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Abstract: The practice of applying a classifier (called a pattern classifier and abbreviated as PC
below) in a visual analysis system to identify patterns from interactively generated visualizations
is gradually emerging. Demonstrated cases in existing works focus on ideal scenarios where the
analyst can determine all the pattern types in advance without adjusting the classifier settings during
the exploration process. However, in most real-world scenarios, analysts know nothing about data
patterns before exploring the dataset and inevitably find novel patterns during the exploration. This
difference makes the traditional classifier training and application mode less suitable. Analysts have
to artificially determine whether each generated visualization contains new data patterns to adjust
the classifier setting, thus affecting the automation of the data exploration. This paper proposes a
novel PC-based data exploration approach. The core of the approach is an active-learning indicator
for automatically identifying visualizations involving new pattern classes. Analysts thus can apply
PCs to explore data while dynamically adjusting the PCs using these visualizations. We further
propose a PC-based visualization framework that takes full advantage of the PC in terms of efficiency
by allowing analysts to explore an exploring space, rather than a single visualization at a time.
The results of the quantitative experiment and the performance of participants in the user study
demonstrate the effectiveness and usability of the method.

Keywords: interactive data exploration; automatic visualization; neural network; machine learning;
active learning; visual analytics

1. Introduction

Interactive data exploration (IDE) is designed to identify potential data patterns
in a dataset [1,2]. Typically, analysts repeatedly conduct two steps, i.e., (1) querying
the dataset to generate a visualization and (2) reading the visualization to determine
whether patterns exist. Although there are many methods to automate (1) by recom-
mending the optimal visualization technique to present target data [3,4], the subject of
(2) is still human. Subjective pattern identification reduces the IDE efficiency, imposes
high workloads on analysts, and may produce biased conclusions limited by analysts’
cognitive capability and experiences.

A recently proposed idea, that each visualization is a snapshot taken by a virtual
camera around the dataset [5–7], has inspired researchers to use image classifiers that
are widely used in the classification of real-world objects to identify data patterns in
visualizations [8,9]. A pattern classifier can classify an input visualization into a class
representing a pattern type, as shown in Figure 1, thus transforming pattern identification
into a classification task. We are confident in the performance of the PC, considering
that deep learning-based classifiers outperform humans in distinguishing tiny visual
differences among real-world objects that are more complex and irregular than information
in visualizations. On the other hand, a PC can improve the efficiency and effectiveness
of IDE. Pattern identification, which is frequently conducted in IDE and consumes many
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analysts’ energy, will be taken up by PCs. Thus, analysts can pay more attention to other
high-level tasks, such as controlling the exploring direction and gaining insights into the
identified patterns. PCs make AI models and humans do what they are good at in IDE,
avoiding the subjective pattern identification problems mentioned above.
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Figure 1. The basic idea of a pattern classifier, i.e., classifying an input visualization to a pattern class.

A pattern classifier differs from an image classifier significantly. Each image inherently
belongs to a class. In contrast, pattern classes are artificial, and analysts know little about the
patterns of a dataset before exploring it. As the analyst generates and reads visualizations,
the number of recognized patterns gradually increases. Even though we can initialize a
PC through manual sampling and labeling [10–13], the PC inevitably classifies a newly
generated visualization that contains never-encountered patterns into an existing class
during IDE.

This paper proposes a method for constructing and applying a PC in IDE. The method’s
core is an active-learning indicator, which can quantify how much a sample does not belong
to any preset class (called an abnormal sample and a normal sample, vice versa). We pro-
pose an indicator based on an experiment phenomenon on classic classifiers; i.e., abnormal
samples will produce more dramatic fluctuations than normal samples in classifiers’ hidden
layers. The indicator is computationally efficient and inherently normalized. Thus, analysts
can (1) obtain a sample’s indicator score before the PC assigns it to a class and (2) set a
threshold to filter abnormal samples for updating the PC to cover all recognized pattern
classes during IDE.

To construct, use and update pattern classifiers easily and efficiently in the face of
unknown data, we further propose a PC-based IDE framework called random batch
visualization exploration (RBVE). It enables interactively initializing and applying a PC
in IDE and makes full use of the PC’s advantages in exploration efficiency. Specifically,
RBVE can quickly find representative patterns within analyst-specified exploring space by
randomly synthesizing queries to generate a batch of visualizations and quickly identify
their patterns through PCs. Such ability to explore the whole space at once is not available
with traditional human-dominated IDE.

We conducted both objective and subjective experiments to evaluate the method’s
usability. Quantitative benchmarking against common active-learning indicators demon-
strates that our indicator is more applicable in identifying abnormal samples. Further-
more, participants’ better performance in completing pre-defined tasks and relatively
positive comments further validate the applicability of the PC-based RBVE framework
for optimizing the IDE process.

In short, we generalize the concept of a pattern classifier and give a method for
applying pattern classifiers in practical IDE scenarios in which pattern classes change all
the time. Our method includes the following two concrete contributions:

• We propose an indicator for automatically identifying abnormal samples, enabling
dynamic updating of the pattern classifier to cover all identified patterns during IDE;



Appl. Sci. 2022, 12, 11386 3 of 19

• We design an IDE framework called random batch visualization exploration, en-
abling analysts to find representative patterns of the whole exploring space with
few interactions.

The remaining part of the paper is organized as follows. Section 2 reviews related
works. After a brief description of the research problems in Section 3, we introduce the
indicator and the visualization framework in Sections 4 and 5, respectively. Sections 6 and 7
describe the experiments. We conclude the paper in Section 8.

2. Related Work

We review two types of techniques relevant to our research, i.e., active sample recom-
mendation and automatic pattern identification.

2.1. Active Sample Recommendation

Deep learning has developed rapidly and received widespread attention in the past
decade. Obtaining sufficient training samples is a prerequisite for building any deep-
learning model. Model developers, therefore, have to examine a large number of instances
and assign each instance a label, which is time-consuming and costly.

Active learning [14] is an approach to recommending samples that are most likely
to improve the model’s prediction accuracy. This type of learning provides indicators
to quantify samples’ classification uncertainty. Model developers thus should select
samples with higher uncertainty to label, which are more likely to be misclassified [15].
Many active-learning indicators are calculated based on the distribution of the classi-
fier’s penultimate layer (each value indicates the probability of a sample belonging to a
class), such as least significant confidence [16], smallest margin [17], entropy-based sam-
pling [18], Simpson diversity [19], etc. Another type of indicator follows the ensemble
strategy, constructing multiple weak classifiers and selecting samples with the lowest
consistency of their classification results in these weak classifiers. Representative multi-
model based indicators include vote entropy [20,21] and Kullback–Leibler average [22].
Most active-learning indicators select samples that can significantly improve models’
classification accuracy. In contrast, we need an indicator to reveal how likely a sample
is to not belong to any existing class. None of the existing active-learning indicators are
for this purpose.

Interactive labeling provides model developers with visual interfaces to identify, select,
and label interesting instances to improve the labeling flexibility [10]. Many visualization
tools integrate new workflows to reduce the samples to be labeled [23–26]. Arendt et al. [11]
utilized the 1-nearest neighbor algorithm, which can automatically propagate the labels to
unlabeled samples. Model developers thus only need to label a small number of samples.
Beil et al. [12] proposed a cluster-clean-label workflow to iteratively optimize labeled
clusters’ purity. Bernard et al. [27] summarized a series of strategies for interactive labeling.
However, relying solely on visual and interactive interfaces without any quantitative
reference may produce sub-optimal sample selection [28].

Many methods combine the strengths of active learning and visualization to balance
the efficiency and flexibility of labeling [29,30]. A common strategy is using active-learning
indicators to select informative samples and visual interfaces to control the labeling pro-
cess [28,31,32]. However, these methods target objects with fixed classes, and are inapplica-
ble for the scenarios of pattern classification. Felix, Dasgupta, and Bertini [33] proposed
exploratory labeling, which allows model developers to customize and refine labels over
time. However, the labels depend on the developer-specified “seed terms”, reflecting their
subjective intent. Instead, our method can automatically identify samples with new pattern
classes to update the classifier, avoiding unnecessary human intervention.

2.2. Automatic Pattern Identification

There are many indicators for detecting whether a visualization contains specific data
patterns. The Scagnostics approach for detecting anomalies in SPLOM (scatterplot ma-
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trix) [34,35] and subsequent improvements [36–41] are representative. Following the idea of
Scagnostics, researchers have proposed many other indicators for a variety of visualization
techniques, such as time series [42,43], treemap [44,45], parallel coordinates [46–50], parallel
sets [51], star glyphs [52], and pixel-oriented displays [53]. Seo and Shneiderman [54] used
ordinary statistics to select the most suitable views for showing filtered data. Berger and
Hauser [55] extended Seo and Shneiderman’s framework to rank dimensions according to
indicators of subsets formed by brushing in coordinated views.

Visualization authoring can automatically generate visualizations that are likely to
contain patterns according to the data distribution [56,57]. Many tools, such as SEEDB [58],
Autovis [59], VisPilot [60], Foresight [61], DataShot [62], zenvisage [63], etc., also depend on
indicators to generate visualizations that are likely to contain patterns. Important surveys
of this type of research include [64–67]. Indicators, however, can only find specific pattern
types [66]. In contrast, a PC can create a pattern class based on visualization examples
generated on the fly and quickly discover the same class of visualizations from a large
number of candidates.

Neural networks have also been used in authoring visualizations. Data2Vis [4] formu-
lates visualization generation as a language translation problem, training an attention-based
encoder–decoder network to generate Vega-lite specifications [68]. VizML [3] applies deep
neural networks to predict design choices based on a corpus of existing visualizations
(label) and the associated data sets (feature). DeepEye [69] uses a decision tree to evaluate
the quality of visualizations. Draco [70] can find appropriate visual encodings using a
learning-to-rank mode. A PC and visualization authoring focus on different stages of IDE
and can be used together.

More and more researchers are using machine/deep learning-based techniques to
improve the efficiency and effectiveness of data exploration [71–73]. Bosch et al. [74] and
Snyder et al. [75] utilized classifiers to identify tweets relevant to analysis goals from the
data stream. Heimerl et al. [76] designed a classifier-based text retrieval system. Gramazio,
Huang, and Laidlaw [77] demonstrated the effectiveness of classic classifiers, such as KNN
and SVM, in identifying meaningful data for common visual analysis tasks. However,
these works treat classifiers as a preliminary data-filtering component, unlike our approach,
which uses a classifier to mine data patterns directly.

Many works train machine-learning models to retrieve visualizations relevant to analyst-
specified patterns. Law, Basole, and Wu [78] utilized a multinomial logistic regression model
to determine whether two visualizations contain similar patterns. Dennig et al. [79] trained a
model to rank similarity indicators reflecting analysts’ preferences and used the best-ranked
indicator to retrieve visualizations of interest. A PC does not require analysts to specify
target patterns and therefore has better applicability.

Applying supervised classifiers to improve IDE automation is a newly emerging
trend in visualization. Piet al. [9] built a classifier to identify four traffic congestion
patterns from their proposed cumulative vehicle curves. However, since they determine
pattern classes before training the classifier, they do not need to consider the challenge
of identifying abnormal samples to update the classifier during IDE. Krueger et al. [8]
proposed Facetto, a visualization tool that integrates a classifier to identify cancer and
immune-cell types from microscopy images of human tumors and tissues. However,
Facetto relies on unsupervised clustering and human interactions to identify new cell
classes during IDE. In other words, although pattern identification is automatic by
applying the classifier, the determination of pattern classes remains artificial. Our
method automates the identification of new patterns from visualizations, enabling better
use of the advantages of a PC in terms of exploration efficiency.

3. Problem Statement

We first introduce the application scenarios in which users use pattern classifiers for
data exploration, based on which, the challenges of applying a PC in IDE are identified.



Appl. Sci. 2022, 12, 11386 5 of 19

3.1. Application Scenarios

In a traditional data-analysis pipeline, analysts operate the system to generate the
visualizations. Moreover, they observe the visualizations to determine the existence of any
patterns. Subjective pattern exploration can lead to analysis bias and pose a significant
workload for analysts.

Figure 2 illustrates the scenario of applying a pattern classifier for data analysis. The
analyst interactively operates the visualization system to generate a visualization. The
pattern classifier takes the generated visualization as input and automatically identifies
patterns involved in the visualization by putting it into a specific pattern class. In this
process, analysts do not need to perform tedious analytic tasks. Instead, they obtain
patterns from the pattern classifier and only need to maintain the pattern classifier.

This approach reduces the burden of analysts because it frees users from the tedious
task of reading visualizations and identifying patterns, allowing them to focus on higher-
level tasks, such as controlling the exploration direction and adjusting the exploration
process to understand the analysis results. The approach allows AI and humans to do what
each is good at during data exploration, improving exploration efficiency and avoiding
subjective bias.

Dataset

Visualization
User

Pattern classifier

Pattern

Figure 2. Scenarios for applying pattern classifiers for automated data analysis.

3.2. Challenges

The application of pattern classifiers for automated data analysis has the advantages
of high efficiency and avoidance of subjective bias. However, there are two challenges to be
solved in the application process, as follows:

• C1: Users may arbitrarily conduct data queries during IDE, inevitably generating
visualizations with data patterns that have not been included in the PC. Thus, the
first challenge to be resolved is how to automatically find these visualizations for
updating PCs;

• C2: A PC changes the traditional IDE process taking the place of the human as the
subject of pattern identification. How to construct a new visualization framework that
adapts to this change and makes full use of a PC’s advantage in exploration efficiency
is the second challenge.

We will introduce an active-learning indicator for identifying abnormal samples (C1,
Section 4) and a novel PC-based IDE framework that can efficiently discover representative
patterns within a user-specified space (C2, Section 5).

4. Input Normality Measurement

We first introduce the concept of sub-model and then give the indicator according
to the results of a preliminary study on classic image-classifier sub-models to distinguish
between normal and abnormal samples.
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4.1. Sub-Model

We define the sub-model according to the general classifier structure, which consists of
an input layer, several hidden layers, and an output layer. Given a classifier with N hidden
layers, we can construct up to N sub-models for it. Specifically, the ith sub-model should
include the input layer, the first i hidden layers of the original classifier, and a newly added
output layer, as in Figure 3. The output layer of a sub-model has the same structure as
the original classifier, but we need to train the output layer separately for each sub-model.
Thus, its weights are different from those of the original classifier.

Original model

submodel1

submodel2

submodelN

Input Layer Hidden Layer Output Layer

1 2 N

1

1 2

1 2 N

Figure 3. N sub-models of a classifier with N hidden layers

Each sub-model is an independent classifier with fewer hidden layers. Its outputs thus
reflect the intermediate classification results of the original classifier. A sub-model takes
the ith hidden layer of the original classifier as input and outputs classification results in
the same form as the original classifier.

When training a sub-model, we only need to update its output layer, as it has the
same input and hidden layers as the original classifier. We use the training set of the
original classifier to train a sub-model. Let (x, y) be a sample and fi(x) be the value of
the ith hidden layer. We can take ( fi(x), y) as a training sample of the ith sub-model.
Therefore, each sub-model has the same number of training samples as the original
classifier. Training sub-models can be efficient, as we only need to update a single output
layer for each sub-model.

We propose two hypotheses about sub-models based on our understanding of neu-
ral networks. First, a classifier always has many hidden layers to improve its accuracy.
Therefore, we think the outputs of sub-models will fluctuate randomly over the first few
hidden layers and gradually converge to the same result as the original classifier. Second,
classifying abnormal samples is more difficult. Their classification results fluctuate more
significantly over multiple classes in the sub-model and they need to go through more
hidden layers to reach a stable classification result.

According to the considerations, we give two hypotheses:

Hypothesis 1 (H1). For both normal and abnormal samples, the closer the sub-models are to the
input layer, the more significant the fluctuations in their classification results.

Hypothesis 2 (H2). Abnormal samples need to go through more hidden layers before their sub-
models converge to the same classification results as the original classifier.

4.2. Preliminary Experiment

We conducted pre-experiments on two open datasets—CIFAR-10 [80] and MNIST [81]—
to verify the two hypotheses. We constructed three classifiers for each dataset (six classifiers
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in total) using different classification techniques (i.e., VGG16 [82], RESNET20 [83], and
AlexNet [84]), and generated a group of sub-models for each classifier. Specifically, we
constructed 16 sub-models on VGG16 using all 16 hidden layers (containing both convo-
lutional and pooling layers). Similarly, we constructed 19 sub-models on RESNET20 and
seven sub-models on AlexNet. All sub-models are untrained and therefore do not have
classification capability in the initial state.

We collected 10,000 samples from the test sets of the two datasets as normal samples
for training. We also collected 10,000 samples from two other datasets of the same data
structures, i.e., fashion-MNIST [85] and CIFAR-100 [80], as abnormal samples. These
abnormal samples do not belong to any classes in the two datasets. We compared the
consistency of classification results between sub-models of the two datasets when dealing
with normal and abnormal samples.

Figure 4 shows the experiment results. First, both blue (normal samples) and red
(abnormal samples) lines have an upward trend, indicating a gradual increase in the
number of sub-models with the same classification results as the original classifier (H1).
Second, blue lines are above the red lines in most cases, indicating that more sub-models
of normal samples (blue lines) output the same results as the original classifiers (H2). The
experiment results show that both H1 and H2 hold.

Mnist

Cifar10

RESNET20 VGG16 AlexNet

0

000,2

000,4

000,6

000,8

000,10

1 2 3 4 5 6 7

Abnormal Normal

0

000,2

000,4

000,6

000,8

000,10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Abnormal Normal
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000,2

000,4
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Abnormal Normal
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Abnormal Normal
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000,2
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Figure 4. Pre-experiment results. X-axes and Y-axes indicate sub-model indexes and the numbers of
sub-models with the same classification results as the original classifiers.

4.3. Indicator

We propose an indicator to measure the normality of the input sample according to
the pre-experiment results, as follow:

InputNormality(x) = ∑n
i=1 Di f f ( fi(x), y)× i

∑n
i=1 i

(1)

in which fi(x) represents the output of the ith sub-model (n sub-models in total), y rep-
resents the classification result of the original classifier, and Di f f (.) is an operator that
returns 1 if the two parameters have identical values and 0 if not. The indicator measures
how many sub-models have the same classification result as the original model. The more
sub-models that classify a sample into the same class as the original classifier, the higher the
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indicator score of the sample. Normal samples with more sub-models outputting the same
results as the original classifier thus should have higher indicator scores (H2). Moreover, we
use the sub-model index as the weight of Di f f (.), thus reducing the effects of sub-models
close to the input layer on the score, which always produces more significant fluctuations
(H1). The indicator has two advantages. First, it is normalized; i.e., its value range is [0, 1].
Second, its computational complexity is low. The indicator relies on the classification results
of all sub-models, each involving the calculation of only a single fully-connected output
layer. The two advantages bring better usability.

5. Random Batch Visualization Exploration

We introduce the random batch visualization exploration (RBVE) framework from
multiple aspects and then give a proof-of-concept tool that implements RBVE.

5.1. Framework

Figure 5 shows the RBVE framework. The analyst first initializes a PC (Step 1). After
that, the data exploration begins. The analyst sets the exploring space of the target dataset
by specifying a value range on each attribute (Step 2). Then, RBVE generates a batch of data
queries within the specified space and generates the corresponding visualizations (Step 3).
The PC identifies the pattern classes of these visualizations (Steps 4 and 5). The analyst
checks the classification results to understand representative patterns in the space (Step 6).
Analysts can also filter samples with lower indicator scores that are likely to contain new
data patterns, and adjust the PC’s settings (e.g., adding a new pattern class) according to
these filtered samples (Step 7). During IDE, the analyst repeats the above process, enabling
the PC to cover all identified data patterns.

User

Visualizations
Pattern 

Classifier

Specify

AdjustGenerate

OutputEnter

Check

Patterns

...

...

...

... ... ... ...

1

2

3

4

n

...

...

...

...

...

...

②

③

④ ⑤

⑥

⑦
Exploring Space

①Initialization

Figure 5. RBVE framework.

RBVE involves synthesizing data queries within a user-specified exploring space to
generate a batch of visualizations. In this paper, we consider that each data query specifies
value ranges on attributes to filter records, while the visualization shows the distribution
of filtered records. We require each query to cover the same attribute ranges to avoid
generating visualizations containing records varying wildly in scales. Specifically, we
discretize the value range of each attribute into unit intervals of equal width, and each
query covers a unit interval on each attribute. Each visualization thus corresponds to a cell
in the specified exploring space, showing patterns of records within the cell. Figure 6 shows
a visualization generation example, in which the analysts specify value ranges on three
attributes, each covering two unit intervals, to generate eight visualizations (2 × 2 × 2).
Note that the method of randomly generating a batch of visualizations is flexible. RBVE
allows the analyst to change the strategy according to actual needs.
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1:00 2:00 3:00 4:00 ... 23:000:00

Time

Mon. Tue. Wed. Thu. Fri. Sat. Sun. 

Week

L2 L3 L4 L5
... LnL1

Location

...

(0:00, Wed., ..., L2)

(1:00, Thu., ...,  L3)

(2:00, Fri., ...,  L4)

Figure 6. Examples of generating a batch of visualizations within specified attribute ranges.

5.2. PC Initialization

We believe that initializing a PC is not a challenging task. Most relevant works have
given very feasible solutions [8,9]. Here, we discuss critical aspects of initializing PCs,
as follows.

Visualization Encoding: There are two methods for encoding visualizations. First, we
can process the outputs of any visualization system into images, which no longer require
raw data and have better generality. Second, when the raw data are available, we can use
numeric features mapped by the visual items to encode a visualization, as in Figure 7. In
this case, we do not need an extra step to convert a visualization to an image. In addition,
numeric features are more compact than images, which can reduce the parameters of PCs.
Both formats have their strengths, and users can choose a suitable format according to the
actual situation.

VE=(f1, f2,…, f9) VE=(f1, f2 ,…, f8) VE=(f1, f2 ,…, f32)
Figure 7. Encoding three classic visualizations as numeric vectors.

Model Structure Choice: The strong performance of classification techniques in ex-
isting works [9] proves their feasibility for implementing PCs. We will determine the
model structure according to the visualization encoding format. When encoding each
visualization as a compact numeric vector, we can implement the PC with simple model
structures, such as fully connected networks. In contrast, we can use deep learning-based
classifiers, such as AlexNet [84], VGG [82], GoogleNet [86], ResNet [83], and DenseNet [87],
etc., for handling visualizations of the image format.

Training Set Generation: We give a workflow for labeling visualizations to generate
the training set, as in Figure 8. We first execute queries to generate many visualizations, as
in Figure 8a. Then, we cluster the visualizations into groups and use the group index as the
label for each visualization [88], as in Figure 8b. Finding the optimal number of groups is
unnecessary, as the analyst will gradually enrich the pattern classes during IDE. Clustering
may produce results inconsistent with human perception. Therefore, we need to purify
samples by removing those at the classification boundary, i.e., keeping the ideal samples
for each class, as in Figure 8c.
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(a) (b) (c)

Figure 8. Workflow for labeling visualizations to generate the training set. The workflow integrates
three steps, i.e., (a) sample collection, (b) clustering, and (c) pattern purification.

5.3. Proof-of-Concept Tool

We construct a proof-of-concept based on the RBVE framework. The tool integrates
two components, i.e., the visualization explorer (VE) and the classification adjuster (CA), as
in Figure 9. Please refer to the supplementary materials for videos demonstrating system
usage and cases, as detailed below.

(a1) (a2)

(a3)

(a4)

(a5)

(a) (b)

Figure 9. The interface of the proof-of-concept tool that integrates two components, i.e., (a) the
visualization explorer and (b) the classification adjuster. (a1–a5) are the five sub-views of (a).

The VE controls the exploration process and shows analysis results in Figure 9a.
The VE contains a query panel (a1), in which the analyst can specify a value range on
each attribute. The tool can then generate a batch of visualizations within the specified
attribute ranges shown in the visualization list (a2). The color of each visualization’s
border represents its pattern class output by the PC. Analysts can click on any visu-
alization to see its details in an information panel (a3). The information includes the
pattern class, the indicator score, attribute distribution, and classification results of parts
of sub-models (a4 shows classification results of four sub-models, each corresponding
to an axis). The result view (a5) includes a group of vertically aligned parallel coordi-
nates, each corresponding to a pattern class and showing the attribute distributions of
visualizations classified into this class.

The CA is for updating the PC during IDE, as in Figure 9b. The main body of the CA
consists of visualizations of all pattern classes. The CA keeps the top 200 visualizations
with the highest indicator scores for each pattern class. High indicator scores mean that
these visualizations should have representative patterns for their respective classes. The
CA will update visualizations in all pattern classes at each round based on indicator scores
of existing and newly generated visualizations. During IDE, analysts interactively filter
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visualizations with lower indicator scores in the visualization list (a2). Having found any
new patterns in the filtered visualizations, they will click the “Add New Pattern” button in
the CA to generate a new pattern class and drag visualizations with new patterns from the
visualization list to the pattern class. Then analysts can click the “retrain” button to retrain
the PC with visualizations on the interface as training samples.

The tool supports constructing a training set for initializing a PC. The process starts
from specifying queried attribute ranges to generate a batch of visualizations in the VE’s
query panel (a1). These visualizations will also emerge in the visualization list (a2). Then,
analysts cluster these visualizations into groups and assign the group index as the label
of each visualization as a training sample. The CA will show these labeled visualizations
for manual inspection. Analysts can delete visualizations that do not have ideal patterns
by right-clicking on them. After obtaining the training samples, analysts can use the
deep-learning libraries [89,90] to train the PC.

6. Quantitative Experiments

We compare our input normality indicator with common active-learning indicators,
i.e., smallest margin (SM) [17], entropy-based sampling (ES) [18], vote entropy (VE) [20],
and average KL divergence (KL) [22]. SM and ES are single-model-based, calculated
based on the distribution of the penultimate layer. VE and KL are multiple-model-based,
calculated based on the classification results of multiple weak classifiers.

Figure 10 shows the experiment results. We found that blue lines (our indicator) and
green lines (SM) are above other lines in most cases, indicating that they have found more
significant proportions of abnormal samples. However, the SM numbers of the found
abnormal samples are far less than ours (see the numbers along the lines). Especially when
the indicator score is low, SM can only find a few abnormal samples. Our indicator can
accurately find many abnormal samples, even with low indicator scores (high number and
percentage), indicating its better ability to identify abnormal samples.
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Figure 10. Comparing our indicator with active-learning indicators in identifying abnormal samples.
The indicator score gradually increases along the X-axis in each figure, while the Y-axis represents the
proportion of abnormal samples in the filtered samples. Numbers on lines indicate the number of
abnormal samples found at the corresponding indicator scores. (a) mnist × RESNET20. (b) mnist ×
VGG16. (c) mnist × AlexNet. (d) cifar10 × RESNET20. (e) cifar10 × VGG16. (f) cifar10 × AlexNet.

7. User Study

We further conducted a user study to verify the feasibility of the RBVE framework,
detailed below:
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7.1. Experiment Design

Dataset: We utilized the Chicago Criminal Dataset (https://www.kaggle.com/chicago/
chicago-crime, accessed on 1 March 2022), which includes 7,941,282 criminal records that
happened between 2001 and 2017. We chose four attributes, i.e., day-of-week (7), hour-of-day
(24), crime type (35), and location type (170), to form an exploring space with 999,600 cells
(7 × 24 × 35 × 170). We thus can generate the same number of visualizations as total cells,
each showing the spatial distribution of crime records within a cell, as in Figure 11.

PC initialization: We randomly generated 20,000 visualizations and clustered them in
four classes as the training set. We saved each visualization as an image of 445 × 470 pixels
and implemented the PC as a convolutional neural network to handle them. The network in-
tegrates six convolutional layers, each coupled with max pooling, and two fully-connected
layers. We integrated the PC into the proof-of-concept tool to form the experiment environ-
ment.

(a) (b)

(c) (d)

(e) (f)

Figure 11. (a–f) Six representative patterns identified using our approach. .

Participants: We recruited 20 participants (12 males and 8 females, aged 22–25). All
participants had some knowledge of visual analytics, but none had participated in the
project before. We asked each participant to use the proof-of-concept tool to find as many
spatial patterns as possible within the exploring space.

Process: There was a training session at the beginning of the user study. During the
training session, we introduced the general idea, the principle of the indicator, and the
usage of the proof-of-concept tool for the participants. We set an experimenter to answer
the questions raised by the participants. We ensured that all participants understood
our research and used the proof-of-concept tool proficiently. We set up screen-recording
software to record participants’ operations during the experiment. The participant could
terminate the experiment if he (or she) could no longer find more patterns. After the
experiment, each participant filled out a questionnaire to score four aspects of our method
using the 7-point Likert scale (7 is the best and 1 is the worst). The four aspects are (1) how
quickly they can find data patterns using the tool (efficiency), (2) how accurately the tool
can find abnormal samples (effectiveness), (3) whether they can learn the usage of the
tool quickly (easy-of-use), and (4) whether they would like to use the PC in their research
(favorability). We also encouraged participants to write down their subjective comments
(both positive and negative) in the questionnaires.

7.2. Representative Patterns

Figure 11 shows six representative patterns identified by most participants. We
found the spatial and temporal distributions of thefts occurring in streets and apartments
are more dispersive (Figure 11a), while those occurring in commercial facilities, such
as stores, restaurants, etc., are mainly concentrated in a small region to the northeast
(Figure 11b). Violent crimes, such as battery, narcotics, criminal damages, etc., mainly
occur in a large region to the northwest (Figure 11c). At the same time, battery crimes

https://www.kaggle.com/chicago/chicago-crime
https://www.kaggle.com/chicago/chicago-crime
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also happen in the south of the city (Figure 11d). Figure 11e shows the spatiotemporal
patterns of prostitution activities that occur primarily on the streets. The spatial distribu-
tion in Figure 11f is relatively irregular and does not correspond to a specific criminal
type. It, however, represents a pattern class of fewer crimes occurring.

7.3. Objective Performance

Figure 12 shows participants’ performance in the experiments. Most participants
found over nine patterns (Figure 12a) with a few queries (Figure 12b). Moreover, most
participants (except for two) could complete the experiment within 30 min (Figure 12c).

Insight 1: The strong performance shows the effectiveness and usability of RBVE in
automatically identifying patterns of a batch of visualizations generated randomly.
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(a) (b) (c)

Figure 12. Objective performance of participants in experiments. The red line represents the average
value of each variable. (a) Number of new patterns. (b) Number of queries. (c) Completion time.

Two participants took more than 40 minutes (Figure 12c) to complete the experiments.
By observing their screen recording videos, we found that they conducted more queries and
identified more pattern classes from the filtered visualizations with low indicator scores.
More frequent retraining of the PC led to longer experiment time. We carefully checked
their identified patterns and found that the differences between these classes are not very
significant.

Insight 2: New patterns determined by PCs are sometimes different from human
perceptions. Participants with strict (or relaxed) criteria for pattern classes may merge (or
separate) patterns that contain subtle differences, thus creating fewer (or more) pattern
classes. Although the indicator can improve the automation of identifying new patterns
by filtering a few candidates, it still cannot replace human decision. We will study how to
further reduce human intervention in determining new pattern classes in the future.

The number of queries (Figure 12b) is higher than that of patterns (Figure 12a), in-
dicating it is unnecessary to update the PC in each query. Moreover, we found that PC
retraining mainly occurred in the early stage of each experiment and gradually decreased
in frequency as the number of patterns included in it increased, as shown in Figure 13.

Insight 3: The above phenomena further illustrates the effectiveness of the PC in
improving IDE efficiency. The RBVE framework can avoid frequently updating PCs.
As the number of included pattern classes increases, the PC will pick fewer samples
with low indicators, gradually decreasing its update frequency. In the later stage of the
experiment, the PC has recognized most data patterns, thus making the IDE automated
without any updates.
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Figure 13. Number and time of PC retrainings for each participant.

7.4. Subjective Scores

Figure 14 shows participants’ scoring results. Almost all participants gave the highest
scores on efficiency. Participants agreed that the tool could calculate visualizations’ indica-
tor scores in real-time. Moreover, they considered exploring a whole exploring space as
helpful in improving IDE efficiency.

Efficiency Effectiveness Easy-of-use Favorability
1

2

3
4

5
6

7

Figure 14. Scoring results on four aspects.

Insight 4: The higher efficiency scores derive from the low computational complexity
of the indicator. The RBVE framework thus enables the analyst to quickly identify abnormal
samples from a batch of visualizations generated on the fly.

Effectiveness receives relatively high scores. All participants acknowledged that
most visualizations with low indicator scores contain new patterns. However, they
also found a few exceptions with relatively high scores, but new patterns, which affects
scores of this aspect. Moreover, two participants said they could not use a constant
threshold during the data exploration. They sometimes had to change the threshold to
find abnormal samples.

Insight 5: Our method can guarantee that most low-scoring visualizations contain
new patterns. However, a few exceptions are inevitable due to the inherent uncertainty of
deep learning. The RBVE framework thus depends on the analyst to choose new patterns
from visualizations with low indicator scores. The positive aspect is that the retraining
frequency will gradually decrease as patterns covered by the PC increase, as in Figure 13.

Insight 6: It is impossible to set a uniform threshold that is applicable for all cases.
Our indicator can find a significant proportion of abnormal samples at lower values (e.g.,
<0.2; see Figure 10). However, after the PC has identified most data patterns, almost no
low-scoring samples exist. At that time, analysts need to interactively increase the threshold
to find abnormal samples in a broader range.
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Scores of ease-of-use are high, and the score distribution is more concentrated. Partici-
pants agreed that they could easily understand the RBVE framework and grasp the usage
of the tool. Several participants also pointed out a few limitations of the proof-of-concept
tool and gave us suggestions to improve the system. For example, they suggested including
more PCs to enable the analysts to explore multiple kinds of data patterns simultaneously.
On the other hand, a few participants felt that it was inconvenient to start external pro-
grams to modify the PC structure and hoped the tool could support modifying the PC
structure interactively.

Insight 7: The tool only integrates core components to verify the feasibility of the
RBVE framework. According to the experiment results, we believe implementing the
functions suggested by the participants is feasible. For example, we can integrate more
PCs into the tool. Analysts thus can explore multiple types of data patterns at the same
time. High classification efficiency and low computation complexity ensure that the tool
with multiple PCs can respond to user interactions in real-time. We plan to implement the
functions suggested by the participants in the future.

Participants’ scores on favorability varied widely. Some of the participants agreed
that our method could improve the IDE efficiency and scored this aspect high. However,
participants who are more familiar with visual analytics pointed out that our approach is
very different from the relevant research on authoring visualizations [3,4,70]. They do not
know whether our method is better.

Insight 8: Our method is not an improvement of existing methods that have already
shown their usability in the demonstrated cases. Instead, we focus on a new IDE problem,
i.e., identifying patterns from the generated visualizations, which has not received much
attention. It is possible to use PCs and other techniques together in IDE.

8. Conclusions

This paper generalizes the concept of the pattern classifier based on a few newly-
emerging cases of applying supervised classifiers to identify patterns from visualizations.
We target a practical data exploration scenario wherein pattern classes cannot be de-
termined in advance and will change dynamically during the exploration. We identify
the main technical challenges of applying pattern classifiers in the scenario and give
two methods, i.e., an active-learning indicator and a visualization framework, to resolve
them. We consider pattern classifiers and existing automatic visualization techniques as
technically complementary, automating different stages of interactive data exploration,
and can work together to improve the exploration efficiency. Our study points to a
new direction for automatic visualization and may facilitate the emergence of other
similar studies.

In the future, we plan to improve the method in following aspects. First, we will test
the active-learning indicator on more classic classifiers to verify its effectiveness. Second,
we would like to refine this proof-of-concept tool according to the suggestions proposed by
the participants in the user study, such as integrating multiple pattern classifiers to identify
different types of patterns and enabling users to modify classifier structure in the interface.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app122211386/s1, Video S1: PC initialization, Video S2: PC application.
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