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Abstract: Micron-sized metal–organic framework (MOF) sheets were prepared using organic molecules
with aggregation-induced emission (AIE) properties as ligands. The intermolecular ligand-to-metal
charge transfer (LMCT) process occurs in MOF structures, resulting in the disappearance of the matrix
coordination-induced emission (MCIE) effect and emergence of the aggregation-caused quenching
(ACQ) effect. Here, we demonstrate that molecules with electron donors can compete with the LMCT
process in MOF structures, thereby changing the transfer path of the excitation energy and returning
it to the ground state, mainly in the form of fluorescence. Organic molecules with amino or sulfhydryl
groups can act as effective electron donors, reducing the LMCT process and causing the MCIE effect
of the MOF sheet. The coexistence of amino and sulfhydryl groups will strongly inhibit the LMCT
process of the MOF sheet, thereby greatly enhancing the MCIE effect. Therefore, these types of
molecules can be used to regulate the photoluminescence intensity of AIE-based MOF materials. In
addition, there are some organic molecules with multiple carboxyl or hydroxyl groups which can
produce similar effects. Finally, it was confirmed that the intermolecular LMCT process is highly
sensitive, and the MOF sheet showed distinguishable fluorescence results even with the addition of
small molecules in the amount of 10−9 M. Thus, it is a feasible idea to use the fluorescence changes
induced by the LMCT process as a sensitive sensing method for small molecules.

Keywords: metal–organic framework; aggregation-induced emission; ligand-to-metal charge transfer;
matrix coordination-induced emission; sensitive

1. Introduction

A metal–organic framework (MOF) is an ordered porous structure obtained using the
coordination of organic ligands with metal ions or metal clusters [1–3]. The large surface
area, multiple active sites, high porosity, and structural flexibility enable MOF materials
to exhibit excellent performance in multiple fields, such as catalysts [4], sensors [5–7],
bioimaging [8,9], tumor therapy [10–12], gas storage or separation [13,14], and solar fuel
conversion [15,16]. Yaghi et al. demonstrated that MOF materials can be used effectively
for methane storage with a storage capacity of 240 cubic centimeters [17], and then they
developed MOF structural materials for highly efficient hydrogen storage [18]. Long et al.
conducted in-depth research on the interaction mechanism between MOF materials and
carbon dioxide, and expounded the application prospects of MOF materials for carbon
dioxide adsorption, capture, and separation [19–21]. MOF materials also have unique
application advantages in drug delivery [22,23], and even more MOF nanomaterials have
been developed for photodynamic, photothermal, and other treatments of tumors [24–27].
MOF materials have accessible active sites based on the monodispersity of the constituent
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molecules in their coordination structure, which can be used as sensors for highly sensitive
detection of small molecules and environmental pollutants [28–30]. Therefore, the construc-
tion of organic molecules into MOF structural materials through a certain coordination
method has great potential to perform well in various applications.

Molecules with a propeller-like structure make up a family of compounds with an
aggregation-induced emission (AIE) effect discovered by Tang et al. [31]. Such molecules
can restrict the intramolecular rotation through aggregation, and release energy in the
form of photoluminescence, thus exhibiting the AIE phenomenon. Compared with the
traditional aggregation-caused quenching (ACQ) effect molecules, AIE molecules have
unique advantages in optoelectronics, sensing, and biomedical applications [32,33]. The
MOF structure is essentially an aggregation of molecules, and this matrix coordination-
induced emission (MCIE) effect has also been verified using MOF materials constructed
with tetraphenylethylene (TPE) molecules and zinc ions [34]. Zhou et al. demonstrated the
MCIE effect of AIE molecules using zirconium-based MOF materials, and analyzed their
quantum yield and piezofluorochromic properties [35,36]. However, not all MOF materials
constructed from AIE molecules have the MCIE effect, and it has been found that changing
the types of metal ions in the MOF structure influences its photoluminescence intensity.
When Co and Cu ions are used as metal-coordination ions in the MOF, even the material
constructed using AIE molecules exhibits the ACQ phenomenon [37,38]. This result was
verified by means of comparative analysis in our previous work, and the intermolecular
ligand-to-metal charge transfer (LMCT) process in the MOF structure was described as the
main reason for the ACQ phenomenon [39]. In addition, we found that the guest molecules
can affect the photoluminescence of the MOF host. Of course, there are other studies on the
applications of host–guest molecules [40–42].

In this paper, we designed and synthesized a micron-sized MOF sheet with AIE molecules
as organic ligands, and identified that organic molecules with amino or sulfhydryl groups can
reduce the LMCT process in MOF structures. The organic molecules with both amino and
sulfhydryl groups can greatly hinder the LMCT process, resulting in a strong MCIE effect on
the MOF sheet originally with the ACQ results. Moreover, the fluorescence generated using
this LMCT process can produce a sensitive sensing effect on molecules, even up to 10−9 M.
These studies have theoretical guiding significance for regulating the energy release mode and
photoluminescence intensity of MOF materials. Based on the intermolecular LMCT process, a
nanoscale ultra-sensitive detection method has been proposed.

2. Experimental Section
2.1. Materials

4,4,4,4-(Ethane-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylic acid (97%, H4ETTC) was
purchased from Shanghai Tensus Biotech Co., Ltd. (China). Copper(II) nitrate hydrate,
L-tryptophan, and citric acid were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Lipoic acid was obtained from Energy Chemical Co., Ltd. (Shanghai,
China). 3,3′-dithiodipropionic acid, glycine, L(+)-arginine, L-aspartic acid, DL-dithiothreitol,
and L(+)-ascorbic acid were purchased from Sigma-Aldrich Chemical Co., Ltd. (Shanghai,
China). 2,2′-dithiodiethanol, 3-mercaptopropionic acid, N-acetyl-L-cysteine, and glutathione
were obtained from TCI Development Co., Ltd. (Shanghai, China). DL-homocystine was
purchased from Aladdin Chemical Co., Ltd. (Shanghai, China). L-lysine was obtained from
Sangon Biotech Co., Ltd. (Shanghai, China). L-kynurenine and succimer were purchased
from Shanghai Titan Technology Co., Ltd. (China). All other chemicals were analytical
grade and used without further purification. Deionized water was prepared with a Milli-Q
purification system.

2.2. Synthesis of Cu-ETTC MOF Sheet

In a typical procedure of Cu-ETTC MOF sheet preparation, an aqueous solution of
10 mM copper nitrate (4 mL or 2 mL) was mixed with a DMF solution of 10 mM H4ETTC
(2 mL), and then 20 mL of DMF solution was added and mixed evenly. Subsequently, the
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mixture was reacted at 90 ◦C for 1 h under stirring conditions, and the blue Cu-ETTC MOF
product was obtained. The obtained solution containing MOF products was centrifuged,
and then washed twice with ethanol to remove unreacted organic matter and residual
copper ions. Finally, it was washed with deionized water to obtain pure Cu-ETTC products.

2.3. Effect of Different Molecules on Fluorescence of MOF Sheet

The Cu-ETTC MOF sheet was mixed with lipoic acid, 3,3′-dithiodipropionic acid,
2,2′-dithiodiethanol, DL-homocystine, glycine, L-lysine, L(+)-arginine, L-aspartic acid,
L-tryptophan, L-kynurenine, DL-dithiothreitol, 3-mercaptopropionic acid, succimer, N-
acetyl-L-cysteine, glutathione, citric acid, and L(+)-ascorbic acid, and reacted in the dark
for 2 h. Finally, the fluorescence intensity was measured at the instrument voltage of
375 V. The concentrations of the MOF and these molecules in the reaction solution were
both 50 µM. The concentration of the MOF was based on the content of Cu element in
its structure, which was determined using inductively coupled plasma mass spectrom-
etry (ICP-MS). An excitation wavelength of 360 nm and a slit of 10 nm were used in all
fluorescence experiments.

2.4. Effect of Different MOF Contents on Fluorescence in Glutathione Solution

Different concentrations of the Cu-ETTC MOF sheet were mixed with glutathione,
reacted in the dark for 2 h, and the resulting fluorescence intensity was measured at 375 V.
The concentration of glutathione and MOF in the reaction solution were 125 µM and 0,
1.56, 3.13, 6.25, 12.5, 25, and 50 µM, respectively. Finally, the fluorescence of the MOF
concentration in 3.13 µM was measured by changing the voltage of the instrument.

2.5. Effect of Different Amounts of Glutathione on Fluorescence of MOF Sheet

Different concentrations of glutathione were mixed with the Cu-ETTC MOF sheet,
reacted in the dark for 2 h, and the resulting fluorescence intensity was measured at 950 V.
The concentrations of MOF and glutathione in the reaction solution were 5 nM (or 50 nM)
and 0, 2, 4, 6, 8, and 10 nM (or 0, 20, 40, 60, 80, and 100 nM), respectively.

2.6. Characterizations

The morphology of the Cu-ETTC MOF was characterized using a Hitachi HT7700
transmission electron microscope (TEM). The absorption spectra were analyzed using a Shi-
madzu 1280 UV-visible spectrophotometer. Fourier transform infrared spectroscopy (FT-IR)
was characterized using a Thermo Scientific Nicolet iS20 spectrometer. X-ray photoelectron
spectroscopy (XPS) tests were performed using a Thermo Scientific K-Alpha+ instrument.
The fluorescence intensity was analyzed using a Hitachi F4600 fluorescence photometer.

3. Results and Discussion

As shown in Figure 1a, the Cu-ETTC MOF sheet was synthesized by reacting 4,4,4,4-
(ethene-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylic acid and copper(II) nitrate hydrate in N,N-
dimethylformamide (DMF) solvent using the bottom-up method. Based on the limitations
of intramolecular rotation, in theory, H4ETTC will release excitation energy mainly in the
form of AIE effect after forming the MOF structure. However, the Cu-ETTC MOF sheet
also suffers from the intermolecular LMCT process, resulting in the opposite phenomenon
and an aggregation-caused quenching effect. Figure 1b shows the photograph images
obtained under natural light and 365 nm wavelength conditions, where the fluorescence of
Cu-ETTC is almost completely quenched. Then, the chemical structure and morphology
of the Cu-ETTC MOF sheet were analyzed using a UV-vis absorption spectra, Fourier
transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and
transmission electron microscopy (TEM). As shown in Figure 1c, the H4ETTC exhibited
a broad absorption profile with three discernible feature peaks at 291, 318, and 362 nm.
With the formation of the Cu-ETTC MOF sheet, a significant absorption peak appeared at
272 nm, and the position of the strongest absorption peak changed from 291 to 324 nm,
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which confirmed the coordination chelation reaction between copper ions and H4ETTC.
In addition, there was a linear relationship between the UV-vis absorption intensity of
Cu-ETTC and its copper-ion concentration (copper ions were determined using inductively
coupled plasma mass spectrometry, ICP-MS), and the linear regression equation was
y = 0.0076 + 0.0193x with the correlation coefficient of 0.99 (Figure 1d,f). This linear
relationship was useful for subsequent quantitative analysis. The formation of the Cu-
ETTC MOF sheet was also verified using FT-IR. With the formation of a coordination
bond, the absorption peak of the C=O stretching vibration representing a carboxyl group at
1681 cm−1 disappeared, while a new absorption peak appeared at 1657 cm−1 (Figure 1e),
which is consistent with the literature [39]. The strong peak at 3430 cm−1 and the obvious
small peak at 2925 cm−1 belonged to the stretching bands of O-H and C-H, while the
strongest peak at 1391 cm−1 came from the symmetric COO- stretching vibration.
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The prepared Cu-ETTC MOF has an obvious two-dimensional ultrathin-layered mor-
phology with a graphene-like multi-wrinkled structure, linked at a micron size. As shown
in Figure 2a, after reducing the proportion of coordinated metals, the MOF material still
had a lamellar structure, but the wrinkles were significantly reduced, showing a sepa-
rate lamellar morphological distribution with different particle sizes. Therefore, a more
homogeneous MOF material was selected for research in this study, that is, the sample
obtained as the Cu(NO3)2/H4ETTC reaction ratio was 2/1. To elucidate the elemental
information of the Cu-ETTC MOF sheet, XPS analysis was carried out. The C, O, and Cu
elements appeared in the XPS spectrum of the Cu-ETTC MOF sheet, and their contents were
84.36, 13.9, and 1.74%, respectively. As shown in Figure 2d, the binding energy (BE) peaks
at 935.0 and 954.9 eV were assigned to Cu2+, accompanied by the characteristic shakeup
satellite peaks at 940.2, 944.2, 960.1, and 963.2 eV. The BE peaks of Cu 2p3/2 and Cu 2p1/2 at
933.4 and 953.2 eV, respectively, confirmed the presence of a large amount of Cu+ in the
Cu-ETTC MOF structure. This result also demonstrated that the Cu-ETTC MOF sheet has a
significant LMCT process, and this process annihilates the matrix coordination-induced
emission (MCIE) effect. In addition, the Cu-O BE at 533 eV in Figure 2c further confirms the
coordination chelation of metallic copper with the porphyrin carboxyl group. On the basis
of the aforementioned results, the two-dimensional Cu-ETTC MOF sheet was formed using
coordination chelation between H4ETTC and Cu(II) paddlewheel (Cu2(COO)4, secondary
structure units) metal nodes [43].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

Figure 1. (a) Schematic of the preparation process, (b) photograph images, (c) UV-Vis absorption, 
and (e) FT-IR spectra of the Cu-ETTC MOF sheet. (d,f) Absorption curves and correlation linearity 
of the Cu-ETTC MOF sheet with different concentrations. 

The prepared Cu-ETTC MOF has an obvious two-dimensional ultrathin-layered 
morphology with a graphene-like multi-wrinkled structure, linked at a micron size. As 
shown in Figure 2a, after reducing the proportion of coordinated metals, the MOF mate-
rial still had a lamellar structure, but the wrinkles were significantly reduced, showing a 
separate lamellar morphological distribution with different particle sizes. Therefore, a 
more homogeneous MOF material was selected for research in this study, that is, the sam-
ple obtained as the Cu(NO3)2/H4ETTC reaction ratio was 2/1. To elucidate the elemental 
information of the Cu-ETTC MOF sheet, XPS analysis was carried out. The C, O, and Cu 
elements appeared in the XPS spectrum of the Cu-ETTC MOF sheet, and their contents 
were 84.36, 13.9, and 1.74%, respectively. As shown in Figure 2d, the binding energy (BE) 
peaks at 935.0 and 954.9 eV were assigned to Cu2+, accompanied by the characteristic 
shakeup satellite peaks at 940.2, 944.2, 960.1, and 963.2 eV. The BE peaks of Cu 2p3/2 and 
Cu 2p1/2 at 933.4 and 953.2 eV, respectively, confirmed the presence of a large amount of 
Cu+ in the Cu-ETTC MOF structure. This result also demonstrated that the Cu-ETTC MOF 
sheet has a significant LMCT process, and this process annihilates the matrix coordina-
tion-induced emission (MCIE) effect. In addition, the Cu-O BE at 533 eV in Figure 2c fur-
ther confirms the coordination chelation of metallic copper with the porphyrin carboxyl 
group. On the basis of the aforementioned results, the two-dimensional Cu-ETTC MOF 
sheet was formed using coordination chelation between H4ETTC and Cu(II) paddlewheel 
(Cu2(COO)4, secondary structure units) metal nodes [43]. 

 
Figure 2. (a) TEM images of the Cu-ETTC MOF sheet obtained at different reaction molar ratios. (b) 
Full XPS, (c) O 1s, and (d) Cu 2p spectrum of the Cu-ETTC MOF sheet. 

Since the MOF sheet constructed using H4ETTC and copper ions causes the ACQ 
effect, the question of which molecules can restore the fluorescence of Cu-ETTC materials 
has become worth exploring. As shown in Figure 3a, an energy-level transition occurs 
after the MOF sheet is excited from the S0 ground state to the high-energy Sn excited state. 
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(b) Full XPS, (c) O 1s, and (d) Cu 2p spectrum of the Cu-ETTC MOF sheet.

Since the MOF sheet constructed using H4ETTC and copper ions causes the ACQ
effect, the question of which molecules can restore the fluorescence of Cu-ETTC materials
has become worth exploring. As shown in Figure 3a, an energy-level transition occurs
after the MOF sheet is excited from the S0 ground state to the high-energy Sn excited state.
Subsequently, the Sn excitation energy will reach the S1 excited state through vibrational
relaxation and internal transitions, and finally return to the S0 ground state by releasing the
excitation energy in the form of fluorescence and nonradiative energy. However, there is
an LMCT process in the Cu-ETTC MOF structure, which transfers the S1 excitation energy
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to the metal nodes, resulting in apparent fluorescence quenching. If an electron donor is
added to compete with the LMCT process to produce a reduced or blocked effect, the S1
excitation energy of the MOF sheet will still be released in the form of fluorescence, and the
matrix coordination-induced emission effect will reappear (Figure 3b).
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Figure 3. Schematic representation of (a) the excited energy transfer process and (b) the matrix
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In order to verify the hypothesis that electron donors can restore the fluorescence
of the Cu-ETTC MOF sheet, we performed fluorescence recovery experiments using
lipoic acid, 3,3′-dithiodipropionic acid, 2,2′-dithiodiethanol, DL-homocystine, glycine,
L-lysine, L(+)-arginine, L-aspartic acid, L-tryptophan, L-kynurenine, DL-dithiothreitol,
3-mercaptopropionic acid, succimer, N-acetyl-L-cysteine, and glutathione. As shown in
Figure 4a, the addition of lipoic acid, 3,3′-dithiodipropionic acid, and 2,2′-dithiodiethanol
failed to awaken the fluorescence of the Cu-ETTC MOF sheet. However, DL-homocystine
with a similar structure makes the MOF sheet emit strong fluorescence, with the obvious
difference being that this molecular structure contains two amino groups. As a strong
electron-donating group, the amino group can provide electrons to the copper metal nodes
in the Cu-ETTC structure, reduce the intermolecular LMCT process in the MOF sheet, and
make part of the S1 excitation energy express in the form of fluorescence. Therefore, it is
logical that glycine can also cause the fluorescence recovery of the Cu-ETTC MOF sheet,
but its fluorescence intensity is lower than that of DL-homocystine, which is due to the
lower number of amino-donor groups. Subsequently, other types of amino acids were
also analyzed. As shown in Figure 4b, these amino acids with different groups can give
the MOF sheet a fluorescence recovery effect to a certain extent. The difference is only
the degree of intensity, which mainly depends on whether the group attached contains
electron donors or acceptors. In addition, some molecules containing sulfhydryl groups
have been studied. As shown in Figure 4c, these sulfhydryl-containing molecules are
all able to restore the fluorescence of the Cu-ETTC MOF sheet and have a strong effect,
indicating that more S1 excitation energy is converted into fluorescence. Notably, two
molecules, N-acetyl-L-cysteine and glutathione, which contain both amino and sulfhydryl
groups, have strong effects in awakening the fluorescence of the Cu-ETTC MOF sheet.
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The influence of the above-mentioned molecules on the Cu-ETTC MOF sheet was then
analyzed using a more intuitive histogram and peak-axis location distribution diagram.
As shown in Figure 5a, molecules 1~3 mainly contain carboxyl and hydroxyl groups,
which cannot effectively awaken the fluorescence of the MOF sheet. Molecules 4~10 are
various amino acids, which can restore the fluorescence of the MOF sheet, but the different
groups attached have a great influence on the fluorescence intensity. Molecules 11~13 are
molecules with sulfhydryl groups, which can also effectively awaken the fluorescence of
the MOF sheet. The coexistence of amino (imine) and sulfhydryl groups in molecules
14~15 can arouse the fluorescence of the MOF sheet strongly. Therefore, it may be a more
effective method to reduce the intermolecular LMCT process in the MOF structure by using
molecules with coexisting amino and sulfhydryl groups as electron donors. These results
have certain guiding significance for adjusting the conversion route of S1 excitation energy
and enhancing the fluorescence intensity of MOF materials. Interestingly, the peak-axis
location of the Cu-ETTC MOF sheet also conforms to certain statistical laws. As shown
in Figure 5b, the peak positions of the above-mentioned molecules are mainly distributed
around 470, 490, and 510 nm, with a difference of about 20 nm, and the peak distribution
positions are basically independent of the peak intensity.

In addition to the amino and sulfhydryl groups that can restore the fluorescence of the
MOF sheet, some molecules with multiple carboxyl groups and multiple hydroxyl groups
can also effectively reduce the intermolecular LMCT process in the Cu-ETTC structure
and turn on the MOF sheet fluorescence switch. As shown in Figure 5c,d, citric acid and
L(+)-ascorbic acid can arouse the fluorescence of the Cu-ETTC MOF sheet, although the
specific electron-donating mechanism is still unclear. It is worth mentioning that the peak
axes of citric acid and L(+)-ascorbic acid are located at 488 and 510 nm, respectively, which
are still within the above distribution range.
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Compared with other molecules, glutathione has a stronger fluorescence-awakening
effect on the Cu-ETTC MOF sheet. Therefore, the prepared a Cu-ETTC sheet with a large
specific surface area may be viable for the sensitive detection of glutathione, because such
MOF sheets have more active sites for copper. Glutathione mainly uses its electron-donating
ability to arouse the fluorescence of the MOF sheet, so whether the amount of glutathione
is sufficient becomes a major factor affecting the fluorescence intensity of the Cu-ETTC
sheet. As shown in Figure 6b, under the condition of sufficient glutathione, the fluorescence
intensity of the MOF enhanced with it showed a linear relationship at the concentration
of about 0~25 µmol/L. When continuing to increase the content of the MOF sheet, the
increase in fluorescence decreased, thus showing a parabolic profile (Figure 6c), which may
be due to the difficulty for glutathione to provide enough electrons to reduce the LMCT
process in the Cu-ETTC MOF structure. Therefore, based on this mechanism of action
between Cu-ETTC and glutathione, the MOF sheet can only have a linear relationship with
glutathione within a certain matching range. In addition, the instrument voltage used in the
test has a considerable influence on its sensitivity. As shown in Figure 6a, the fluorescence
intensity of the Cu-ETTC MOF sheet showed a huge transition with the voltage of the
instrument, and even increased by about 10 times. Therefore, the use of larger voltages is
an effective way to increase the detection sensitivity.

Finally, the detection sensitivity of the Cu-ETTC MOF sheet for glutathione was
analyzed using a larger instrument voltage. As shown in Figure 7, the MOF sheet has a
high detection sensitivity for glutathione and still has an obvious linear relationship at
the amount of 10−9 M, where the relevant linear regression equations are y = 455.57 +
4.549x and y = 162.9 + 32.59x. Although the Cu-ETTC MOF sheet can detect glutathione
sensitively, considering the matching relationship between glutathione and the MOF sheet,
this detection method, which enhances fluorescence by reducing the intermolecular LMCT
process, has certain limitations in the linear range of detection. In addition, the use of a
high voltage and low concentration makes the Cu-ETTC MOF sheet generate a certain
fluorescence signal-to-noise ratio, and the obtained signal has a large fluctuation. Overall,
the utilization of electron donors to reduce the LMCT process in MOF structures is a
feasible method and has high sensitivity in molecular detection applications. However,
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many molecules have electron-donor effects, which makes the MOF less advantageous in
terms of detection specificity. Every coin has two sides, but the Cu-ETTC MOF sheet has
detection sensitivity for a variety of electron-donating molecules, which makes it suitable
for a wide range of applications.
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4. Conclusions

In summary, a micron-sized Cu-ETTC MOF sheet was constructed through the co-
ordination binding reaction of H4ETTC molecules with copper ions. The intermolecular
LMCT process within the MOF structure prevented the MCIE effect that AIE molecules
should have exhibited, thereby creating the ACQ effect. Electron-donating molecules with
amino and sulfhydryl groups can effectively reduce the LMCT process in the Cu-ETTC
MOF structure. By regulating the excitation energy of the S1 state, a greater amount of
absorbed energy is released in the form of fluorescence, thus playing the role of awakening
the MCIE effect of the MOF sheet. Moreover, molecules with both amino and sulfhydryl
groups showed a better performance in arousing the fluorescence of the Cu-ETTC MOF
sheet. It is worth mentioning that this method of manipulating S1 excitation energy to
release fluorescence using electron donor molecules has extremely high sensitivity, even
up to the amount of 10−9 M. This study provides some experimental results for selecting
molecules with efficient electron-donating groups, and it illustrates possible theoretical
directions for manipulating the excitation energy of the S1 state.
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