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Abstract: Evolutionary computation algorithms (EC) and swarm intelligence have been widely used
to solve global optimization problems. The optimal solution for an optimization problem is called
by different terms in EC and swarm intelligence. It is called individual in EC and particle in swarm
intelligence. Self-adaptive differential evolution (SaDE) is one of the promising variants of EC for
solving global optimization problems. Adapting self-manipulating parameter values into SaDE
can overcome the burden of choosing suitable parameter values to create the next best generation’s
individuals to achieve optimal convergence. In this paper, a fully informed particle swarm (FIPS) is
hybridized with SaDE to enhance SaDE’s exploitation capability while maintaining its exploration
power so that it is not trapped in stagnation. The proposed hybrid is called FIPSaDE. FIPS, a variant
of particle swarm optimization (PSO), aims to help solutions jump out of stagnation by gathering
knowledge about its neighborhood’s solutions. Each solution in the FIPS swarm is influenced by
a group of solutions in its neighborhood, rather than by the best position it has visited. Indirectly,
FIPS increases the diversity of the swarm. The proposed algorithm is tested on benchmark test
functions from “CEC 2005 Special Session on Real-Parameter Optimization” with various properties.
Experimental results show that the FIPSaDE is more effective and reasonably competent than its
standalone variants, FIPS and SaDE, in solving the test functions, considering the solutions’ quality.

Keywords: differential evolution; fully informed particle swarm; self-adaptive differential evolution;
particle swarm optimization

1. Introduction

The real-life optimization problems are often unpredictable and dynamic, which
means that the optimization problems are facing many time-varying and unimaginable
constraints, such as routing problems, scheduling problems, prediction and more variants
of broad application problems. The primary purpose of the optimization problems is to
find the most optimum minimum or maximum value in the search space where often
the problems have more than one maximum or minimum point. This type of problem
is considered an NP-hard (nondeterministic polynomial time) problem, requiring high
computational processing to solve it. Currently, evolutionary computation (EC) is widely
used in numerous studies to solve this type of problem. The EC technique has proven to
provide an effective search in a complex search to achieve optimal or near-optimal solutions
and has been proven to have strong global search ability [1].
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As a classic heuristic method, Particle Swarm Optimization (PSO) is one of the most
used and reliable swarm intelligence techniques [2]. It has been successfully adopted into
many practical applications due to its efficiency, fast optimization speed and simplicity
of implementation. In the traditional PSO, each particle of the population is learning
from its nearest neighbors, and this may cause the particle swarm to stagnate in the
local region due to rapid convergence [1]. Unlike the traditional PSO, one of its variants,
the Fully Informed Particle Swarm Optimization, FIPS, introduced by Mendes, Kennedy
and Neves in 2004, has the weight contributions of all particles to have the same value.
The particles are influenced by their whole neighborhood in a specific way according
to different neighborhood topologies. This technique enables each particle to access the
most successful solutions from the whole swarm, not necessarily the best from its nearest
neighbor. Accordingly, the performance of FIPS algorithm types is also generally more
dependent on the neighborhood topology [3].

Unlike PSO and its variants, Differential Evolution (DE) is also a widely used algorithm
with a remarkable ability to find the optimal solution. DE relies upon its strength in
handling starting initial points where multiple starting points are randomly chosen during
sampling of potential solutions [4,5]. Several versions of the proposed adaptive DE focus
on manipulating the parameter of DE with the introduction of a new way of controlling the
value of existing parameters. The adaptive differential evolution (jDE) [6] implemented
several DE strategies to control the diversity of the population. Additionally, it can self-
adapt the scaling factor F and the crossover rate Cr. The parameter adaptive differential
evolution (JADE) [7] relies on greedy mutation strategy (DE/current-to-pbest) with optimal
external achieve and utilizing the previously explored inferior solutions. In SaDE [8],
suitable learning strategies and parameter settings are gradually self-adapted according
to the previous learning experiences. Even more, the choice of learning strategy and the
two essential control parameters of DE, F and Cr, are not required to be specified before the
evolution phase.

In the past few years, the development of adaptive mechanisms has emerged to be
one of the critical issues in the branch of the EC algorithm. Adaptive mechanism refers
to the ability of the algorithm to change its behavior according to information available
during its running phase. The number of works in which adaptive mechanisms are being
successfully used has increased enormously over the past few decades. The applications
include a wide variety of areas, such as routing problems, signal processing, optimization
problem and medical fields. Furthermore, the efficiency of the adaptive mechanism mainly
depends on the algorithm design and the algorithm used for adaptation.

One of the common drawbacks EC algorithms face in solving optimization problems
is the lack of diversity in solutions causing a suboptimal solution. A potential approach
to overcoming this drawback is a hybrid of EC and swarm intelligence. FIPS and SaDE
emerge as promising EC and swarm intelligence algorithms in solving optimization prob-
lems. Therefore, they are chosen to form a hybrid in our study. FIPS and SaDE are
hybridized owing to the solutions’ diversity in FIPS and the optimal solution quality in
SaDE. FIPS improves the solutions’ diversity by gathering knowledge about its neigh-
borhood’s solutions. Each solution in FIPS receives information from all its neighbors
rather than just the best one. SaDE is a simple, powerful and self-adaptive type of DE
which finds an optimal solution through exploration and exploitation. SaDE minimally
relies on user-specified parameters because it can self-adapt its parameters to solve opti-
mization problems. FIPS improves the solutions through information gathering from its
neighbors and maneuvering the group of solutions to move toward the optimal region,
which is explored and exploited by SaDE. Therefore, in the hybrid of FIPS and SaDE, they
complement each other by balancing the exploration of neighbors and exploitation of the
optimal solutions.
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2. Related Works
2.1. Improved Differential Evolution

DE is one of the most popular evolutionary algorithms used to solve optimization
problems because it is simple, robust and computationally efficient. However, DE faces
issues in convergence rate and local exploitation rate [9]. Therefore, various research efforts
for its improvement are continuously carried out even though the algorithm has been
introduced 25 years ago by Storn and Price [10]. Besides, surveys related DE variants are
updated after a certain years to accommodate various modifications of DEs, as shown
in [5,9,11–15]. The surveys show that most of the research efforts focus on improving the
performance of DE through parameter settings and modifications in genetic operations
consisting of initialization, differential mutation, crossover and selection. Another potential
direction towards improving DE is the use of hybridization, and it has gained research
attention [9,11,12].

Most of the optimization algorithms are not able to solve a variety of problems [9].
However, continuous research efforts are required to improve the algorithm through the
complementary of their advantages. Hybridization is one the main research directions in
improving the performance of DE because different optimization algorithms have different
search behaviours and advantages [16].

It is implemented to enhance its performance and overcome its limitations such
as convergence speed [11], premature convergence [9] and local minima [9]. The types
of algorithms used for hybridization in DE can either belong to the same or different
categories of algorithms. The work in [12] categorizes the algorithm in hybridization of DE
into statistical techniques and algorithms. On the other hand, the work in [11] shows that
most of the algorithms in a hybridization of DE are from the swarm intelligence algorithms.
The commonly used swarm intelligence algorithms to hybridize with DE include PSO, ant
colony algorithm (ACA) and artificial bee colony (ABC).

DE variants produce robust solutions owing to their exploration ability. However,
they have issues related to premature convergence and local exploitation. On the other
hand, one of the drawbacks of PSO is premature convergence [17]. Premature convergence
is caused by improper velocity adjustment when PSO is configured by inappropriate
acceleration coefficient and inertia weights [18]. Consequently, the particles move in
undesired directions, causing stagnation around or being trapped in suboptimal [18]. A
review of the modifications, extensions and hybridization of the PSO algorithm and their
applications is presented in [19].

Most of the hybrid variants of DE is formed with PSO [11] and an extensive survey
about the hybrid can be found in [9]. A hybrid of advanced DE (ADE) and (PSO) (APSO),
namely, AHDEPSO, was proposed to solve unconstrained optimization problems in [9].
Given that a hybrid of DE and PSO offers complementary properties and has the effect of
balancing the exploration and exploitation phases, the hybrid of their advanced variants
has attracted more research attention. The research focusing on how to combine PSO and
DE is still an open problem [16].

The premature convergence of PSO in the optimization process can be improved based
on four different methods: parameter settings, neighborhood topology, learning strategy
and hybridization [20]. Neighbourhood topology enhances PSO’s exploration capability
and different topologies affected solve different optimization problems [20]. On the other
hand, hybridization is used to complement the weakness of intelligent algorithms by
combining their helpful features. Therefore, FIPS, instead of the original PSO, is hybridized
with DE to improve the performance of the optimization algorithms.

The self-adaptive mutation differential evolution algorithm based on particle swarm
optimization (DEPSO) [21] uses balance to improve the optimization. The hybrid uses
the selection probability of mutation strategy to decide between the modified DE/rand/1
and the PSO’s mutation strategy. The modified mutation strategy with the elite archive
strategy, called DE/e-rand/1, is proposed in DEPSO. The framework of DEPSO is still
based on DE. Unlike DEPSO, our proposed FIPSaDE is based on the framework of PSO.
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The hybridization of DEPSO focuses on selecting mutation strategies from DE and PSO to
generate the mutant vector. Therefore, its hybridization involves the mutation phase only.
On the other hand, the hybridization in FIPSaDE involves integrating DE’s algorithmic
operations, from the mutation to selection phases, into the framework of PSO before the
velocity and position updating.

Dash et al. proposed HDEPSO [22] to solve various benchmark functions and an
optimization problem focusing on the effectiveness of the sharp edge FIR filter (SEFIRF).
The proposed framework is similar to FIPSaDE, whereby, DE’s mutation, crossover and
selection are integrated with the best particles of PSO to enhance global searching ability.
However, the settings of F and Cr were not adaptive. F is fixed as a constant and Cr refers
to an arbitrary number between [0, 1]. In contrast, the settings of F and Cr in FIPSaDE
are adaptive.

For the case of the hybrid approach, it may cause more uncertainties in parameter
setting in view of the fact that a user needs to realize how to set parameters for at least
two algorithms [23]. The task of parameter setting in solving optimization problem is
problem-dependent, user-dependent and algorithm-dependent. The task becomes more
complex when the algorithms of the hybrid are from different branches of machine learning.
Therefore, researchers start to focus on the possibility of applying adaptation methods for
users that have minimum knowledge about the algorithms, parameters settings and the
problems. DE variants with varying adaptation levels have shown promising results in
solving optimization problems and its popularity in setting DE’s parameters can be found
in the aforementioned reviews.

For example, the work in [24] showed the use of adaptation to tune the configurations
of F, Cr , and mutation strategy at different stages of the evolution. Another work demon-
strating the use of adaptation in controlling parameters F, Cr is the Success-History-based
adaptive DE (SHADE) algorithm [25]. SHADE uses the nearest spatial neighborhood-based
modification to the adaptation process of the parameters described above. Do et al. [26]
also proposed an adaptive mechanism to determine the parameters F and F, Cr with the
mutation and selection processes determined by the best individual-based mutation and
elitist selection techniques. The adaptation in population sizing is summarized in the
review by Piotrowski [27]. These research studies have shown the use of adaptation to
control DE’s various parameters.

The adaptability trend to set DE’s parameters, from partial adaptiveness to full adap-
tiveness, is increasing. Since the adaptive DE variants have shown promising results, its use
to form the hybrid can reduce the complexity of parameter setting because the number of al-
gorithms that require user-specified parameters has declined. Therefore, we use a adaptive
DE called SaDE in [8] to form the hybrid of DE and PSO in the current work. SaDE adapts
the control parameter F and Cr based on the mutation strategy DE/rand/1/binstrategy.

2.2. Particle Swarm Optimization

PSO is another branch of EC that operates based on swarm-based intelligence. Its im-
plementation is simple and easy, but it also suffers from premature
convergence [18,28]. Therefore, various modifications are applied to the standard PSO to
overcome its drawback. In [18], the researchers categorize the modification of PSO into
four strategies: Modification of the PSO’s controlling parameters (1); (2) Hybridization with
other meta-heuristic algorithms such as GA and DE; (3) Cooperation; (4) Multi-swarm tech-
niques. The work in [9,18] reflects that a hybrid of PSO and DE has gained popularity in
recent years as the strategy to improve EC’s performance in solving optimization problems.
The performance of PSO is affected by its neighbourhood topology, where the particles
within the neighbour topology communicate with each other and share information. FIPS
is the PSO that relies on the particle’s best positions of its neighbors in updating its velocity
to prevent it from being stuck at local optimum. The hybrid variants of DE and PSO have
shown better quality of solutions and computation efficiency than the original PSO [18].
Therefore, a hybrid of the adaptive SaDE and FIPS is formed to complement their weakness
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in solving optimization problems in our current work. Brief descriptions of SaDE and FIPS
are provided in Sections 2.3 and 2.4.

2.3. Self-Adaptive Differential Evolution (SaDE)

SaDE is a variant of DE that can produce better results than the traditional DE algo-
rithms [2]. This algorithm has been applied in various optimization problems [2–4,6,7]. In
SaDE, two out of three critical control parameters of DE (i.e., F and Cr) are manipulated
for DE improvement. Since these parameters are used as the external fixed parameters,
these control parameters are not deemed to be evolving entities in the earliest EA algorithm.
Later on, it was determined that certain parameters could be changed during the evolution
process in order to reach the desired level of convergence [8].

The population size Np is not favored as a chosen parameter because its value is not
sensitive to the efficiency and robustness of the DE algorithm [8]. Np is held as a user-
specified parameter, whereas the F value is set to be between (0,2] for different individuals,
with a normal distribution of mean 0.5 and standard deviation of 0.3 [29]. Instead of the
commonly used (0,1] for F values, the range between (0,2] was chosen to maintain both
small F values for local search and large F values for global search. Cr would initially
be naturally distributed in a range with a mean of Crm and a standard deviation, std, of
0.1. Crm value is set to 0.5 as a starting point where the values will be held for several
generations before being replaced by a new value with a similar normal distribution for
the next generation.

Throughout each generation, better Cr values associated with trial vectors that are able
to reach the next generation will be registered. The mean value for the normal distribution
of Cr is recalculated based on all observed values corresponding to the effective trial vectors
during the cycle. In order to prevent potentially inappropriate long-term accumulated
results, successful Cr values captured during the recalculation of the normal distribution
mean are not saved.

2.4. Fully Informed Particle Swarm (FIPS)

The FIPS algorithm that was developed by Mendes et al. in 2004 [1] is a variant of
PSO in which each particle is influenced by all of its K-neighbors. This idea is in contrast
to the standard PSO algorithm, in which the particle is drawn to the best location it has
visited as well as the best position found by the particle in its neighborhood that manages
to produce the best result. The algorithm is motivated by how individuals in human society
are influenced by a statistical summary of their world [30].

Each particle in the FIPS swarm is affected by a group of particles from its surrounding
neighborhood, which is not necessarily to the best particle’s location [1]. The velocity
equation for FIPS is modified based on canonical PSO. Each particle inside the swarm
is affected by the achievements of all its neighbors, rather than pointing to just one best
particle performance from its neighbors [30]. FIPS’s velocity and position updates are
defined by Equations (1) and (2), respectively.

vi(t + 1) = wvi +
|Ni |

∑
m=1

γm(t)
ym(t)− xi(t)
|Ni|

(1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where Ni refers to the set of particles in particle i’s neighborhood. γm(t) is in the range
of U(0, c1 + c2)

D and D is dimension of the problem. ym(t) refer to the best position
previously visited by m. Coefficients c1, c2 and w represent cognitive, social and inertia
weight, respectively. There are five variants of the algorithm, as stated by Mendes et al. [1],
which are FIPS, wFIPS, wdFIPS, Self and wSelf:
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• FIPS refers to a fully informed particle swarm optimization algorithm with w returning
a constant value and the number of neighbourhood contributions being the same;

• wFIPS refers to a type of FIPS algorithm in which each neighbor’s input is weighted
by the goodness of its previous best particle;

• wdFIPS refers to a type of FIPS algorithm where the contribution of each neighbor is
weighted by its distance in the search space from the target particle;

• Self refers to a FIPS algorithm in which the previous best particle received half
the weight;

• wSelf refers to a FIPS algorithm where the previous best particle received half the
weight and the contribution of each neighbor was weighted by the goodness of its
previous best particle.

The swarm optimization algorithm is a type of algorithm that is greatly influenced
by the neighborhood. As a result, the efficiency of the FIPS algorithm is generally even
more dependent on its neighborhood topology. Ten topology types selected by Cleghorn
and Engelbrecht [30] to be implemented on FIPS include All, Ring, Four Clusters, Pyramid,
Square, UAll, UFour Clusters, UPyramid and USquare. Topology with the “U” prefix refers
to a similar topology without the prefix, but with the particle’s own index omitted from the
neighborhood.

3. Methodology

FIPS and SaDE are hybridized owing to the solutions’ diversity in FIPS and the
quality of optimal solution in SaDE. One of the common drawbacks of using optimization
algorithms is the lack of diversity leading to a suboptimal solution [31]. The use of FIPS
could improve the drawback. In the FIPS, the neighbors around a solution become the
source of influence to improve the solution’s diversity. DE is remarkable in finding the
optimal solution in a group of solutions. However, choosing suitable control parameter
values is tricky as the values need to vary according to each problem. SaDE has the
advantage that the user does not need to determine the optimal parameters settings, and
time complexity does not increase as the rules for applying SaDE are simple [29]. SaDE
performs well in finding the optimal solution in a group of solutions through self-adapting
its parameters. Each particle in FIPS receives information from all of its neighbors rather
than just the best one. The particle may sometimes trap in local optima, and the FIPS
topology network may help to monitor and maneuver the particle’s position. Therefore,
the operation in FIPS improves the solutions through the exploration of its neighbors and
guides the group of solutions moving toward the optimal region.

A hybridization between SaDE and FIPS, called FIPSaDE, could improve the per-
formance in solving complex optimization problems. The main process of FIPSaDE is
structured according to the usual structure of the PSO algorithm. The solution found in
FIPSaDE is called individual or solution interchangeably. The FIPS parameter is updated
each time before the mutation process of the SaDE algorithm and again during the selection
process in controlling the quality of individuals chosen for the next generation. The process
is repeated iteratively until the algorithm reaches the optimum value. The presence of
the FIPS process creates a disturbance in the population in which the FIPS is focused on
moving the solution to explore its surrounding. This helps in maintaining the diversity of
the population created and producing an excellent optimal solution. The pseudocode of
FIPSaDE is given in Algorithm 1.
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Algorithm 1: The Pseudocode of the FIPSaDE for Solving a Minimization Problem
******************************Start of FIPS******************************
Initialization
Define the swarm size Np
for each individual i ε[1 . . . Np] do

Randomly generate xi and vi.
Evaluate the fitness of xi denoting it as f (xi).
Set Pbesti = xi and f (Pbesti) = f (xi).

end for
Set Gbest = Pbest1 and f (Gbest) = f (Pbest1).
for each individual i ε[1 . . . Np] do

if f (Pbesti) < f (Gbest) then
f (Gbest) = f (Pbesti)

end if
end for
while t < maximum iterations do

for each individual i ε[1 . . . Np] do
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.Start of SaDE-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-..-.-.-.-
Generate vector [xi, Fi, Cri ].
Update the parameters Fi and Cri based on Equations (3) and (4).
Mutate xi based on Equation (5).
Crossover xi based on Equation (6).
Select xi based on Equation (7).
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.End of SaDE-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Evaluate its velocity vi(t + 1) based on Equation (1).
Update the position xi(t + 1) of the particle based on Equation (2).
if f (xi(t + 1)) < f (Pbesti) then

Pbesti = xi(t + 1)
f (Pbesti) = f (xi(t + 1))

end if
if f (Pbesti) < f (Gbest) then

Gbest = Pbesti
f (Gbest) = f (Pbesti)

end if
end for
t = t + 1

end while
return Gbest
*******************************End of FIPS******************************

In FIPSaDE, a swarm of individuals flies in a D-dimensional search space seek an
optimal solution. Each individual i possesses a current velocity vector vi = [vi1, vi2, . . . , viD]
and a current position vector xi = [xi1, xi2, . . . , xiD], where D is the number of dimensions.
The FIPSaDE process starts by randomly initializing vi and xi.

In each iteration t, FIPSaDE uses a self-adapting mechanism of two control parameters,
i.e., F and Cr. Each individual i is extended with control parameter values F and Cr as a
vector [xi, Fi, Cri ]. New control parameters Fi,(t+1) and Cri ,(t+1) are calculated before the
mutation operator based on Equations (3) and (4). Therefore, the parameters influence the
mutation, crossover and selection operations of the new vector xi,(t+1).

Fi, (t+1) =


Fl + rand1 ∗ Fu if rand2 < τ1

Fi, t otherwise
(3)



Appl. Sci. 2022, 12, 11367 8 of 17

Cri , (t+1) =


rand3 if rand4 < τ2

Cri , t otherwise
(4)

where randj, for j ε {1, 2, 3, 4} are uniform random values within the range [0, 1]. The
parameters τ1, τ2, Fl , Fu are fixed to values 0.1, 0.1, 0.1, 0.9, respectively in [8].

In the mutation process, for each target vector xi, a mutant vector qi is generated
according to Equation (5)

qi, (t+1) = xr1, t + Fi, t ∗ (xr2, t − xr3, t) (5)

with randomly chosen indexes r1, r2, r3 ε [1, Np].
Then, a crossover operator forms a trial vector pi = (pi1, pi2, . . . piD), with the target

vector is mixed with the mutated vector using Equation (6).

pij, (t+1) =

{
qij, (t+1) if (randj(0, 1) ≤ Cri , t) or (j = jrand)

xij, t otherwise
(6)

for i = 1, 2, . . . Np and j = 1, 2, . . . D. Index jrand ε {1, Np} is a randomly chosen integer that
is responsible for the trial vector containing at least one component from the mutant vector.

In the selection process, a greedy selection scheme for a minimization is used and it is
shown in Equation (7).

xi, (t+1) =

{
pi, (t+1) if f (pi, (t+1)) ≤ f (xi, t)

xi, t otherwise
(7)

In each iteration t, the best position that has been found by individual i, Pbesti =
[Pbesti1, Pbesti2, . . . , PbestiD] and the best position that has been found by the whole swarm
Gbest = [Gbest1, Gbest2, . . . , GbestD] guide individual i to update its velocity and position
by Equations (1) and (2).

The FIPSaDE is effective in traversing through swarm spaces while avoiding getting
stuck inside local search using the information collected from individuals’ neighborhood.
The individuals of each population will contain a control parameter adapted from SaDE
and also a traversing parameter from FIPS in order to exploit the swarm space that is
searching for the best global point, while avoiding getting trapped inside a local point.
If some population suffers from slow and premature convergence or if the population
becomes stagnant, the velocity parameter and position parameter from each individual
will be able to help the population to evolve out into a better point. Experimental results
validated the effectiveness and strength of our proposed model.

4. Experimental Setup

The performance of FIPSaDE is evaluated against the 25 benchmark functions from
“CEC 2005 Special Session on Real-Parameter Optimization” (CEC 2005) [32], namely,
F1–F25. The benchmark functions consist of 5 unimodal functions, 7 basic multimodal
functions, 2 expanded multimodal functions and 11 composition functions. The details
of the functions are described in Table 1. The number of variables for each function is
represented by D and the ranges of variable search are represented by S. All functions
are a minimization of problems with their best minimum solutions can refer to [32]. All
experiments were conducted in the Eclipse software by using the Java programming
language and on a laptop featuring an Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz
processor with 4GB of RAM.
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Table 1. Details on the benchmark functions.

Denotation Test Function S Modality

F1 Shifted Sphere Function [−100, 100] D Unimodal
F2 Shifted Schwefel’s Problem 1.2 [−100, 100] D Unimodal

F3 Shifted Rotated High Conditioned
Elliptic Function [−100, 100] D Unimodal

F4 Shifted Schwefel’s Problem 1.2 with
Noise in Fitness [−100, 100] D Unimodal

F5 Schwefel’s Problem 2.6 with Global
Optimum on Bounds [−100, 100] D Unimodal

F6 Shifted Rosenbrock’s Function [−100, 100] D Basic Multimodal

F7 Shifted Rotated Griewank’s Function
without Bounds [0, 600] D Basic Multimodal

F8 Shifted Rotated Ackley’s Function with
Global Optimum on Bounds [−32, 32] D Basic Multimodal

F9 Shifted Rastrigin’s Function [−5, 5] D Basic Multimodal
F10 Shifted Rotated Rastrigin’s Function [−5, 5] D Basic Multimodal
F11 Shifted Rotated Weierstrass Function [−0.5, 0.5] D Basic Multimodal
F12 Schwefel’s Problem 2.13 [−Π, Π] D Basic Multimodal

F13 Shifted Expanded Griewank’s plus
Rosenbrock’s Function [−5, 5] D Expanded Multimodal

F14 Shifted Rotated Expanded Scaffer’s f 6
Function [−100, 100] D Expanded Multimodal

F15 Hybrid Composition Function [−5, 5] D Hybrid Composition

F16 Rotated Version of Hybrid
Composition Function f 15 [−5, 5] D Hybrid Composition

F17
Rotated Version of Hybrid
Composition Function f 15 with Noise
in Fitness

[−5, 5] D Hybrid Composition

F18 Rotated Hybrid Composition Function [−5, 5] D Hybrid Composition

F19 Rotated Hybrid Composition Function
with Narrow Basin Global Optimum [−5, 5] D Hybrid Composition

F20 Rotated Hybrid Composition Function
with Global Optimum on the Bounds [−5, 5] D Hybrid Composition

F21 Rotated Hybrid Composition Function [−5, 5] D Hybrid Composition

F22 Rotated Hybrid Composition Function
with High Condition Number Matrix [−5, 5] D Hybrid Composition

F23 Non-continuous Rotated Hybrid
Composition Function [−5, 5] D Hybrid Composition

F24 Rotated Hybrid Composition Function [−5, 5] D Hybrid Composition

F25 Rotated Hybrid Composition Function
without Bounds

Initialize population in
[2, 5] D Hybrid Composition

but no exact search
range set

In this experiment, the performance of FIPSaDE is studied by comparing the algorithm
with four known algorithms, which are FIPS by Mendes et al. [1], DE by Storn and Price [10],
SaDE by Brest et al. [8] and DE-PSO by Pant et al. [31]. FIPS, DE and SaDE were selected as
these algorithms can be considered as the parent or the ancestor of FIPSaDE. As for DE-
PSO, it was selected as the algorithm is a hybrid algorithm that features a similar structure
and concept as FIPSaDE. The parameters for the algorithms are shown in Tables 2 and 3.
The optimization test for all algorithms is restricted to a maximum number of function
evaluation (MAX_FEs), which are 5× 104 for both 10D and 50D problem, and 3× 104 for
30D problem. A success-threshold of 10−14 was administered for the experiments. This
means the evolutionary processes are terminated if the best-fitness, fbest < ftarget is reached,
with ftarget = f (x∗) + 10−14. Otherwise, the processes continue until they reach MAX_FEs.
The evolutions for all models of DEs are run until they meet the stopping criterion and
repeated by using the k-th seed numbers, k = 1, 2, . . . , K, with K referring to the maximum
number of runs.
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Table 2. Parameter settings of DE, PSO, DE-PSO, SaDE and FIPS.

Parameter DE PSO DE-PSO SaDE FIPS

Population size, Np (25, 30, 50) (25, 30, 50) (25, 30, 50) (25, 30, 50) (25, 30, 50)
(D = 10, D = 30, D = 50)

MAX_FEs (5× 104, 3× 104, (5× 104, 3× 104, (5× 104, 3× 104, (5 × 104, 3 × 104, (5 × 104, 3 × 104,
(D = 10, D = 30, D = 50) 5 × 104) 5 × 104) 5 × 104) 5 × 104) 5 × 104)

Crossover rate, Cr 0.1 - 0.95 N (0.5 ± 0.1) -

Scale factor, F 0.5 - 0.9 F = (0, 2] with
N(0.5 ± 0.3) -

Mutation strategy de/rand/1/bin - de/rand/1/bin de/rand/1/bin, -

Acceleration rate (c1, c2) - (2.05, 2.05) (2.0, 2.0) - (2.05, 2.05)

Inertial weight, w - 0.7298 0.9 - 0.7298

Table 3. Parameter settings of FIPSaDE.

Parameter
Dimension

10 30 50

Population size, Np 25 30 50
MAX_FEs 5 × 104 3 × 104 5 × 104

K runs per case 30 30 20
Crossover rate, Cr N(0.5 ± 0.1)

Scale factor, F F = (0,2] with N (0.5 ± 0.3)
Learning period 50

Acceleration rate, c1 2.05
Acceleration rate, c2 2.05

Inertial weight, w 0.7298
Neighborhood Type Self

Neighborhood Topology Four cluster
Symmetric Asymmetric

5. Results and Analysis

The difference between current fitness value and optimum value, also known as
error value, is used to compare the algorithms’ performance. The average errors of the
independent runs of all algorithms for 10D, 30D and 50D problems are summarized in
Tables 4–6. The last rows in Tables 4–6 show the frequency of having the best result for
the algorithms, hwin. Based on the results in Tables 4–6, DE cannot find the solutions for
functions F15–F17 because its solutions have undefined numeric results for the functions
that are divided by zero.

When the settings are 10D and N is 25 (10D25N), SaDE, DE-PSO and FIPSaDE have the
highest hwin, which is 6. This means the three algorithms have compatible performances
in solving the problems. An interesting finding from the comparison of hwin for SaDE,
DE-PSO and FIPSaDE for the setting of 10D25N is that they have the lowest error for
different functions. This finding may indicate that they perform well for different charac-
teristics of problems. As the combinations of D and N increase to 30D30N and 50D50N,
FIPSaDE shows distinctive performances compared to the other algorithms by having the
highest hwin in both settings. FIPSaDE has hwin = 9 and hwin = 12 in 30D30N and 50D50N,
respectively. In other words, FIPSaDE’s performances improves with the increase of prob-
lem dimensionality and population size. In contrast, the performances of FIPS are the
worst among the algorithms for the three settings. FIPS, DE and SaDE show deterioration
when the settings increase from 10D25N to 50D50N, with the highest deterioration being
observed in FIPS. DE-PSO, which has similar characteristics to FIPSaDE, shows moderate
performances regardless of the settings.
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Table 4. Results of average error values for 10D test problem and N = 25 (10D25N).

Function FIPS DE SaDE DE-PSO FIPSaDE

F1 1.6913E+00 5.6843E-14 1.8948E-15 5.6843E-14 7.7548E-11
F2 1.7168E+00 2.5199E-01 5.6843E-14 1.8182E+01 9.2022E-11
F3 4.8917E+03 6.3587E+05 3.3801E+04 5.8865E+04 3.0103E+01
F4 1.0672E+01 2.0546E+02 7.0025E-11 2.1796E+01 9.2033E-11
F5 0.0000E+00 9.1538E+02 6.6696E-13 2.3041E-12 8.9070E-11
F6 5.0970E+01 2.6962E+00 1.2781E+00 1.3425E+05 5.3154E-01
F7 1.2671E+03 7.6374E-02 1.2670E+03 1.8818E-01 1.2670E+03
F8 2.0217E+01 2.0227E+01 2.0384E+01 2.0081E+01 2.0110E+01
F9 8.0601E+00 5.6843E-14 2.6532E-01 5.6843E-14 4.9748E-01
F10 8.6778E+00 1.6527E+01 6.9076E+00 1.0315E+01 5.8371E+00
F11 1.7263E+00 6.9768E+00 3.0350E+00 1.7695E+00 2.3054E+00
F12 2.8017E+02 2.4992E+01 5.6407E+02 1.5613E+03 3.0828E+02
F13 5.6892E-01 2.6653E-02 8.8579E-01 4.2952E-01 3.2816E-01
F14 2.1172E+00 3.0997E+00 3.1387E+00 2.2248E+00 1.9601E+00
F15 1.8014E+02 - 2.8100E+02 1.9472E+02 3.1617E+02
F16 1.0019E+02 - 1.0218E+02 1.1402E+02 1.0514E+02
F17 1.0719E+02 1.0722E+03 1.1966E+02 1.4561E+02 1.0136E+02
F18 7.6687E+02 1.6996E+03 7.0154E+02 7.8021E+02 7.8756E+02
F19 7.7130E+02 1.8139E+03 6.5847E+02 7.5198E+02 7.2585E+02
F20 7.4034E+02 1.7606E+03 6.8165E+02 7.6896E+02 6.4081E+02
F21 6.9422E+02 1.2334E+03 7.0185E+02 5.4388E+02 7.3634E+02
F22 7.1363E+02 1.2253E+03 7.7433E+02 7.4833E+02 7.5392E+02
F23 7.8007E+02 1.2661E+03 8.5139E+02 7.9163E+02 7.9806E+02
F24 2.8126E+02 7.4243E+02 2.0000E+02 5.3977E+02 2.2654E+02
F25 1.7506E+03 7.4292E+02 1.7507E+03 5.4948E+02 1.7495E+03

hwin 4 4 6 6 6

Table 5. Results of average error values for 30D test problem and N = 30 (30D30N).

Function FIPS DE SaDE DE-PSO FIPSaDE

F1 1.0003E+03 1.3264E-14 1.0232E-13 1.3873E+02 6.6317E-14
F2 7.4895E+03 8.1760E+03 5.9137E+02 3.3581E+02 2.3457E-12
F3 9.6860E+06 1.2073E+07 3.0102E+06 1.4827E+06 8.9114E+04
F4 1.3059E+04 3.2880E+04 8.8330E+03 4.2988E+02 3.2211E+01
F5 5.0737E+03 1.0061E+04 4.8601E+03 1.9268E+03 3.1928E+03
F6 4.0001E+07 9.1524E+00 1.4404E+02 4.5495E+06 1.1960E+00
F7 4.6963E+03 1.5056E-02 4.6963E+03 2.4008E-02 4.6963E+03
F8 2.0904E+01 2.0861E+01 2.1049E+01 2.0349E+01 2.0887E+01
F9 9.1200E+01 1.5158E-14 1.8278E+01 2.2971E+01 1.0267E+01
F10 1.1387E+02 1.8811E+02 1.1745E+02 6.2888E+01 4.1795E+01
F11 2.2143E+01 3.5289E+01 3.5379E+01 2.1214E+01 2.0232E+01
F12 9.3414E+04 5.5912E+03 1.6091E+04 1.8567E+04 6.4080E+03
F13 6.8397E+00 2.5628E-01 1.2032E+01 2.1437E+00 2.3846E+00
F14 1.1821E+01 1.2741E+01 1.3538E+01 1.2031E+01 1.1989E+01
F15 4.8635E+02 - 3.2749E+02 3.9304E+02 3.3594E+02
F16 2.4964E+02 - 1.8945E+02 2.5133E+02 1.2952E+02
F17 2.4655E+02 - 2.9869E+02 2.9779E+02 1.4873E+02
F18 9.1085E+02 1.2349E+03 9.0809E+02 9.0925E+02 9.1217E+02
F19 9.0797E+02 1.2258E+03 9.0760E+02 9.1250E+02 9.1158E+02
F20 9.1196E+02 1.2834E+03 9.1304E+02 9.0907E+02 9.0881E+02
F21 9.3243E+02 1.4813E+03 5.0000E+02 6.6047E+02 5.3210E+02
F22 8.9686E+02 1.6756E+03 9.4560E+02 8.5655E+02 8.9115E+02
F23 5.9064E+02 1.5085E+03 6.1697E+02 8.2535E+02 5.9916E+02
F24 4.1547E+02 1.4310E+03 2.0000E+02 6.4398E+02 2.2529E+02
F25 1.6313E+03 1.4382E+03 1.6448E+03 2.8872E+02 1.6171E+03

hwin 2 5 5 4 9
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Table 6. Results of average error values for 50D test problem and N = 50 (50D50N).

Function FIPS DE SaDE DE-PSO FIPSaDE

F1 2.9123E+03 5.6843E-14 5.1044E-10 6.6018E+02 8.2423E-14
F2 1.9747E+04 2.6854E+04 4.0747E+03 1.8025E+03 2.7853E-12
F3 4.6307E+07 2.7198E+07 7.2181E+06 4.5704E+06 9.4374E+04
F4 2.9802E+04 9.4951E+04 2.7156E+04 2.5763E+03 8.5264E+01
F5 1.2415E+04 2.2436E+04 9.7093E+03 6.1975E+03 5.5761E+03
F6 1.1081E+08 1.7165E+01 3.4873E+02 4.1990E+07 1.7940E+00
F7 6.1953E+03 3.5798E-04 6.1953E+03 1.1065E-02 6.1953E+03
F8 2.1079E+01 2.1056E+01 2.1194E+01 2.1009E+01 2.1084E+01
F9 1.9239E+02 5.6843E-14 9.1163E+01 8.3410E+01 1.5024E+01
F10 2.5784E+02 4.8818E+02 2.8407E+02 1.3299E+02 9.3924E+01
F11 4.4393E+01 5.7573E+03 7.0201E+01 4.5260E+01 3.8998E+01
F12 4.2248E+05 2.3101E+04 7.0532E+04 1.0593E+05 1.6649E+04
F13 1.5238E+01 5.4804E-01 2.7075E+01 4.4169E+00 4.7292E+00
F14 2.1285E+01 2.2126E+01 2.3325E+01 2.0844E+01 2.1229E+01
F15 4.5708E+02 - 2.8346E+02 3.8232E+02 3.0640E+02
F16 2.3026E+02 - 1.9536E+02 1.9984E+02 7.8014E+01
F17 2.5320E+02 - 3.1450E+02 1.5794E+02 7.1639E+01
F18 1.0033E+03 1.4072E+03 9.3804E+02 9.2262E+02 9.5502E+02
F19 9.7666E+02 1.3165E+03 9.4219E+02 9.1941E+02 9.4735E+02
F20 9.7761E+02 1.3865E+03 9.4763E+02 9.1692E+02 9.4149E+02
F21 1.2067E+03 7.9999E+02 6.6371E+02 8.8581E+02 6.3703E+02
F22 9.5024E+02 1.2092E+03 9.5214E+02 9.0646E+02 9.2008E+02
F23 6.3049E+02 7.5279E+02 6.7595E+02 9.2719E+02 6.9500E+02
F24 8.5524E+02 1.2819E+03 2.0000E+02 5.6974E+02 2.0000E+02
F25 1.6662E+03 1.2397E+03 1.6795E+03 2.1600E+02 1.6539E+03

hwin 1 4 1 7 12

FIPSaDE with its original variants, that is, FIPS and SaDE are further analyzed based
on the best, the mean and standard deviation of fbest for different configurations of problem
dimensionality and population size for all functions. The fbest obtained by FIPSaDE, FIPS
and SaDE for all functions are shown in Tables 7–9, summarizing the best, the mean and
standard deviation for fbest over a number of runs, which can be either 20 runs or 30 runs.
The best, mean and standard deviation results of fbest are denoted as best- fbest, mean- fbest
and std- fbest, respectively. For each table, the algorithm producing the best results for the
same function is bolded and its frequency, hwin is calculated at the bottom.

For the setting of 10D25N, FIPSaDE has the highest hwin for best- fbest, mean- fbest and
std- fbest. FIPS and SaDE have similar hwin values best- fbest, mean- fbest for the same set-
ting. When the setting increases to 30D30N and 50D50N, FIPSaDE is still associated with
the highest hwin for best- fbest, mean- fbest and std- fbest. Therefore, FIPSaDE shows better
results for best- fbest, mean- fbest and std- fbest with the increase of problem dimensionality
and population size.

FIPS’s hwin values for best- fbest, mean- fbest deteriorate from 10D25N to 50D50N. Based
on hwin for std- fbest, FIPS has consistent values that are 6 to 7, regardless of the problem
dimensionality and population size. The finding indicates that the frequency of FIPS
producing the highest best- fbest and mean- fbest among the algorithms deteriorates with the
increase of problem dimensionality and population size. Additionally, FIPS’s frequency in
producing the lowest variants of solutions is consistent across the problem dimensionality
and population size.

SaDE shows a decreasing trend as FIPS for best- fbest, mean- fbest when the settings
change from 10D25N to 50D50N. However, the decreasing trend is not as drastic as FIPS.
Based on the comparisons of std- fbest, SaDE and FIPS have similar values for the settings,
except 10D25N. SaDE’s std- fbest = 10 is higher than FIPS for the lower problem dimen-
sionality and population size, 10D25N. The finding indicates that SaDE’s frequency in
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producing lowest variations of solutions is slightly lower at high problem dimensionality
and population size.

Table 7. Best- fbest, mean- fbest and std- fbest obtained by FIPS, SaDE and FIPSaDE algorithms for the
settings of 10D25N.

Function
Best- fbest Mean- fbest Std- fbest

FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE

F1 −450.00 −450.00 −450.00 −448.31 −450.00 −450.00 2.70 0.00 0.00
F2 −450.00 −450.00 −450.00 −448.28 −450.00 −450.00 2.71 0.00 0.00
F3 −449.99 3085.63 −450.00 −439.33 33350.51 −450.00 15.16 27,313.82 0.00
F4 −449.99 −450.00 −450.00 −439.33 −450.00 −450.00 15.16 0.00 0.00
F5 −310.00 −310.00 −310.00 −310.00 −310.00 −310.00 0.00 0.00 0.00
F6 390.30 390.00 390.00 440.97 391.28 390.53 86.73 1.66 1.38
F7 1087.05 1087.05 1087.05 1087.05 1087.05 1087.05 0.03 0.00 0.00
F8 −119.88 −119.78 −120.00 −119.78 −119.62 −119.89 0.05 0.09 0.10
F9 −329.01 −330.00 −330.00 −321.94 −329.73 −329.50 3.60 0.52 0.51
F10 −327.02 −328.01 −328.01 −321.13 −323.09 −324.16 3.47 2.57 3.21
F11 90.81 90.67 90.54 91.73 93.03 92.31 0.68 1.82 1.30
F12 −460.00 −460.00 −460.00 −179.83 104.07 −151.72 678.16 1064.47 702.17
F13 −129.72 −129.46 −129.82 −129.43 −129.11 −129.67 0.15 0.21 0.08
F14 −298.72 −297.77 −299.74 −297.88 −296.86 −298.04 0.45 0.38 0.61
F15 121.83 178.14 160.45 300.14 401.00 436.17 129.47 148.90 140.78
F16 120.00 209.94 211.25 220.19 222.18 225.14 20.73 7.33 6.98
F17 207.88 214.00 201.17 227.19 239.66 221.36 8.66 17.61 8.77
F18 310.00 310.00 310.00 776.87 711.54 7979.56 239.17 226.16 169.84
F19 310.00 310.00 310.00 781.30 668.47 735.85 242.09 219.37 219.42
F20 310.00 310.00 310.00 750.34 913.31 650.81 277.37 346.97 230.60
F21 660.00 660.00 660.00 1054.22 1061.85 1096.34 275.44 276.19 220.53
F22 660.91 1109.44 1084.87 1073.63 1134.33 1113.92 133.25 22.27 29.15
F23 914.00 919.47 919.47 1140.07 1211.39 1158.06 178.64 254.86 271.52
F24 460.00 460.00 460.00 533.32 460.00 486.54 130.48 0.00 145.39
F25 92.99 1991.62 1995.92 1948.74 1020.66 2009.47 344.45 6.99 5.36

hwin 15 14 20 10 9 13 6 10 14

Table 8. Best- fbest, mean- fbest and std- fbest obtained by FIPS, SaDE and FIPSaDE algorithms for the
settings of 30D30N.

Function
Best- fbest Mean- fbest Std- fbest

FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE

F1 −297.49 −450.00 −450.00 550.32 −450.00 −450.00 474.17 0.00 0.00
F2 2925.32 −334.80 −450.00 7039.46 141.37 −450.00 2090.36 394.74 0.00
F3 4,662,113.70 807,037.41 19,291.79 9,685,580.44 3009720.45 88,664.15 2,937,448.59 1,504,001.37 63,037.56
F4 3522.98 3339.36 −450.00 12,609.08 8382.96 −417.79 3289.58 3329.53 68.06
F5 2752.59 2851.22 1828.14 4763.71 4550.14 2882.76 1143.85 1175.35 534.97
F6 1,311,610.25 393.12 390.00 40,001,127.07 534.04 391.20 41,151,416.49 195.57 1.86
F7 4516.29 4516.29 4516.29 4516.29 4516.29 4516.29 0.00 0.00 0.00
F8 −119.18 −119.08 −119.24 −119.10 −118.95 −119.11 0.05 0.06 0.05
F9 −274.12 −325.88 −329.01 −238.80 −311.72 −319.73 15.94 7.87 4.57

F10 −257.68 −303.46 −307.12 −216.13 −212.55 −288.20 19.61 52.41 9.80
F11 108.32 110.59 104.48 112.14 125.38 110.23 1.49 5.28 2.56
F12 44,816.64 1924.29 −457.54 92,954.31 15,631.41 5948.00 35,286.01 13,703.43 9314.81
F13 −125.85 −120.51 −128.55 −123.16 −117.97 −127.62 1.59 1.15 0.59
F14 −288.87 −286.68 −289.13 −288.18 −286.46 −288.01 0.33 0.13 0.50
F15 518.41 230.34 320.00 606.35 447.49 455.94 45.94 106.58 97.05
F16 227.57 179.27 165.78 369.64 309.45 249.52 151.59 138.42 125.34
F17 238.75 297.00 172.70 366.55 418.69 268.73 141.11 92.36 109.60
F18 916.04 810.00 915.42 920.85 918.09 922.17 6.09 21.18 5.81
F19 851.22 810.00 915.96 917.97 917.60 921.58 19.54 20.83 4.63
F20 915.69 915.39 810.00 921.96 923.04 918.81 7.84 4.70 20.93
F21 953.46 860.00 860.00 1292.43 860.00 892.10 260.10 0.00 131.12
F22 1213.63 1245.75 1209.77 1256.86 1305.60 1251.15 22.58 41.09 23.76
F23 901.56 896.74 894.16 950.64 976.97 959.16 97.57 133.89 158.86
F24 550.61 460.00 460.00 675.47 460.00 485.29 76.41 0.00 138.53
F25 1880.42 1891.12 1868.00 1891.27 1904.77 1877.14 5.85 6.17 4.40

hwin 1 7 22 3 7 18 6 6 16
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Table 9. Best- fbest, mean- fbest and std- fbest obtained by FIPS, SaDE and FIPSaDE algorithms for the
settings of 50D50N.

Function
Best- fbest Mean- fbest Std- fbest

FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE FIPS SaDE FIPSaDE

F1 1153.25 450.00 −450.00 2462.33 450.00 −450.00 1044.25 0.00 0.00
F2 12,312.68 967.61 −450.00 19,296.90 3624.73 −450.00 2864.28 1944.03 0.00
F3 19,742,966.18 1.55 26,213.65 46,306,427.65 6,442,716.38 93,924.17 18,623,890.22 2,656,381.58 54,148.58
F4 18,353.52 11,796.54 −448.82 29,351.56 26,706.41 −364.74 7366.24 7776.96 94.60
F5 8344.21 7515.12 3823.55 12,104.89 9399.31 5266.12 1713.64 1378.09 924.29
F6 13,540,381.90 490.65 390.00 110,811,270.60 738.73 391.79 55,887,725.95 277.30 2.03
F7 6015.32 6015.32 6015.32 6015.32 6015.32 6015.32 0.00 0.00 0.00
F8 −118.99 118.75 −118.97 −118.92 118.81 −118.92 0.03 0.04 0.03
F9 −174.99 208.21 −326.02 −137.61 238.84 −314.98 24.75 15.11 4.92

F10 −136.98 0.90 −261.35 −72.16 60.49 −236.08 36.26 73.04 16.82
F11 129.40 156.93 120.76 134.39 160.20 129.00 2.63 1.75 3.64
F12 241,193.33 19,055.20 −154.39 422,016.01 70,072.02 16,188.50 115,690.78 40,227.17 11,162.45
F13 −116.34 99.05 −126.80 −114.76 102.93 −125.27 1.39 2.25 0.94
F14 −279.28 276.38 −280.33 −278.71 276.68 −278.77 0.30 0.16 0.53
F15 426.38 320.00 323.00 577.08 403.46 426.40 38.77 81.82 86.84
F16 244.32 191.77 160.24 350.26 315.36 198.01 105.18 78.92 37.68
F17 283.90 378.02 170.74 373.20 434.50 191.64 102.40 56.01 11.83
F18 935.54 810.00 938.12 1013.28 984.04 965.02 41.81 34.89 17.86
F19 942.46 935.18 929.32 986.66 952.19 957.35 28.70 11.17 15.08
F20 917.00 939.19 916.08 987.61 957.63 951.49 37.23 15.20 14.64
F21 1412.69 860.00 860.00 1566.71 1023.71 997.03 37.54 258.81 246.13
F22 1288.45 1268.20 1243.66 1310.24 1312.14 1280.08 9.76 29.34 24.74
F23 928.47 899.18 899.12 990.49 1035.95 1055.00 105.67 203.07 216.18
F24 728.10 460.00 460.00 1115.24 460.00 460.00 301.48 0.00 0.00
F25 1912.16 1915.96 1902.75 1926.19 1939.45 1913.91 5.80 9.62 7.03

hwin 2 6 21 3 5 21 7 6 17

The overall findings from the comparisons show that FIPSaDE has the highest prob-
ability of producing a better solution compared to its original variants, which are FIPS
and SaDE, with an increase in problem dimensionality and population size. An EC al-
gorithm commonly uses a large population size to solve an optimization problem with
high dimensionality. However, the approach may be more effective for FIPSaDE than FIPS
and SaDE. Based on the comparisons of hwin for best- fbest and mean- fbest, FIPSaDE has the
highest values, followed by FIPS and SaDE. Therefore, FIPSaDE consistently produces a
group of better-quality solutions than its original variants when problem dimensionality
and population size increase.

For most tested functions, FIPSaDE proves to produce better best- fbest and mean- fbest
in the swarm space compared to the other algorithms as the problem space increases.
FIPSaDE, a hybrid of both FIPS and SaDE, can maneuver and manage the swarm solutions
more effectively. Therefore, FIPSaDE improves performance in finding the best fitness point
as the problem space increases.

The variable mean- fbest for FIPSaDE, FIPS and SaDE is denoted as µFIPSaDE , µFIPS and
µSaDE , respectively. A t-test is performed with a significance level, α of 0.05 to evaluate the
hypothesis whether µFIPSaDE of the proposed algorithm is better than µFIPS and µSaDE or not,
as shown below.

H0 : µFIPSaDE ≥ µFIPS

H1 : µFIPSaDE < µFIPS

H0 : µFIPSaDE ≥ µSaDE

H1 : µFIPSaDE < µSaDE
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The results of hypothesis tests for the paired FIPSaDE-FIPS and FIPS-SaDE based on
different settings of problem dimensionality and population size are shown in Table 10. If
the p-values are less α, they are bolded, indicating that the associated H0 is rejected. As a
result, there is enough evidence to accept H1. The p-values associated with rejecting H0
are bolded and its frequency is denoted as h(−H0)

. At the bottom of the table, h(−H0)
shows

the frequency H0 being rejected for different settings. For the setting 10D25N, µFIPSaDE is
significantly better than µFIPS and µSaDE in 10 and 9 functions, respectively. When the setting
increases from 10D25N to 50D50N, the values h(−H0)

for FIPSaDE-FIPS increase from 10 to
18 and 22. Therefore, the frequency that FIPSaDE is significantly better than FIPS increases.
When similar comparisons are made for FIPSaDE-SaDE, an increasing trend is observed,
but it is less obvious. The findings about h(−H0)

show that the performances of FIPSaDE are
significantly better than FIPS and SaDE when the problem dimensionality and population
size increase.

Table 10. Hypothesis test between µFIPSaDE , µFIPS and µSaDE for the settings of 10D25N, 30D30N and
50D50N.

Function

10D25N 30D30N 50D50N

t-Value p-Value t-Value p-Value t-Value p-Value

FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE FIPSaDE
-FIPS -SaDE -FIPS -SaDE -FIPS -SaDE -FIPS -SaDE -FIPS -SaDE -FIPS -SaDE

F1 −3.44 28.07 0.00 1.00 −11.55 5.60 0.00 1.00 −12.47 −7.20E+12 0.00 0.00
F2 −3.47 42.75 0.00 1.00 −19.62 −8.21 0.00 0.00 −30.83 −9.37 0.00 0.00
F3 −3.86 −6.78 0.00 0.00 −17.89 −10.63 0.00 0.00 −11.10 −10.69 0.00 0.00
F4 −3.86 0.31 0.00 0.62 −21.69 −14.47 0.00 0.00 −18.04 −15.57 0.00 0.00
F5 66.38 63.86 1.00 1.00 −8.16 −7.07 0.00 0.00 −15.71 −11.14 0.00 0.00
F6 −3.18 −1.90 0.00 0.03 −5.32 −4.00 0.00 0.00 −8.87 −5.60 0.00 0.00
F7 −1.00 0.00 0.16 0.50 −18.08 −18.08 0.00 0.00 −1.76 −4.18 0.04 0.00
F8 −5.46 −11.41 0.00 0.00 −1.37 −11.75 0.09 0.00 0.51 −2.05E+04 0.69 0.00
F9 −11.41 1.76 0.00 0.96 −26.73 −4.82 0.00 0.00 −31.44 −155.85 0.00 0.00
F10 −3.49 −1.43 0.00 0.08 −18.01 −7.77 0.00 0.00 −18.34 −17.69 0.00 0.00
F11 2.16 −1.79 0.98 0.04 −3.53 −14.13 0.00 0.00 −5.37 −34.53 0.00 0.00
F12 0.16 −1.10 0.56 0.14 −13.06 −3.20 0.00 0.00 −15.62 −5.77 0.00 0.00
F13 −7.76 −13.78 0.00 0.00 −14.38 −40.84 0.00 0.00 −27.94 −417.89 0.00 0.00
F14 −1.14 −8.98 0.13 0.00 1.52 −16.31 0.93 0.00 −0.41 −4.44E+03 0.34 0.00
F15 3.90 0.94 1.00 0.82 −6.45 0.32 0.00 0.63 −7.09 0.86 0.00 0.80
F16 1.24 1.60 0.89 0.94 −3.34 −1.76 0.00 0.04 −6.09 −6.00 0.00 0.00
F17 −2.59 −5.09 0.01 0.00 −3.00 −5.73 0.00 0.00 −7.88 −18.97 0.00 0.00
F18 0.39 1.67 0.65 0.95 0.86 1.02 0.80 0.84 −4.65 1.94 0.00 0.97
F19 −0.76 1.19 0.22 0.88 0.98 1.02 0.84 0.84 −4.04 1.23 0.00 0.89
F20 −1.51 −3.45 0.07 0.00 −0.77 −1.08 0.22 0.14 −4.04 −1.30 0.00 0.10
F21 0.65 0.53 0.74 0.70 −7.53 1.34 0.00 0.91 −10.23 −0.33 0.00 0.37
F22 1.62 −3.05 0.94 0.00 −0.96 −6.28 0.17 0.00 −5.07 −3.74 0.00 0.00
F23 0.30 −0.78 0.62 0.62 0.25 −0.47 0.60 0.32 1.20 0.29 0.88 0.61
F24 −1.30 1.00 0.10 0.84 −6.58 1.00 0.00 0.84 −9.72 −1.01 0.00 0.16
F25 0.97 −0.74 0.83 0.23 −10.57 −19.98 0.00 0.00 −6.02 −9.59 0.00 0.00

h(−H0)
- - 10 9 - - 18 17 - - 22 18

6. Conclusions

In this study, a hybrid of FIPS and SaDE called FIPSaDE is proposed, and its perfor-
mance is validated by running the algorithm against the benchmark functions while also
being compared to their respective original version, the SaDE and FIPS as well as it variants,
such as DE and DE-PSO. The self-adaptation strategy of SaDE is adapted and maneuvered
by the FIPS particle swarm, preventing the solutions from being trapped in the local region.
Each algorithm can adaptively adjust the parameter values while the swarm is searching
for the best solution needed. Based on different configurations of problem dimensionality
and population sizes, the FIPSaDE algorithm consistently has the highest frequency of
having lowest average errors than FIPS, DE, SaDE and DE-PSO. The frequency analysis of
hwin and the hypothesis test show that FIPSaDE performs better than its respective original
versions in terms of the best and mean of fbest as the problems’ dimensionality increases.
Future research will investigate the strength of proposed algorithms with other benchmark
test functions. Since the current FIPSaDE is only tested on one topology, that is, Four
Clusters, the impact of the other four other FIPS topologies, namely, All, Ring, Pyramid,
Square, should be investigated in the future for their effects on the hybrid’s performances.
Moreover, various performance metrics could be applied to strengthen the comparison
among the algorithms. The study of the convergence profiles and coverage curve of the
proposed algorithm as compared to other algorithms could also be investigated in the
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future. Furthermore, investigation should be conducted to broaden the comparison among
the hybridization methods.
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Abbreviations

The following abbreviations are used in this manuscript:
ABC Artificial bee colony
ACA Ant colony algorithm
CGSS Centre of Global Sustainability Studies
DE Differential evolution
EC Evolutionary computation
FIPS Fully informed particle swarm
FIPSaDE FIPS-SaDE
GUI Graphical user interface
NP nondeterministic polynomial
PSO Particle swarm optimization
UPSI Universiti Pendidikan Sultan Idris
USM Universiti Sains Malaysia
SaDE Self-adaptive differential evolution
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