, 14, 1020–1030. [CrossRef]

16. Dambon, O.; Demmer, A.; Peters, J. Surface interactions in steel polishing for the precision tool making. CIRP Ann. 2006,
55, 609–612. [CrossRef]

17. Oh, S.; Seok, J. An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes. Wear
2009, 266, 839–849. [CrossRef]

18. Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning
methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]

19. Dinh, T.Q.; Marco, J.; Greenwood, D.; Ahn, K.K.; Yoon, J.I. Data-based predictive hybrid driven control for a class of imperfect
networked systems. IEEE Trans. Ind. Inform. 2018, 14, 5187–5199. [CrossRef]

20. Wan, J.; Tang, S.; Li, D.; Wang, S.; Liu, C.; Abbas, H.; Vasilakos, A.V. A Manufacturing Big Data Solution for Active Preventive
Maintenance. IEEE Trans. Ind. Inform. 2017, 13, 2039–2047. [CrossRef]

21. Ibrahim, A.; Eltawil, A.; Na, Y.; El-Tawil, S. A machine learning approach for structural health monitoring using noisy data sets.
IEEE Trans. Autom. Sci. Eng. 2019, 17, 900–908. [CrossRef]

22. Purwins, H.; Barak, B.; Nagi, A.; Engel, R.; Höckele, U.; Kyek, A.; Cherla, S.; Lenz, B.; Pfeifer, G.; Weinzierl, K. Regression methods
for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Trans. Mechatron. 2013, 19, 1–8. [CrossRef]

23. Kourti, T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J.
Adapt. Control Signal Process. 2005, 19, 213–246. [CrossRef]

24. Park, C.; Kim, Y.; Park, Y.; Kim, S.B. Multitask learning for virtual metrology in semiconductor manufacturing systems. Comput.
Ind. Eng. 2018, 123, 209–219. [CrossRef]

25. Choi, J.E.; Hong, S.J. Machine learning-based virtual metrology on film thickness in amorphous carbon layer deposition process.
Meas. Sensors 2021, 16, 100046. [CrossRef]

26. Hirai, T.; Kano, M. Adaptive Virtual Metrology Design for Semiconductor Dry Etching Process Through Locally Weighted Partial
Least Squares. IEEE Trans. Semicond. Manuf. 2015, 28, 137–144. [CrossRef]

27. Tsai, J.; Chou, P.; Chou, J. Color Filter Polishing Optimization Using ANFIS With Sliding-Level Particle Swarm Optimizer. IEEE
Trans. Syst. Man, Cybern. Syst. 2018, 50, 1193–1207. [CrossRef]

28. Di, Y.; Jia, X.; Lee, J. Enhanced virtual metrology on chemical mechanical planarization process using an integrated model and
data-driven approach. Int. J. Progn. Health Manag. 2017, 8, 31. [CrossRef]

29. Wang, P.; Gao, R.X.; Yan, R. A deep learning-based approach to material removal rate prediction in polishing. CIRP Ann. 2017,
66, 429–432. [CrossRef]

30. Yu, T.; Li, Z.; Wu, D. Predictive modeling of material removal rate in chemical mechanical planarization with physics-informed
machine learning. Wear 2019, 426, 1430–1438. [CrossRef]

31. Yang, B.; Liu, R.; Zio, E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE
Trans. Ind. Electron. 2019, 66, 9521–9530. [CrossRef]

32. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris France,
22–27 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–186.

33. Ge, R.; Huang, F.; Jin, C.; Yuan, Y. Escaping from saddle points—Online stochastic gradient for tensor decomposition. In
Proceedings of the Conference on Learning Theory, PMLR, Paris, France, 3–6 July 2015; pp. 797–842.

34. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015.

35. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; Omnipress: Madison, WI, USA, 2010; pp. 807–814.

36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

37. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

38. Jia, X.; Di, Y.; Feng, J.; Yang, Q.; Dai, H.; Lee, J. Adaptive virtual metrology for semiconductor chemical mechanical planarization
process using GMDH-type polynomial neural networks. J. Process Control 2018, 62, 44–54. [CrossRef]

39. Zhang, J.; Jiang, Y.; Luo, H.; Yin, S. Prediction of material removal rate in chemical mechanical polishing via residual convolutional
neural network. Control Eng. Pract. 2021, 107, 104673. [CrossRef]

40. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016;
pp. 785–794.

41. Ba, J.; Caruana, R. Do deep nets really need to be deep? In Proceedings of the Advances in Neural Information Processing
Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27.

http://dx.doi.org/10.1016/j.jmatprotec.2006.11.216
http://dx.doi.org/10.1109/TASE.2015.2474708
http://dx.doi.org/10.1016/S0007-8506(07)60494-6
http://dx.doi.org/10.1016/j.wear.2008.12.014
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1109/TII.2018.2799081
http://dx.doi.org/10.1109/TII.2017.2670505
http://dx.doi.org/10.1109/TASE.2019.2950958
http://dx.doi.org/10.1109/TMECH.2013.2273435
http://dx.doi.org/10.1002/acs.859
http://dx.doi.org/10.1016/j.cie.2018.06.024
http://dx.doi.org/10.1016/j.measen.2021.100046
http://dx.doi.org/10.1109/TSM.2015.2409299
http://dx.doi.org/10.1109/TSMC.2017.2776158
http://dx.doi.org/10.36001/ijphm.2017.v8i2.2641
http://dx.doi.org/10.1016/j.cirp.2017.04.013
http://dx.doi.org/10.1016/j.wear.2019.02.012
http://dx.doi.org/10.1109/TIE.2019.2924605
http://dx.doi.org/10.1016/j.jprocont.2017.12.004
http://dx.doi.org/10.1016/j.conengprac.2020.104673

	Introduction
	Related Work
	Proposed Method
	Dataset
	Outlier Detection
	Feature Engineering
	Fusion Network

	Results and Discussions
	Comparison Methods
	Evaluation Metric
	Experimental Results
	Fusion Network vs. Shallow Network vs. Deep Network
	Ensemble Learning
	The Impact of Dropout Probability and Batch Normalization

	Conclusions
	References

