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Abstract: In the traditional teleoperation system, the operator locates the object using the real-time 
scene information sent back from the robot terminal; however, the localization accuracy is poor and 
the execution efficiency is low. To address the issues, we propose an object detection and localiza-
tion method for the teleoperated robot. First, we improved the classic YOLOv5 network model to 
produce superior object detection performance and named the improved model YOLOv5_Tel. On 
the basis of the classic YOLOv5 network model, the feature pyramid network was changed to a 
bidirectional feature pyramid network (BiFPN) network module to achieve the weighted feature 
fusion mechanism. The coordinate attention (CA) module was added to make the model pay more 
attention to the features of interest. Furthermore, we pruned the model from the depth and width 
to make it more lightweight and changed the bounding box regression loss function GIOU to SIOU 
to speed up model convergence. Then, the YOLOv5_Tel model and ZED2 depth camera were used 
to achieve object localization based on the binocular stereo vision ranging principle. Finally, we 
established an object detection platform for the teleoperated robot and created a small dataset to 
validate the proposed method. The experiment shows that compared with the classic YOLOv5 series 
network model, the YOLOv5_Tel is higher in accuracy, lighter in weight, and faster in detection 
speed. The mean average precision (mAP) value of the YOLOv5_Tel increased by 0.8%, 0.9%, and 
1.0%, respectively. The model size decreased by 11.1%, 70.0%, and 86.4%, respectively. The infer-
ence time decreased by 9.1%, 42.9%, and 58.3%, respectively. The proposed object localization 
method has a high localization accuracy with an average relative error of only 1.12%. 

Keywords: teleoperated robot; object detection; object localization; improved YOLOv5 network; 
distance estimation 
 

1. Introduction 

The teleoperated robot can help people to complete some complex operation tasks in 
dangerous or difficult-to-reach environments. By combining human operation experience 
and judgment ability with robot intelligence, it can overcome the limitations of human 
physiology and psychology, and environmental geographic space. It greatly expands the 
human perception ability and operation means. The teleoperated robot is widely applied 
in demining and detonation, radiation pollution, public health, and other fields [1–6], 
which can improve work efficiency and prevent operators from being hurt. 

In the teleoperation system, the robot is often equipped with a robotic arm to allow 
the robot to adapt to various complex operations. Given the working space limitation of 
the robotic arm, precise object localization is required for the teleoperated robot. The ob-
ject localization accuracy is an important factor that affects the execution efficiency and 
success rate of teleoperation tasks. In the traditional teleoperation system, during the task 
execution, the operator mainly relies on the real-time scene information returned from the 
robot terminal to flexibly adjust the position of the robot, so that the object is in a suitable 
working space, after which the operator controls the robot to complete the task. Since the 
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object localization largely depends on the operator’s experience and on-the-spot judg-
ment, the localization accuracy is low and the execution efficiency is slow.  

Computer vision technology can give mechanical systems more powerful and intel-
ligent object recognition capabilities, so it is widely used in robotics, intelligent detection, 
aerospace, agricultural picking, and other fields [7–12]. At present, the two-stage and one-
stage object detection algorithms comprise the majority of the object detection algorithm. 
Although the latter is greater in terms of detection speed, the former is superior in terms 
of detection and localization accuracy. The R-CNN [13], SPP-Net [14], Fast R-CNN [15], 
Faster R-CNN [16], Mask R-CNN [17], and A-Fast-RCNN [18] are the major elements of 
the two-stage object detection algorithm. The OverFeat [19], YOLO [20], YOLOv2 [21], 
SSD [22], R-SSD [23], YOLOv3 [24], YOLOv4 [25], and YOLOv5 [26] are the major ele-
ments of the one-stage object detection algorithm. 

The object detection method is widely applied in robotics because it can rapidly and 
precisely locate the object within the vision system’s field of view, enhancing the system’s 
intelligence and task execution efficiency. In [27], an improved YOLOv3-based litter de-
tection method is proposed for litter-capturing robots, achieving real-time high-precision 
object detection in dynamic aquatic environments. In [28], an intelligent detection algo-
rithm for seafood is proposed for the underwater robot, which achieves the intelligent 
detection of underwater objects and guides underwater robots to autonomously grasp 
seafood. In [29], a high-precision strawberry detection algorithm based on an improved 
Mask R-CNN is proposed for the fruit picking robot, which solves the problems of poor 
generality and robustness of traditional object detection algorithms in strawberry detec-
tion. However, this research and these applications are mainly oriented to the autono-
mous grasping robot, and pay more attention to the robustness and accuracy of object 
detection. In the teleoperated robot, the object localization accuracy and detection speed 
are important factors that affect task execution efficiency and the operator's interactive 
experience. 

Therefore, we propose an object detection and localization method based on the im-
proved YOLOv5 network model for the teleoperated robot. The following is a summary 
of our work’s main contributions: 
(1) Improve the classic YOLOv5 object detection network model; the improved model 

can effectively increase the accuracy and detection speed of object detection. 
(2) Prune the YOLOv5 network model; the resulting lightweight network structure is 

easier to deploy on embedded devices with insufficient computing power, which is 
more suitable for the teleoperated robot. 

(3) Propose an object localization algorithm based on the improved YOLOv5 network 
model and the binocular stereo vision ranging principle, which achieves accurate 
object localization. 

(4) Design and establish an object-detection platform for a teleoperated robot, and cre-
ate a small dataset to validate the proposed method. 
The primary organization of this paper is as follows: Section 2 mainly describes an 

improved YOLOv5 network model and object localization method. Section 3 introduces 
the experimental design and data acquisition process. Section 4 describes the experimental 
results and analysis. Section 5 concludes the paper. 

2. Method 
2.1. Object Detection 
2.1.1. YOLOv5 Network Structure 

YOLOv5 [26] is a one-stage object detection algorithm with fast detection speed and 
high detection accuracy. There are four versions of the YOLOv5 algorithm: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x, and the network depth and width increase sequen-
tially. The detection accuracy of the four models usually improves sequentially. However, 
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the model size also increases sequentially, making the model difficult to use on embedded 
devices with insufficient computing power. In addition, as the network parameters in-
crease sequentially, the speed of model training and detection becomes slower, and the 
possibility of overfitting increases. Therefore, it is very important to balance accuracy, 
model size, and detection speed for YOLOv5 in practical applications. 

The input terminal, the Backbone network, the Neck network, and the head output 
terminal are the four parts of the classic YOLOv5 network structure. The input terminal 
contains image preprocessing operations such as scaling the input image to the network 
input size of 640 × 640 and normalizing it, etc. The Backbone network is a deep convolu-
tional neural network that aggregates and forms image features at different scales. The 
Focus, Conv, C3, and SPP modules make up the majority of it. The Neck network is a layer 
that combines and mixes image features, which can further expand the variety of features. 
The Conv, upsampling, and C3 modules make up the majority of it. The head output ter-
minal generates object bounding boxes, predicts object classes, and predicts results using 
image features. The classic YOLOv5 network structure is shown in Figure 1. 

 
Figure 1. The input terminal, the Backbone network, the Neck network, and the head output termi-
nal are the four parts of the classic YOLOv5 network structure. 

2.1.2. Improvement of YOLOv5 Network Structure 
Feature Fusion Network Structure Design 

In the YOLOv5 model, a feature pyramid module combining feature pyramid net-
work (FPN) [30] and path aggregation network (PAN) [31], is used in the Neck network 
to achieve deep fusion of feature maps at multiple scales, as shown in Figure 2. Greater 
location information exists in the bottom-level feature maps, which is helpful for locating 
objects, whereas stronger semantic data exists in the high-level feature maps, which is 
helpful for classifying objects. The FPN structure enhances the semantic information of 
the predicted feature maps, establishing a top-down path, and the low-level features are 
fused with high-level features through upsampling. The PAN structure improves the lo-
cation information of the predicted feature maps, which establishes a bottom-up path, and 
the high-level features are fused with the low-level features through downsampling. The 
FPN network and the PAN network make the predicted feature maps have both high se-
mantic information and location information, which greatly improves the accuracy of the 
object detection task. 

Although the FPN structure and the PAN structure can fuse multi-scale features, the 
feature maps are simply superimposed, and all input features are treated equally without 
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distinction when fusing different input feature maps. However, different input features 
have varying levels of resolution, and they typically make up the output feature inequita-
bly. Tan et al. [32] developed a straightforward and effective bidirectional feature pyramid 
network (BiFPN) as a solution to this problem, as shown in Figure 2. The BiFPN network 
repeatedly applies top-down and bottom-up multi-scale feature fusion and learns the im-
portance of different input features using learnable weights to achieve a weighted feature 
fusion mechanism. The feature pyramid structure of the Neck network in the classic 
YOLOv5 model is changed to the BiFPN network structure in our work to improve the 
feature expression ability of image features and the model's detection accuracy. 

   
(a) (b) (c) 

Figure 2. Feature network structure. (a) The top-down channel provided by the FPN enables for the 
fusion of multi-scale features from layers 3 to 5(P3–P5); (b) On top of the FPN, the PAN establishes 
a second bottom-up channel; and (c) The BiFPN network with weighted feature fusion and repeated 
bidirectional cross-scale connections. 

Coordinate Attention Module Design 
The CA module is a network proposed by Hou et al. [33], as shown in Figure 3. In 

addition to cross-channel information, it also captures orientation-aware and position-
sensitive information, which makes the model accurately locate the exact position of the 
object of interest and, hence, helps the whole model to recognize better using a small 
amount of computation. 

 
Figure 3. CA module structure. 

The CA module divides the multichannel attention into two 1-dimensional feature 
encoding processes, aggregating features along two different spatial directions. Long-
range dependencies in one spatial direction are captured while maintaining exact location 
information in the other. The generated feature maps are then separately encoded to gen-
erate a pair of orientation-aware and position-sensitive feature maps, which can be 
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complementarily applied to the input feature maps H × W × C, focusing not only on re-
weighing the importance of different channels, but also on encoding the spatial infor-
mation. 

The specific addition position of the CA module in the YOLOv5_Tel model is shown 
in Figure 4. With only a small amount of extra computation, the CA module can improve 
the network model’s performance. 

 
Figure 4. The YOLOv5_Tel model’s structure. The feature pyramid module is changed to the BiFPN 
network and the CA module is added to achieve better detection performance. 

Network Pruning 
We primarily prune the YOLOv5 network model in terms of network depth and net-

work width to decrease the number of calculations, shorten the network’s training and 
inference time, and make it lightweight so that it may be deployed on embedded devices 
with insufficient computing power. 

We compressed the depth of the network model by controlling the number of Bottle-
neck residual components in C3 modules by using a hidden layer pruning method. We 
adjusted the residual components of the eight C3 modules in the Backbone network and 
the Neck network to 2, 4, 4, 1, 1, 1, 1, 1, respectively. The number of residual components 
in the C3 modules of different YOLOv5 models is shown in Table 1. 

Table 1. Number of residual components in C3 modules in different YOLOv5 models. 

Model 
Number of Residual Components in C3 

Backbone Neck 
First Second Third First Second Third Fourth Fifth 

YOLOv5s 1 3 3 1 1 1 1 1 
YOLOv5m 2 6 6 2 2 2 2 2 
YOLOv5l 3 9 9 3 3 3 3 3 

YOLOv5_Tel 2 4 4 1 1 1 1 1 

We shrink the width of the network model by controlling the number of convolution 
kernels in Backbone network by using the kernel pruning method. We cut the number of 
convolution kernels for the Focus module and the four Conv modules to 30, 60, 120, 240, 
and 480, respectively. The number of convolution kernels in the Focus and Conv modules 
of different YOLOv5 models is shown in Table 2. 
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Table 2. Number of convolution kernels in different YOLOv5 models. 

Model 
Number of Convolution Kernels 

Focus First Conv Second Conv Third Conv Fourth Conv 
YOLOv5s 32 64 128 256 512 
YOLOv5m 48 96 192 384 768 
YOLOv5l 64 128 256 512 1024 

YOLOv5_Tel 30 60 120 240 480 

Loss Function Design 
The loss function of the classic YOLOv5 network model is composed of three parts: 

bounding box regression loss, prediction class loss, and confidence loss. The GIOU is used 
as the bounding box regression loss function, as shown in Equation (1). 

( )C A B
GIOU IOU

C
−

= −


 (1) 

where A, B ⊆ S ⊆ Rn represent the ground-truth box and predicted box, C represents the 
minimum circumscribed box of A and B, C ⊆ S ⊆ Rn and IOU = |A ∩ B|/|A ∪ B|. 

The GIOU [34] function addresses the problem that the IOU [35] function is unable 
to appropriately reflect where the two boxes intersect when the predicted box and the 
ground truth box do not overlap. The IOU function only pays attention to the overlapping 
area of the ground-truth box and predicted box. The GIOU function not only pays atten-
tion to the overlapping area, but also pays attention to other non-overlapping areas, which 
can better reflect the degree of overlap between the ground-truth box and predicted box. 
However, when the predicted box is completely inside the ground-truth box, the GIOU 
function and the IOU function are the same. In this case, the GIOU function degenerates 
into the IOU function, which cannot reflect the positional relationship between the 
ground-truth box and predicted box and causes the bounding box regression slow to con-
verge. Therefore, we changed the loss function of the classic YOLOv5 model from GIOU 
to SIOU [36], as shown in Equations (2)–(5). 

( ) ( )1 1
2

2

yw h xw w

SIOU IOU ang dis sha

e e e e
L L L L L IOU

θ θ γργρ −− − −− + − − −
= + + + = − +  (2) 

,
max( , ) max( , )

gt gt

w gt gt

w w h h
w w

w w h h
− −

= =  (3) 

21 2sin (arcsin( ) )
4
παΛ = − −  (4) 

22

, , 2y yx x

gtgt
c cc c

x y
w h

b bb b
c c

ρ ρ γ
 − −
 = = = − Λ       

 (5) 

where ( , )w h  and ( , )gt gtw h  represent the width and height of the ground-truth box 

and predicted box, ( , )
x yc cb b  and ( , )

x y

gt gt
c cb b  represent the center coordinates of the 

ground-truth box and predicted box, ( , )w hc c  represents the minimum bounding box 
width and height of ground-truth box and predicted box, α  represents the angle be-
tween the horizontal line and the center coordinate line of the ground-truth box and 
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predicted box, and [2,6]θ ∈  is an adjustable parameter to control the degree of atten-

tion to the shaL . 
The angle loss Lang, the distance loss Ldis, the shape loss Lsha, and the IOU loss LIOU are 

the four components that make up the SIOU function. The SIOU function achieves faster 
convergence in the stage of training and better performance in inference compared to ex-
isting methods by introducing directionality in the loss function cost. 

The final structure of the YOLOv5_Tel model is shown in Figure 4. 

2.2. Object Localization 
2.2.1. Binocular Ranging Principle 

Accurately estimating the distance between the object and the teleoperated robot is 
fundamental to object localization. We developed it based on the binocular stereo vision 
principle. Through parallax, humans are able to estimate an object’s distance. Based on 
this, the binocular stereo vision ranging estimates the distance to an object by the differ-
ence between the images captured by the left and right cameras. The geometric model of 
binocular camera ranging is shown in Figure 5.  

 
Figure 5. Binocular camera ranging geometric model. 

Where Camera L and Camera R are the optical centers of the left and right cameras, 
respectively, and the distance between them is called the baseline of the binocular camera, 
denoted by b. PL and PR are the imaging points of the spatial point P on the left and right 
cameras at the same time, respectively. xL and xR are the distances between the imaging 
points PL and PR and the optical axes of the left and right cameras, respectively. f is the 
focal length. d is the distance between the spatial point p and the baseline of the binocular 
camera. 

The intrinsic and extrinsic parameters of the left and right cameras are the same, in 
theory. The imaging points PL and PR also differ only on the x-axis because the optical 
centers of the left and right cameras only have a positional deviation at the x-axis. Accord-
ing to the law of trigonometric similarity, the distance d can be solved through geometric 
relations, as shown in Equation (6). 

* *
L R

f b f bd
x x u

= =
−

 (6) 

where u is the difference between the x-axis coordinates of the imaging points PL and PR, 
which is called parallax.  

The focal length f and the baseline distance b of the binocular camera can be obtained 
through camera calibration. Therefore, after calculating the parallax u of the target point 
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in the left and right cameras, the distance between the target point and the camera can be 
calculated through Equation (6). 

2.2.2. Distance Estimation 
In our work, we use the ZED2 depth camera and the YOLOv5_Tel model to achieve 

real-time distance estimation between the object and the camera left eye. The ZED2 depth 
camera can obtain the 3D point cloud coordinates (x, y, z) of any pixel in the image based 
on binocular stereo vision. The object class, the confidence score, and the predicted box 
coordinate (xmin, ymin, xmax, ymax) are returned when the object is detected by the YOLOv5 
network model, where (xmin, ymin) is the coordinate of the top left-most of the predicted 
box and (xmax, ymax) is the coordinate of the down right-most of the predicted box. It is 
possible to determine an object’s pixel point coordinates within an image as well as the 
matching three-dimensional point cloud coordinates when an object is detected. The dis-
tance between the object and the left eye of the camera can be calculated through the Eu-
clidean distance formula, as shown in Equation (7). 

2 2 2distance x y z= + +  (7) 

Researchers usually only solve the distance between the center point of the object and 
the left eye of the camera as the distance estimation result [37]. However, the depth infor-
mation of some pixels cannot be obtained due to occlusion or anomaly in the standard 
depth sensing mode of the ZED2. If the depth information of the center point cannot be 
exactly obtained, it will cause the abnormal distance estimation of the object. In our work, 
we used the center point of the prediction box and its surrounding 8 points to solve the 
distance estimation to improve the accuracy and the robustness to lighting conditions and 
occlusions, and their position distribution is shown in Figure 6. 

 
Figure 6. The positional relationship of the 9 points used for distance estimation as indicated by the 
red dots. 

In the teleoperation system, when the distance is too close or too far between the 
robot and the object, the operation task cannot be done so that there is no need for distance 
estimation to the object. In addition, the predicted box and label information of the object 
are prone to occlusion in the image, which is not conducive to the feedback of environ-
mental information. Therefore, the object is detected and estimated distance in the range 
of 0.3–3 m between the object and the left eye of the camera in our work. The algorithm of 
the distance estimation method is shown in Algorithm 1. 
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Algorithm 1 Object Detection and Distance Estimation 

Require: Self-trained YOLOv5 model and ZED2 depth camera 
Ensure: Objects class and their distance from the camera’s left eye 
1: Initialize the depth camera(HD720p, 60FPS, depth minimum distance = 0.3m) 
2: Load the self-trained YOLOv5 model 
3: While(true) 
4:   Stereo image is captured for each frame (3D image) 
5:   The image is pre-processed and resized to (640 × 640) 
6:   Input the image into the self-trained YOLOv5 model for object detection and return 
(xmin, ymin, xmax, ymax) 
7:   for each object do 
8:     if (object == 1) then 
9:       Calculate the coordinates of 9 points 
10:       distance = 0, n = 0 
11:       for each pointi do 
12:         if (pointi.isValidMeasure()) then 

13:            disi= xi
2+yi

2+zi
2 

14:       distance = (distance * n + disi) / (n + 1) 
15:           n = n + 1 
16:         end if 
17:       end for 
18:       if (0.3 ≤ distance and distance ≤ 3) then 
19:         Plot predicted box, class, confidence, distance labels 
20:       end if 
21:     end if 
22:   end for 

3. Experimental Design 
3.1. Dataset 

A small dataset was created for the teleoperated robot grasping task to simulate the 
performance of the different YOLOv5 network models. The dataset contained 14 objects, 
as shown in Figure 7. A total of 800 images were collected with the ZED2 camera at dif-
ferent angles and position distributions under natural lighting conditions. During the im-
age collection process, we did not deliberately change the lighting conditions, nor did we 
deliberately place the objects. The objects may have occluded each other, which is more 
in line with the real working environment of the teleoperate robot. By flipping, scaling, 
rotating, and cropping the images, we expanded the dataset’s size [38]. After that, the 
dataset contained a total of 4000 images, of which 800 were captured using the ZED2 cam-
era and 3200 were obtained through data augmentation. Finally, the images were labeled 
by labelImg and inputted into the different models to simulate. 
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(a) (b) 

Figure 7. The introduction to the dataset. (a) 14 objects in the dataset. The ground truth labels from 
1 to 14 are chewing_gum, scissors, snickers, screwdriver, tape, wooden_ball, beer, cylinder, biscuit, 
grenade, flashbang, milk, landmine, and smoke_bomb; (b) The collection environment of the da-
taset. 

3.2. Simulation 
Different YOLOv5 models were simulated using Pytorch under the Ubuntu16.04 op-

erating system based on NVIDIA Jeston AGX Xavier, 512-core Volta GPU with Tensor 
Core, and 8-core ARM64 CPU. 

The hyperparameters batch_size and learning rate are crucial to the model’s perfor-
mance. We therefore optimized some hyperparameters based on experiments to further 
improve the model performance. In the simulation, the batch_size was set to 64, the learn-
ing rate was set to 0.001, the number of iteration epoch was set to 1500, the input image 
size was set to 640 × 640, and the stochastic gradient descent strategy (SGD) was used for 
parameter update to speed up the convergence. In addition, other parameters used default 
values. A total of 4000 images made up the dataset, of which 3200 were used for training 
and 800 for testing. 

3.3. Distance Estimation 
We designed and established an object detection platform for a teleoperated robot to 

test the accuracy of the distance estimation method. The teleoperated robot used for the 
experiment is shown in Figure 8. 

 
Figure 8. The teleoperated robot experiment platform for distance estimation. 

In the experiment, the depth mode of the ZED2 camera was set to ULTRA, the mini-
mum depth distance was set to 0.3 m, the resolution was set to HD720P, and the frame 
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rate was set to 60. In addition, other parameters used default values. In the range of 0.3–3 
m, the interval was divided into 9 sub-intervals with a step size of 0.3 m, and the distance 
estimation accuracy in each sub-interval was tested. The object was randomly placed on 
the ground in the experiment. The actual distance between the object and the left eye of 
the ZED2 camera was obtained by manual measurement, and the average of three meas-
urements was taken as the final result. We conducted 3 rounds of experiments on the 14 
objects in the dataset in the 9 sub-intervals, and a total of 14 × 9 × 3 = 378 valid data was 
collected. 

4. Result and Analysis 
4.1. Simulation Results and Analysis 

In the simulation, we trained 1500 epochs on the classic YOLOv5s, YOLOv5m, 
YOLOv5l, and the YOLOv5_Tel. The loss function convergence curves of the four network 
models on the training set are shown in Figure 9. 

 
Figure 9. Convergence of loss functions for different models on the training set. 

To assess the effectiveness of the YOLOv5_Tel model, the simulation results of the 
four network models were compared and analyzed. The evaluation metrics for model de-
tection accuracy are precision, recall, mAP, and F1-score [12]. The model’s degree of light-
weight and detection speed was characterized using the model size and inference time. 
The simulation results of the four different models are shown in Table 3. 

Table 3. The simulation results of different YOLOv5 models. 

Models Precision (%) Recall (%) mAP (%) F1 (%) Model Size (MB) Inference 
Time(ms) 

YOLOv5s 91.7 98.6 98.6 95.0 14.4 22 
YOLOv5m 91.5 98.5 98.5 94.9 42.6 35 
YOLOv5l 91.4 98.4 98.4 94.8 93.8 48 

YOLOv5_Tel 92.6 99.4 99.4 95.9 12.8 20 
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The comparison and analysis of the YOLOv5_Tel model and the classic model was 
done in light of the results of the simulation. 

(1) In the training stage, the loss function value of the YOLOv5_Tel model tends to 
stabilize after 1100 iterations, whereas the classic YOLOv5s, YOLOv5m, and YOLOv5l 
models tend to stabilize after 1400 iterations, indicating that the YOLOv5_Tel model con-
verges faster, which can reduce the training cost. 

(2) The YOLOv5_Tel model offers better object detection accuracy, as demonstrated 
by higher precision, recall, mAP value, and F1-score of 92.6%, 99.4%, 99.4%, and 95.9%, 
respectively. 

(3) The YOLOv5_Tel model is 12.8MB in model size, which is smaller than the classic 
YOLOv5s, YOLOv5m, and YOLOv5l network models by 11.1%, 70.0%, and 86.4%, respec-
tively, indicating that the YOLOv5_Tel is lighter and better suited for embedded devices 
with insufficient computing power. 

(4) The YOLOv5_Tel model outperforms the classic YOLOv5s, YOLOv5m, and 
YOLOv5l network models in terms of inference time by 9.1%, 42.9%, and 58.3%, respec-
tively, indicating that the YOLOv5_Tel has a faster detection speed and is more suitable 
for the teleoperated robot. 

4.2. Distance Estimation Results and Analysis 
In the actual scene, objects were haphazardly placed on the ground between 0.3 and 

3 meters from the camera. The effect of the object detection and localization method pro-
posed in this paper is shown in Figure 10. 

 
Figure 10. Actual effect of object detection and localization. 

The proposed object detection method can accurately and robustly detect the objects. 
The proposed object localization method can estimate the distance between the object and 
the camera in real time. It makes it easy for even a novice operator to control the distance 
between the teleoperated robot and the object, so that the object is in the working space of 
the robotic arm to achieve fast and accurate localization, which can improve the execution 
efficiency of the teleoperated robot. 

To further evaluate the accuracy of distance estimation, we calculated the relative 
error between the estimated distance and the true distance for 378 valid distance estima-
tion data. The relative distance error of all objects was averaged to characterize the 
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accuracy of the distance estimation method in different sub-intervals. The distance esti-
mation accuracy results are shown in Figure 11. 

 
Figure 11. Relative error of distance estimation in different sub-intervals. 

The proposed distance estimation method can achieve good localization accuracy, 
with a minimum relative error of 0.76%, a maximum relative error of 2.0%, and an average 
relative error is 1.12%. The proposed distance estimation method is robust within the ex-
perimental range, according to the root mean square error (RMSE) of the relative error, 
which is 0.4%. 

5. Conclusions 
We propose an object detection and localization method based on improved YOLOv5 

for the teleoperated robot that can offer accurate and fast object detection and localization. 
Based on the outcomes of the experiment, the following conclusions can be drawn: 
(1) The model simulation experiment shows that the YOLOv5_Tel model is more accu-

rate, lighter, and faster in object detection. The YOLOv5_Tel model’s precision, re-
call, mAP value, and F1 score are 92.6%, 99.4%, 99.4%, and 95.9%, respectively. The 
YOLOv5_Tel model's mAP value increased in comparison to the classic YOLOv5s, 
YOLOv5m, and YOLOv5l models by 0.8%, 0.9%, and 1.0%, respectively. The model 
size decreased by 11.1%, 70.0%, and 86.4%, respectively, whereas the inference time 
decreased by 9.1%, 42.9%, and 58.3%. 

(2) The distance estimation experiment shows that the object localization method has 
good localization accuracy and robustness, with an average relative error of dis-
tance estimation of 1.12% and a RMSE of relative error of 0.4%. 
Although the improved YOLOv5 model performs well in object detection and local-

ization for the teleoperated robot, the model’s performance in actual applications is still 
constrained by the complexity of the working environment. Future work will improve the 
model’s detection robustness and adapt it to more challenging environments. 
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