iririeldl applied
e sciences

Article

Technical Debt Prioritization in Telecommunication
Applications: Why the Actual Refactoring Deviates from the
Plan and How to Remediate It? Case Study in the COVID Era

Marek G. Stochel 12*(©, Mariusz R. Wawrowski ! and Piotr Chotda 2

check for
updates

Citation: Stochel, M.G.; Wawrowski,
M.R.; Chotda, P. Technical Debt
Prioritization in Telecommunication
Applications: Why the Actual
Refactoring Deviates from the Plan
and How to Remediate It? Case
Study in the COVID Era. Appl. Sci.
2022,12,11347. https://doi.org/
10.3390/app122211347

Academic Editor: Paolino Di Felice

Received: 30 September 2022
Accepted: 4 November 2022
Published: 8 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Motorola Solutions, 30-392 Krakéw, Poland
2 AGH University of Science and Technology, Institute of Telecommunications, 30-059 Krakéw, Poland

* Correspondence: marek.stochel@motorolasolutions.com

Abstract: This paper focuses on application of a technical debt prioritisation technique in telecommu-
nication software managing a fleet of devices for a video surveillance system. Technical debt for this
application was gathered, categorised and prioritised according to the Continuous Debt Valuation
Approach (CoDVA), previously proposed by the authors. The following research question was posed:
Is prioritising technical debt reduction based on CoDVA effective (i.e., executed as per plan, bringing
tangible benefits)? The outbreak of COVID-19 pandemic caused unprecedented disturbance to the
engineering organisations worldwide, therefore the technical debt identification phase had to be
adapted to cope with a switch to forced working-from-home mode. This was achieved by applying
the Wisdom of Crowds method, ensuring broad participation of engineers, and providing a fairly
complete picture of the accrued technical debt. Nevertheless, the actual technical debt reduction
activities did not follow exactly the expected guidelines. The three main causes of this phenomenon
were discovered: continuous refactoring approach, sizing of technical debt items, and the broadened
scope of refactoring activities. Therefore, as a result of this case study we propose to adopt a specific
broadened definition of technical debt and follow a few rules for defining its scope and granularity.

Keywords: COVID experience software development; software engineering; software engineering
and debt metaphors; software maintenance and evolution; technical debt; technical debt management;
technical debt prioritization; Wisdom of Crowds

1. Introduction

The evolution of telecommunication software in use, in an ever-changing landscape
of technologies, tools, and business models causes massive creation of technical debt [1].
However, its understanding evolves in time, and a widely used definition is as follows:
“In software-intensive systems, technical debt consists of design or implementation constructs that
are expedient in the short term, but set up a technical context that can make a future change more
costly or impossible. Technical debt is a contingent liability whose impact is limited to internal
system qualities—primarily, but not only, maintainability and evolvability” [2]. Additionally,
technical debt embraces a set of actionable product technical debt items (TD Items, TDISs)
indicating these immature artefacts and their deviation from the desired optimal state. In
our previous paper, we claim that the technical debt definition should be expanded to
embrace all software artefacts responsible for delivering a product to a customer [3], as the
business perspective shifts towards a service model, rather than a one-time sale. Moreover,
even with a one-time sale, the seller is responsible for providing agreed-upon service
(bound by Service Level Agreement) for a predefined period of time. Hence, all software
artefacts constituting a stable development environment, ensuring testability (automation),
code analysis tools, continuous integration and delivery, etc., may be subject to technical
debt dynamics. For this reason, they should be considered a part of the telecommunication
software solution, which becomes actually a service offered to the customers. Moreover,

Appl. Sci. 2022, 12, 11347. https:/ /doi.org/10.3390/app122211347

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211347
https://doi.org/10.3390/app122211347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6204-3987
https://orcid.org/0000-0003-2018-4057
https://doi.org/10.3390/app122211347
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211347?type=check_update&version=2

Appl. Sci. 2022,12, 11347

20f19

properly targeted improvements in such a broader context may improve an overall solution:
its stability, testability, ability to deliver updates fast; additionally improving predictability
of the development team [3].

The outbreak of the coronavirus pandemic (COVID-19) has caused an unprecedented
worldwide disruption to personal lives, global economy, and operating procedures of
organisations. The field of software engineering was not immune to it, and particularly
the initial plan for the industrial case study discussed in this article had to be modified,
taking into account forced working-from-home policy. This paper presents the initial results
from an over one-year-long case study, and describes the application of the technical debt
prioritisation technique to a product managing a fleet of connected devices for a video
surveillance system. We decided to use the modified Continuous Debt Valuation Approach
(CoDVA) technique for technical debt valuation and prioritisation, which we developed
earlier [4]. Additionally, a prerequisite to successful application of CODVA method was
a robust technical debt identification step; in our case, it was executed according to the
Wisdom of Crowds approach [5], which proved to be effective in other experiments [6].

Ultimately, we posed a research question: Is prioritising technical debt reduction based
on CoDVA effective (i.e., executed as per plan, bringing tangible benefits)? In our case
study, a few interesting observations were made. Namely, the implementation of technical
debt reduction did not follow exactly the expected guidelines. We have discovered three
major reasons for that: implementation of continuous refactoring approach, the size of
desired technical debt reduction effort (planned refactorings), and additional required
activities which were not originally considered a part of technical debt reduction. Now,
after considering the results, we propose to adopt a specific definition of technical debt and
follow a few rules for defining the scope of technical debt reduction, prioritising it, and
executing refactoring efforts to improve overall software quality and maintainability. The
initial results of this industrial case study proved that the quality of the product improved
over time, as a downward trend of stabilisation issues was observed.

Summarising, this paper provides further details on conceptualisation of our original
technical debt valuation and prioritisation (CoDVA) technique and its practical application.
The observations made during the case study show how to mitigate potential threats
related to the functional use of the concept. Additionally, it proves that the approach can be
adjusted to be conducted in forced working-from-home mode imposed on the organisations
during COVID-19 pandemic, and despite the challenges, the development team can address
significant refactors (technical debt reduction) achieving tangible results.

Paper structure. The remainder of the paper covers the following topics: Section 2
discusses the background and related work. Section 3 presents methodology, including
data collection and analysis processes. Discussion on the case study results is shown in
Section 4, followed by our analysis of potential threats to validity of the study in Section 5.
Finally, conclusions and future work are presented in Section 6.

2. Related Work

The technical debt term is broadly used; however, due to its metaphorical origin it
gradually became ambiguous [7]. Therefore, the operational definition used in our work
was quoted earlier in Section 1, accompanied by additional explanations. Moreover, the
technical debt term also indicates the set of all technical debt items associated with the
system [2]. An atomic technical debt item (TDI) points to an immature software develop-
ment artefact indicating the difference between its current and desired state [4]. The act of
reducing technical debt is called refactoring [8] or remediation [2]. The evolution of software
development and delivery techniques, namely the adoption of the DevOps paradigm [9]
and its Continuous Integration and Continuous Delivery practices (CI/CD) requires the
technical debt perspective to follow. Hence, a broader pool of software development
artefacts will be considered a part of telecommunication system or service [3], as more
software artefacts undergo the technical debt dynamics. Actually, by monitoring the trends
of maintainability metrics, we may determine in advance which parts of the codebase may

Appl. Sci. 2022,12, 11347

30f19

likely be abandoned by developers and rewritten deemed non-maintainable [10]. Develop-
ers themselves may indicate explicitly introduction of technical debt (i.e., Self-Admitted
Technical Debt), and its removal in many cases takes the form of rewriting the impacted
code, rather than its correction [11]. However, we should avoid a trap of understanding
technical debt only according to the scope presented by the tools, e.g., SonarQube [12]. Our
understanding should revolve around the difference between the current and the desired
state of the artefacts constituting a system or a service. Therefore, even an evolution of the
system architecture model might be constantly monitored to preserve the desired quality
level [13]. Moreover, technical debt can be introduced by a shift in the context the product
exists in, when the system is used in other circumstances than originally envisaged. Also,
new technologies might have emerged, invalidating what was originally deemed a good
design decision. Therefore, the context evolution may be perceived as an act of incurring
technical debt against the product, as it results in an evolution of its desired optimal state.

As technical debt management should be the goal, not the relentless refactoring, many
approaches to technical debt prioritisation emerged. The extensive secondary studies on
technical debt prioritisation were presented in the work of Lenarduzzi et al. [14], and
Pina et al. [15]. Some papers are mostly conceptual; others discuss frameworks standardis-
ing the process of prioritisation of technical debt [15]. In our previous work, we introduced
the CoDVA technique for prioritising technical debt [16]. This approach enables valuation
of technical debt to prioritise its reduction according to the business perspective, i.e., in-
dicating changes with the potentially highest positive impact on the future evolution of
the product. The evolution of the product itself should be not only driven by adjusting
the codebase to enable future changes (which is a risk in agile development approach),
but should ensure an explicit allocation of effort to introduce bigger (e.g., architectural)
changes [16,17]. Hence continuous refactoring approach [18] driven within the context
of ongoing development, may only be a partial solution. Moreover, the perception of the
desired future state of the product is provided by the business representatives in the form of
a product roadmap (a pipeline of future functionalities expected to be added to the system).
An additional challenge for the case study design was the outbreak of COVID-19 disease
and forced working-from-home policy adopted by the organisation. If the COVID-19
related health fears did not exist, the vast majority of companies would not even consider
teleworking practices adoption in a massive way [19]. In the literature, the impact of the
COVID-19 pandemic, especially remote work, on the operation of organisations and the so-
lutions proposed or adopted is increasingly gaining attention: starting from frameworks to
enable remote work adoption [20], through cybersecurity threats and their mitigation [21],
up to assessment of the impact of forced working-from-home policy on accumulation of
technical debt [22]. Particularly, in the last of these papers, Zabardast et al. concluded that
there was no evidence to claim that the change between working from office to working
from home resulted in an increased accumulation of technical debt. Additionally, we have
found no research papers on assessing COVID-19 impact specifically on technical debt
identification and prioritisation. In our case, we observed that communication style and
interactions within the team were severely impacted, therefore in order to maintain a highly
participative approach focused on technical debt management, the technique called the
Wisdom of Crowds [5] was used for technical debt identification. It helped to mitigate
communication challenges the team faced in the COVID-19 pandemic times, and to keep
all team members engaged in improvement efforts. This technique was already proven
successful, e.g., in improving estimation accuracy [6].

In summary, this paper drives further the adoption of the CoDVA concept for technical
debt prioritisation and provides insight into further evolution of this original approach.
Additionally, the case study analysed in this article proved that the engineering team can
jointly prioritise technical debt in the working-from-home mode and effectively refactor it
to achieve tangible results.

Appl. Sci. 2022,12, 11347

40f19

3. Methodology

A case study is a detailed study of a specific subject like a person, an organisation,
a phenomenon, allowing comprehensive explorations of complex issues in their real-life
settings. Unlike a classical experiment, where hypotheses are tested and surrounding
conditions are to the large extent under control, a case study is a distinct research method
that involves contextual analysis of the subject. In the work of RK. Yin [23] a case study
is defined as an empirical inquiry about a contemporary phenomenon, set within its real-
world context—especially when the boundaries between phenomenon and context are not
clearly defined. Therefore, this research method helps us to understand the organisational
context, decisions made, their consequences, and implementation details.

This exploratory case study was conducted in a large, international company, which
creates, maintains and operates mission-critical telecommunications systems. The studied
application was software managing a fleet of devices constituting a video surveillance
system. During a period of one year several versions of the product were released. As
the product had a long history of changes and evolved rapidly in line with the company’s
business strategy, paying off technical debt was a lower priority in the initial phase of its
development. In addition, the original team of developers had to be engaged in other
tasks; therefore, the responsibility for maintenance and further development of the product
was handed over to another team. Moreover, the product responsibility was transferred
just before the COVID-19 pandemic started. The development team faced the situation of
limited knowledge about the product, the need to expand its size by recruiting new team
members, and addressing upcoming requests derived from the defined feature roadmap.
Additionally, the company made a series of acquisitions, which resulted in redefining the
purpose of the product analysed in this case study, extending the context in which it was
supposed to be used. Finally, one development team, cooperating with many stakeholders
from North America and Europe (e.g., Product Managers, Sales Representatives, project
teams) was responsible for development and maintenance of this product, having a certain
budget for refactoring agreed upon with the Product Manager, facing the need to determine
and define technical debt management strategy.

The software development process followed the currently dominating Agile software
development approach, namely Scrum [24]. This iterative process was optimised towards
predictability and risk control. The team was cross-functional, building the necessary
knowledge and skills according to the planned and predicted scope, and self-managing,
deciding internally on individual work assignments. Agile development is conducted in
phases called sprints. The result of each sprint, product increments, may constitute a new
potentially releasable product version. In our case, the Product Manager, who assessed
the product’s value from the customer’s perspective, decided each time whether the new
version can be actually released. The development team, called scrum team, assessed its
performance each sprint during events called retrospectives, and adapted their work style
to improve. As the technical debt accumulation and its negative consequences were evident,
impacting product quality and scrum team’s predictability and velocity (amount of work
delivered per sprint), the team adapted its development process. The implemented changes
were focused on strengthening definition of done reflecting criteria defining finalisation of
the product backlog item, and enhancing refinement of the work to be addressed in coming
sprints. Such refinement sessions were focused also on identification and prioritisation of
technical debt items. Moreover, the KPIs related to agile software development, like team
velocity, cycle time, or success rate of successful sprint goal realisation were measured to
reveal problems, potentially caused by accumulation of technical debt. Generally such
practices are positively perceived by developers [25].

Considering the complexity of the situation and seeking optimal allocation of limited
resources for refactoring, the team decided to use the CoDVA approach developed earlier
to maintain flexibility in a continuously changing business environment. The process
adopted to address the challenge of prioritising and refactoring the technical debt had to
be both inclusive and providing clear tangible outcomes. The inclusion was understood as

Appl. Sci. 2022,12, 11347

50f19

increasing the participation of the team members, who had to grow their knowledge while
working remotely. The outcomes were supposed to be evaluated against the expectations
set by business optimising value generated for customers, and engineering management
focused on continuous improvement. Moreover, engineering perspective on technical debt
was expected to embrace a broadened focus on the product, including all software artefacts
enabling efficient value creation for a customer in a continuous manner. The technical debt
management process, prepared with the Scrum Team is presented in Figure 1.

Continuous refinement
(Wisdom of Crowds)

Continuous business
prioritization (PdM)

Product Feature

Roadmap Technical Debt

Prioritized Feature

Backlog ltems (FBIs) Prioritized TDIs

Product Backlog Prioritization
(Product Owner)

FBI2 backlog
FBI3

TDI2

FBl4
FBI5

TDI3 Product Increment(s)
Product Backlog Implementation

and Potential Release

e

Figure 1. Technical Debt Management Process.

As the business prioritisation is a continuous activity, based on direct discussions with
customers and step-by-step engagement in sales processes [26], the engineering perspective
should be well aligned with its outcomes. The result of the Product Manager work is a
product feature roadmap, which in turn is the source of the prioritised feature backlog
expected to be built by the development team. The Product Owner, who is the only source
of priorities for the development team, combines the input from various sources into one
product backlog. However, all the efforts to address technical debt should be also taken into
account. Based on an engineering input, collected using the Wisdom of Crowds approach
(technique which will be described in Section 3.1), technical debt is identified. This process
is repeated continuously as the knowledge about the codebase and understanding of the
desired optimal state of the product evolve. The next step introduces a business perspective
into technical debt prioritisation. For that purpose, we deploy the CoDVA technique.
CoDVA approach is a continuous assessment and prioritisation of the technical debt items.
It is driven by business value, which is directly assigned to each roadmap feature by the

Appl. Sci. 2022,12, 11347

6 of 19

Product Manager. Potential benefits (level of positive impact) resulting from planned
refactorings are mapped on roadmap features. This helps to prioritise technical debt items
against predicted future benefits (most profitable features), not only by the impact of
engineering productivity or potential savings made on development effort. Ultimately, the
Product Owner prepares the product backlog for the team taking into account all Product
Backlog Items (PBIs), which are Feature Backlog Items and prioritised Technical Debt Items.
Having an agreed-upon budget for technical debt reduction, the Product Owner decides on
a single prioritised list of items to be developed by the Scrum Team. Subsequently, sprint
by sprint, the development team delivers Product Increments which may be shipped to the
customer and which contain new functionality and improvements resulting from technical
debt reduction efforts. After each sprint, the product backlog is reprioritized based on the
new data available: remaining items in the product backlog, new requests coming from
the business and newly identified technical debt items. Summarising, business priorities
are continuously refined and influence the prioritisation of technical debt items, which
in turn land in the product backlog realised iteratively in sprints. The resulting product
increments add value for the customers and consist of both new functionality and product
improvements. As we can see, the CoDVA technique for technical debt prioritisation drives
refactoring effort in parallel with adding new functionality.

3.1. Managing in the COVID Era

The COVID-19 pandemic outbreak in March 2020 forced software development organ-
isations into remote-only mode of operation. In that unprecedented situation, developers’
work habits, communication patterns, and daily routine changed dramatically. Uncertainty
about the evolution of the situation made the switch even harder to accept. The sudden
challenge posed serious risks to organisations stability and profitability. In our case study,
half of the team was built right before the pandemic outbreak and further team expansion
was conducted remotely. Building the team in such a mode, expecting efficient knowledge
sharing became a challenge. Each new developer underwent remote onboarding, knowl-
edge sharing and mentoring process to become a fully productive member of the team.
Moreover, the team had to take responsibility for a product undergoing several significant
changes caused by redesign of a testing process, acquisitions of other companies producing
devices which had to be supported, and development of several new features. Due to a
rapid growth of demand for new functionality, where development of the new requests
was prioritised, the technical debt grew. Some technical debt was incurred pragmatically
(to enable faster support for devices produced by acquired companies), some emerged as a
result of changing the desired state of the product (data structures became suboptimal to
address broader pool of devices and integration with Video Management Software product)
and some was inherited from the software development organisation originally creating
the product (related to automation test framework). Therefore finding a way of engaging
the new team in sharing their perspectives on technical debt, building its complete picture
to prioritise and execute refactorings, led us into adaptation of the process. Thus we estab-
lished a communication environment resembling as close as possible normal interaction in
the office. The video conferencing tools were used to ensure presence. Every participant
was visible to the group, so people were fully engaged during the brainstorming sessions.
The meetings followed the Wisdom of Crowds approach; conversations were moderated
to ensure that each developer was heard and that their input was taken into account. Fur-
thermore, all propositions were equally treated and evaluated, to avoid homogeneity in
interpretations. Finally, prioritisation was performed according to the CoDVA approach,
switching focus from people proposing changes into agreement on the algorithm used.

3.2. Wisdom of Crowds

The technique called Wisdom of Crowds which is used in our case study for technical
debt identification, was already proven to be reliable and accurate in data collection and
predictions in other fields. It was proposed by Surowiecki [5], and was also adopted

Appl. Sci. 2022,12, 11347

7 of 19

by one of the authors in one of the previous experiments [6]. Here, we will recall the
crucial facts about that. The main advantage of this approach lies in the understanding
of sociological aspects of human interaction. Each engineer has a different and unique
technical background and understanding of the product: its many hidden characteristics,
interactions of its modules, etc. This is the reason why everyone may provide meaningful
insight into technical debt presence in the codebase and its consequences, and why better
data may be collected from a more diverse and bigger team. In our case, the applied
Wisdom of Crowds technique strives for answering how the engineers’ continually growing
knowledge of the system and understanding of its internal mechanisms and dependencies
could be more effectively used in order to improve its quality.

Surowiecki analysed social situations in which a group of people, i.e., crowd, was
unable to produce good judgement, because one of several critical factors for good decision
making was missing. He called the group of the people, where all necessary aspects of
sound judgement are in place, a Wise Crowd, and claimed that there are four elements
required to form such an entity:

1. Diversity of opinion: each person has private information, which may be just an
interpretation of the known facts.

2. Independence: opinions of the people are not determined by the opinions of those
surrounding them.

3. Decentralisation: people are able to specialise and make use of local knowledge.

4. Aggregation: some mechanism exists to convert private judgments into a group decision.

Therefore, if the decision making environment is not ready to accept the crowd, failing
to represent the majority of opinions, views, or perspectives, the benefits of individual
judgments and private information vanish. Surowiecki also discussed common deficiencies,
causing crowd to turn into an irrational one:

1. Homogeneity: the lack of diversity within a crowd, reducing variability in viewpoints to
be taken into account and resulting in limited amounts of private information to be heard.

2. Centralization: limiting the data collection process to ask only those who are supposed
to be a wise representation of the team. Usually if it comes to strategic decisions,
the knowledge of lower-level engineers, sometimes very unique when it comes to
complex systems or situations, is omitted.

3. Division: the failure to aggregate all pieces of information; for example when all neces-
sary information is available but information held by one organisational department
is not accessible to another.

4. Imitation: a sequence of activities may result in an information cascade, where only
the first people are adding their knowledge to the common pool used by others.
When the first decision seems rational, those who came next are willing to mimic
that behaviour.

5. Emotionality: describes even a broader group of effects: e.g., a feeling of belonging
leading to peer pressure, and herd behaviour.

Hence, in order to create a wise crowd during the technical debt identification phase,
the following aspects need to be preserved:

1. Independent data collection. Each engineer provides his/her view on technical debt,
identifying technical debt items and their potential consequences independently. No
discussions, or alignment happens at this stage to avoid cascading of assessment. It
can be done via online collaboration tools like Jamboard [27] or MURAL [28].

2. Inthe next step, the list of technical debt items is reviewed to remove duplicates, and
identified technical debt items are stored as records in Atlassian Jira [29].

3. Noinputis considered better than the other, no prioritisation and weighing factors are
applied. Each proposal has exactly the same importance for producing the technical
debt view, consisting of unique technical debt items. In such a way the final Wisdom
of Crowds rule on aggregation is preserved.

Appl. Sci. 2022,12, 11347

8 of 19

4. The next step is focused on mapping technical debt items on the feature roadmap. The
weight (cost) of technical debt remediation as well as technical debt impact on each
feature on the roadmap (how much the feature will benefit from it (low, medium, high,
very high) are estimated independently by engineers. The final values are average
of these estimates. This step may be organised slightly differently, estimation of cost
may be produced using a technique called Planning Poker (or Scrum Poker) [30].

The human variability in the process is an inherent factor for any software engineering
activity, but we may build on this phenomenon, and make it the strength of the technique
used. For the Wisdom of Crowds any group should be as diverse as possible to take
advantage of different points of view. In our case the whole Scrum Team participated in the
exercise. This may lead to more variation, but this variation actually constitutes the strength
of the Wisdom of Crowds approach. Additional strength of this approach was highly visible
during COVID-19 pandemic, when forced working-from-home policy was institutionalised.
Having a clearly defined algorithm, a remote data collection and estimation sessions were
easy to establish and execute. All team members knew and followed the process.

3.3. CoDVA

The Continuous Debt Valuation Approach (CoDVA) for technical debt prioritisation
was introduced in our previous work [4]. For completeness of the overview, the most
important facts are quoted in this subsection, and clarifications are added when some
modifications were applied. In the proposed approach, we assessed the entire service
offered (the product) in terms of desired improvements. Then our approach embraced
the business perspective, based on the data provided by the Product Managers. A single
business prioritisation value assigned to every feature on the product roadmap aggregated
several aspects, such as potential benefits, investment size, strategic aspects, time criticality.
In this way, this perspective extended the previous case study where business input was
calculated based on financial aspects only. The CoDVA approach served as a reference
point for measuring the value of technical debt items at any given point in time.

The CoDVA approach is aligned with a structured sales process, embracing a business
perspective. It facilitates continuous technical debt valuation against a predicted product
roadmap. Any set of features may have a sales prediction (or business value) associated
with them. Therefore, they should not be evaluated in isolation. The same applies to
technical debt items, as they may be dependent on each other, and this aspect is still being
investigated by us. The software release may contain not only features directly associated
with sales opportunities, but also all software artefacts influencing value creation for a
customer: improvements for delivery speed (optimization of the software deployment), en-
hancements in monitoring, and updates of logging capabilities, etc. If the product is offered
as a service, the maintenance cost of the software solution directly impacts profitability
of the service to which customers subscribe. The CoDVA prioritisation value may change
in time, but at any decision point—when improvements are to be prioritised—the current
business perspective is considered. The model provides a relevant prioritisation technique.
Therefore, valuation, based on business prioritisation, serves a prioritisation purpose: defin-
ing the order and a relative distance between TD Items. Moreover, the prioritisation of
TD Items is done automatically. The implementation results confirm that close alignment
between business and engineering may focus the discussion on the implementation of
changes perceived as the most profitable. Even though the product roadmap may change
significantly, the consistent stream of improvements will ensure product resiliency.

3.4. Technical Debt Identification and Prioritization

Firstly, technical debt was collected during brainstorm sessions within the develop-
ment team. The results of these sessions were discussed with stakeholders responsible for
business return of engineering investments (Product Managers). Such refined technical
debt was stored as separate records in the development database, one record for each
atomic TD Item. A single record, stored in Atlassian Jira tool, described in detail: scope of

Appl. Sci. 2022,12, 11347

90f19

work, estimated effort, product context pointing to an area requiring update, and potential
consequences associated (justification for a change).

Secondly, the prioritised business roadmap was discussed with the Product Managers.
The differences between the CoDVA approach presented in our previous work [4] and the
currently used one were briefly described earlier. The most important one referred to the
refined valuation process. Instead of using pure monetary value of benefits (deriving it from
expected sales), a broader perspective was adopted, taking into account parameters like
investment size, alignment with overall product strategy, time-to-market expectations, and
many more. As a result, the business value—called feature score (f_score)—was calculated
by the Product Manager for each feature. The way how these parameters were combined
to constitute feature score was at the discretion of the Product Management organisation,
which is responsible for business return on engineering investments. The normalised
f_score value (in the range 0-1) was called relative feature priority f_priority. This formed a
basis for prioritisation of the product roadmap. Thirdly, a mapping of TDIs on the feature
roadmap was prepared (see a sample excerpt in Table 1 below). Such a matrix helped to
understand the TDI_impact of the refactoring effort on the product (provided as a t-shirt
size estimation, respectively: S, M, L, XL), explicitly listing anticipated benefits.

Table 1. Impact of TDIs on feature roadmap.

Deb 0

d pe A XL | XL XL XL L S M S XL
TDI-1 |testability M XL | XL XL - S S M XL S
TDI-2 |testability S XL L L. - S S M XL S
TDI-6 |Cl/ICD XL | XL | XL XL - - S - M -
TDI-3 |Cl/ICD M XL XL - L L L L L
TDI-4 | maintainability S XL | XL S - - L S - -
TDI-8 |Cl/CD, Perfomance S XL XL XL - - - - - -
TDI-15 |testability S XL XL - M M M M M
TDI-17 |Cl/ICD S - XL XL - S S S S S
TDI-18 |CI/ICD S XL XL - S S S S S
TDI-7 |Development Environment | M XL - XL - - - - XL -
TDI-10 |CI/ICD S L - XL - M M M M M
TDI-14 |Development Environment | S - XL S - - - S -
TDI-9 | maintainability S L - S - - - - - -
TDI-19 | CI/CD, testability M M XL XL - M M M M M

Next CoDVA_INDEX for each refactoring was calculated, based on: feature priorities,
feature sizes (f_size), TDI impacts, TDI costs, and a release_cadence factor. The more features
were positively impacted by a given TDI refactoring, the higher CoDVA_INDEX was
associated with it. Additionally, feature scores were modified based on their assignment to
future releases of the product (release_cadence). The later in the release chain the feature
was planned, the lesser was its value taken into account for calculating CoDVA_INDEX,
as the scope volatility for future product releases had to be taken into account. Expecting
no changes in the scope of future releases, we may keep the values intact for the complete
roadmap (release_cadence — 1), expecting ~100% change every release, there is no point
for assessing anything beyond the features planned for the next release (release_cadence
— 0). The parameter release_cadence was calculated in retrospective mode, based on the
content of the recent product releases. As a result, a prioritised list of TDIs was created,
and a refactoring effort was planned accordingly. The following formula was developed to
calculate CoDVA_INDEX for each technical debt item:

Appl. Sci. 2022,12, 11347

10 of 19

m
CoDVA_INDEX; = L

f_priorityj *release_cadencej *f_sizej *TDI_impactij

n
DVA_INDEX
TDI_cos t; + Zkzo Co _IN _dependent,

The following parameters: impact of TDIs on feature roadmap, feature size, TDI size,
which were provided as t-shirt size values, were mapped on numerical values (in the range
0-1). Taking into account TDI_impact (evaluated against costs related to implementing a
new feature, see assessment presented in Table 1), the potential financial benefits might be
derived. However, as in this case study a fixed amount of effort was available for improve-
ments, the more important aspect was the relative prioritisation among technical debt items,
which ultimately drove the scope planned for implementation. This prioritisation was
provided by comparing CoDVA_INDEX for all technical debt items. Ultimately, the last
part of the formula, a sum of CoDVA_INDEX values for dependent TDIs, was favouring
these investments which were more generic, supporting or enabling other ones.

3.5. Data Collection Process

In this case study, the development of the prioritised sequence of these improvements
(TDIs) and their impact on the product was tracked to assess the effectiveness of the CoDVA
approach, i.e., whether the improvements were executed as per plan and produced tangible
benefits, as it was stated in our research question. As the dynamics of a feature roadmap
played an important role in prioritising technical debt items, we were monitoring the
volatility of relative feature priorities for both: features already delivered and features
still planned in the roadmap. The snapshot of feature priorities was captured each time
reprioritization with the business team was made. Next, based on priorities on the feature
roadmap we were recalculating the CoDVA_INDEX and prioritised the list of technical debt
items accordingly. For each of the TDIs, we monitored the status of implementation, and if
refactoring could not be conducted or was delivered prior to expectations, we collected
data to understand the causes.

Additionally, in order to observe the impact of these changes on the product, we were
monitoring a number of stabilisation cycles required to release a new product version. Each
stabilisation cycle embraced execution of a test plan and correction of all issues preventing
the release of a new product version. Once all critical issues were addressed and the test
cycle did not expose any new blockers, the new product version could be released.

3.6. Data Analysis Process

In each sprint, the development team met for an event called refinement. Its goal
was to decompose the planned functionality in a way it was understood and ready for
development in the next one or further sprints. This was also an opportunity to decompose
technical debt items the same way. At this moment, the team assessed the potential value
of technical debt items, decomposed the top ones and, just before the next sprint started,
selected ones to be refactored (incorporating technical debt reduction plans). After the
end of the sprint, the product increment was demonstrated to stakeholders, including the
results of the technical debt reduction efforts. Additionally, an assessment of prioritised
technical debt was made to understand whether it was following the plan (i.e., whether
currently prioritised items per alignment with the product feature roadmap were taken
for refactoring). Every release, usually after a few sprints, the assessment of the feature
roadmap was conducted. As a result, feature priorities were reviewed and the technical
debt roadmap was revised to reprioritize existing items and incorporate newly identified
ones. Additionally, an ad-hoc update of the technical debt roadmap, or the feature roadmap
was called if either the engineering team or the business team were getting new data which
was potentially affecting the plans. The engineering team ran into unexpected complexity
or wanted to consult their ideas with the Product Manager, and on the other hand, the
Product Manager had new updates reflecting the customer feedback and prioritisation.
In extreme cases, a sprint or a release was cancelled to prioritise a new urgent business

Appl. Sci. 2022,12, 11347

11 of 19

need. Therefore, when the decision of taking new scope for implementation was made, the
data captured at this stage was used to understand the dynamics of the feature roadmap,
and assess how the actual technical debt reduction efforts reflected the recommended
prioritisation of technical debt based on CoDVA. The results were baselined in the table
reflecting relative prioritisation at the moment the decision was made (see Table 2 and
discussion in Section 4).

Table 2. Technical Debt Reduction—Prioritized TDIs.

TDI TDI Type Status Comment
TDI-1 testability done
TDI-2 testability done
TDI-3 CI/CD done
TDI-4 maintainability done
TDI-5 maintainability done
TDI-6 CI/CD too big
TDI-7 Development Environment blocked
TDI-8 CI/CD, Performance done
TDI-9 maintainability done
TDI-10 CI/CD
TDI-11 security
TDI-12 maintainability
TDI-13 maintainability
TDI-14 Development Environment done context
TDI-15 testability
TDI-16 testability
TDI-17 CI/CD done context
TDI-18 CI/CD done context
TDI-19 CI/CD, testability
TDI-20 logging /telemetry
TDI-21 maintainability
TDI-22 security
TDI-23 maintainability
TDI-24 testability
TDI-25 maintainability
TDI-26 maintainability done context
TDI-27 CI/CD done context
TDI-28 maintainability done context
TDI-29 maintainability done context
TDI-30 logging/telemetry, performance
TDI-31 logging /telemetry, performance
TDI-32 maintainability
TDI-33 maintainability
TDI-34 maintainability
TDI-35 maintainability too big
TDI-36 maintainability

4. Discussion of Results

Technical debt prioritisation is a dynamic process, and should reflect a business
perspective to provide the highest return on investment. Observing high dynamics of

Appl. Sci. 2022,12, 11347

12 0of 19

the business roadmap, it is evident that we should not base our judgement of benefits on
engineering assessment only. Pure engineering perspective may result in creating waste by
optimising codebase which will not be changed in the future or, even worse, which will
be retired. In the latter case, whatever is the engineering perception of the technical debt
associated with the code to be retired, the potential value of refactoring efforts is zero from
the customer or business perspective.

As the case study started, the forced working-from-home policy was applied; therefore,
our initial assumptions had to be modified to be based only on remote participation,
discussions, and data collection processes. For that reason a clear and well-defined data
collection process was established, and participation of the team in the data collection
was enhanced by using the Wisdom of Crowds approach. This technique, due to its clear
guidelines, and encouraging the participation of every engineer involved in development,
helped to establish a clear case study protocol for the technical debt identification phase.
Fortunately, the technical debt prioritisation phase was based on an automated algorithm
implementing CoDVA technique, which was not impacted by changing work conditions.

First, we monitored the trend of the relative value of features from the business
perspective that evidently demonstrated dynamics of the product roadmap. For clarity,
we present only 13 of them: the ones that exceeded (at least once) the arbitrarily chosen
threshold of relative feature priority (0.35). They are presented here separately in two
figures: Figure 2 shows how priorities changed over time for six features not yet delivered
and Figure 3 presents how priorities changed over time for seven features that were already
delivered to customers as a part of subsequently released new product versions.

Moreover, in Figures 2 and 3 only a subset of features is presented for legibility
reasons, as the number of features was a few times higher. As we can see, even though
the prioritisation was dynamically updated, we could find a situation where two (or more)
features were having the same relative priority (FN7 in Figure 3 and F2 in Figure 2). In
such a situation, the engineering team consulted with the Product Manager which feature
should be selected for implementation. In this case feature F2 was chosen.

An additional noteworthy observation on the feature roadmap dynamics is the fact
that features prioritised on top of the list once at a certain point of time may be deprioritized,
and not implemented at all. This is the result of the dynamics in the sales process; e.g., the
window of opportunity for the sale may disappear (see features F3, F5, F6 in Figure 2).

Prioritization: Features not delivered yet (timeline)

1.00 ® F1
\

/" [\ ®F2

- F3

2
= 075
2
i ® F4
o ® F5
=
= 0.50 F6
[3]
i
[
=
w 0.25
©
o
0.00

Time

Figure 2. Product roadmap: planned features.

Appl. Sci. 2022,12, 11347 13 of 19
Prioritization: Features already delivered (timeline)

1.00 ® FN1
> ® FN2
& 075 FN3
a ® FN4
e
2 o0s0 ® FN5
&L ® FN6
[

2 025 ® FN7
s
[
oz
0.00 - -
T T2 T3 T4 T5 T6 T7 T8
Time

Figure 3. Product roadmap: implemented features.

When we examine the data to understand variability for selected features, the follow-
ing complementary view may be presented (see Figures 4 and 5 below). Note that T1-T8
reflects the moment in time, when observation was collected.

Prioritization: Features not delivered yet (variability per feature)

BT
F1 B T2
T3
F2 E m T4
mT5
F3 == mT6
4 mT7
S
§ — m T8
LI.F4 _—
Ly ——————
F6 =]
0.00 0.25 0.50 0.75 1.00

Relative Feature Priority

Figure 4. Changes in prioritisation per feature: features not yet delivered.

Next we have collected all TD Items (TDIs) which were identified, gathered, and
described by the development team prepared for implementation. This exercise was done
during refinement sessions held every sprint. Each item (see: Table 2) was categorised
to understand its type and influence over DevOps activities. Furthermore its priority
(relative position) reflected the decision time, and status indicates whether TDI was already
refactored, and if there was a valid reason not to implement the prioritised TDI, it was
explicitly mentioned (“too big”: could not have been prioritised over features, “blocked”:

Appl. Sci. 2022,12, 11347

14 of 19

in one case TDI awaited other implementations, might be either feature-based or different
TDI). As the order of implementation of TDIs was analysed by us in this paper, for each
TDI not following the prioritisation (refactored before higher priority ones), we found
out that “context” was the reason for such a decision. It means that development in the
given area was pending, and the scrum team used a common practice called continuous
refactoring, addressing smaller-size issues while implementing other product backlog items.
Additionally “context” also meant TDI refactorings stemming from broadened product
definition (DevOps perspective), they were identified and implemented in parallel with
currently implemented functionality.

Prioritization: Features already delivered (variability per feature)

mT1
FN1 ; - mT2
T3
2 = T4
mT5
FN3
| mT6
o 7
5 FN4 f: .
© i T8
(]
[T

FN5):

FN6 £
I
FN7 ‘

0.00 0.25 0.50 0.75 1.00

Relative Feature Priority

Figure 5. Changes in prioritisation per feature: already delivered features.

We should keep in mind that the roadmap of improvements should reflect dynamics
of the feature prioritisation. However, in our case study these changes were negligible
against the conclusions made. The reason for this is the fact that the majority of technical
debt items actually helped in future development of many features concurrently. In order
to answer the question whether execution followed the plan we assessed the moments
when a given TDI was selected for refactoring. Only then could we determine whether the
decision adhered to the prioritisation. Throughout the period of the case study these TDIs
which raised concerns (prioritised low and executed before others) were never prioritised
high. Hence the simplified view of the TDIs prioritisation dynamics was presented, and the
analysis focused on the reason why several lower priority TDIs were addressed. Therefore,
even though the top most items were addressed (TDI1-5, TDI7-8), there were a few TDIs
addressed which were prioritised significantly lower on the list.

The reason for that was continuous refactoring effort, a practice well aligned with agile
development pace. Once a development context was open, some TDIs might be addressed
with minimal cost while adding new functionality. However, bigger changes (e.g., some
significant architectural improvements) could not be addressed this way, as the major focus
of the team, within a sprint lasting two weeks, is to deliver an explicitly planned scope
(sprint goals).

Another observation was the fact that some technical debt items would not be ad-
dressed at all, as their sheer size was too big to justify investments over new roadmap
features awaiting implementation. In our case the larger size correlated with an unclear

Appl. Sci. 2022,12, 11347

15 0f 19

scope of work. An example here could be refactoring of all regression tests to use a new
simulator or be aligned with a different test framework. In such a situation, the solution
was to decompose it into smaller TDIs and propose alignment of such effort with ongoing
product development (new features).

An additional early observation (already included in Table 2) was the broadened
scope of technical debt reduction activities to embrace also CI/CD perspective. If these
improvements were not included in the scope, the engineering team would have (or at
least should have) tried to prioritise them over the ones explicitly listed anyway. This was
because the faster feedback from the development and greater knowledge on the product
usage (for instance, due to telemetry) could cause the better codebase quality, and finally
the product.

Finally, we observed that the investments made for this product started paying off
and resulted in less error-prone code and faster time-to-market (Table 3). For each product
version we checked the number of stabilisation cycles required to remove significant issues
before the release. We discovered that in this one-year-long case study the number of
stabilisation cycles dropped to 1, due to improvements made in overall product quality
(including automation of testing, improvements in development environment and other
activities influencing delivery of value to customers).

Table 3. Stabilisation cycles required to release a new version of the product.

Product Version Stabilisation Cycles

vl 6
v2
v3
vl
vh
v6

== NN

5. Threats to Validity

In this section, following the recommendations of R. Yin on case study research [23],
the major threats to validity of the case study are discussed, namely: construct validity,
internal validity, reliability, and external validity. Additionally, means to mitigate these
threats are presented. The purpose of this section is to recognize and describe any factors
that might have undeserved influence on the research or distort the data collection process
and hence the findings. That in turn should increase the credibility of the analysis and
presented results.

Construct validity assesses to what extent our scales, metrics and instruments actually
measure the properties they are expected to measure [31]. We have collected the complete
list of technical debt items identified and acted upon by the engineering team. That is
subjective by its nature, however the goal was to understand how actual technical debt
mitigation efforts were executed. The major threat associated with this approach is the
fact that over time priorities may change. However, in our case study these changes were
negligible against the conclusions made, even though prioritisation of features changed.
The reason for this is the fact that the majority of technical debt items actually helped
in future development of many features at the same time. The situation might be very
different if specific TD Items were very narrow-focused and referred to rarely touched parts
of the code. Therefore, we claim that the actual prioritisation and execution of refactorings
provided sufficient insight into the process and its results.

An additional measure on quality—stabilisation cycles required to release a new
version—can be considered as a key performance indicator of screening effectiveness
against subsequent product releases. Ultimately, we claim that both metrics sufficiently
support the conclusions on process effectiveness of prioritisation of technical debt reduction
based on CoDVA approach.

Appl. Sci. 2022,12, 11347

16 of 19

Internal validity assesses the level of confidence that the causal relationship being
tested is not influenced by other factors or variables. Our case study was not a laboratory
experiment, but was conducted in a complex environment over a one-year-long period.
Even though some external factors might influence the process, the results were very much
focused on causality of the refactoring process. The Agile Scrum Team was following
the strict definition of done for the work, the development process was standardised and
followed continuous integration practices, which were subject to a change mainly—if
not only—according to technical debt reduction activities. Furthermore these activities
were the subject of our study. An additional factor strengthening the conclusions was
the fact that the very same scrum team was solely responsible for both the product im-
plementation and the development process. Therefore, we consider the presence of a
cause-and-effect relationship.

Reliability focuses on the ability to replicate results, i.e., that similar results may be
produced under consistent conditions by different researchers. To mitigate the threat of
lack of replicability, the case study protocol was described in Section 3. The whole Scrum
Team was present during the technical debt identification phase, and followed the Wisdom
of Crowds approach. Prioritisation of technical debt items was conducted according to the
CoDVA approach defined by the authors. Therefore, the process was standardised, and
metrics on prioritisation changes were collected automatically from the tools: Atlassian
Jira [29] and Aha! [32]. This helped with close alignment of the engineering technical debt
items and the business priorities for the product feature roadmap.

External validity addresses the generalisability, i.e., the extent to which the results
and conclusions of a case study can be applied in different contexts. The CoDVA pri-
oritisation method presented in this case study was already applied in another software
domain, addressing prioritisation of technical debt in the large wireless telecommunication
system [4]. The effectiveness of the approach was confirmed there as well; it was defined as
the profitability of technical debt repayment (actual implementation of changes perceived
as the most beneficial taking into account business financial perspective). However, in the
case study analysed in this paper, a closer look into specific implementation steps provided
us with deeper insight into the actual dynamics of the technical debt reduction process and
allowed us to answer questions about some deviations from the expected implementation
of the technical debt reduction process.

Therefore, the challenges discussed for this particular product development process
might be considered as representative ones, and we assume that this approach can be
replicated and its results may be generalised.

6. Conclusions and Future Work

COVID-19 pandemic outbreak triggered a search for a solution to address inter-
team dynamics of communication caused by forced working-from-home mode, especially
that this team took at this very moment the responsibility for product development and
its maintenance strategy. Therefore, in order to ensure a highly participative approach
focused on technical debt management, the Wisdom of Crowds technique was used for
technical debt identification and its alignment with business roadmap. It helped to mitigate
communication challenges the team faced during the COVID-19 pandemic time, and keep
all team members engaged in improvement efforts.

An extensive discussion on technical debt prioritisation techniques was covered by the
initial paper introducing the CoDVA approach. We perceive the originality of the CoDVA
approach in continuous prioritisation of TD Items relying on the business perspective.
This enables relative comparison between TD Items, which in turn drives prioritisation [4].
The techniques of prioritising technical debt as well as understanding the dynamics of its
reduction process allow for rational spending of limited funds and reasonable balancing of
efforts between the software product development and optimization of the current codebase.
Adopting the CoDVA approach for technical debt prioritisation resulted in tangible benefits.
Particularly, one year after technical debt reduction effort was incorporated into the process,

Appl. Sci. 2022,12, 11347

17 of 19

releasing a new product version required 6 times less stabilisation cycles (removal of key
issues discovered at the final stages of testing) than initially. The engineering team improved
the product in a way that adding new functionality was easier and less error-prone, hence
achieving faster time-to-market.

Technical debt refactoring was following the plan in general (top-most improvements
were applied); however, a few lower priority TDIs were refactored as well. Considering
the overall cost of investments this is a desired situation, as the engineering team used
the opportunity of ongoing development not only to add new functionality but also to
improve the exact part of the code they were currently working on. The cost of adding a
refactoring change in the same context as a new development is usually significantly lower
than opening a new context and introducing the change there, which makes the continuous
refactoring approach useful and desired.

Another factor which should be considered is sizing of technical debt items. They
cannot be significantly bigger than the effort required to develop a new feature, as they will
be constantly postponed. The biggest size of a single TD Item implemented in this case
study was not surpassing the cost of a middle-size feature. Moreover, refactoring of these
bigger TD Items should be explicitly planned and agreed upon with the Product Manager.
Finally yet importantly, we also observed some minor dynamics of TDI priorities presented
in Table 1 caused by the changing feature roadmap priorities. However, as the fluctuation
was negligible, we refrained from explicitly showing this dynamics.

In order to achieve better predictability of the execution of technical debt roadmap we
claim that the following rules should be applied:

Proper sizing of TD Items small enough to be considered for implementation,
Shifting focus towards more costly TD Items,

Limiting the number of explicitly allocated TD Items for refactoring (limiting work-in-
progress),

Embracing continuous refactoring approach for smaller TD Items,

Broader, service-like, product context: CI/CD related refactorings should be treated
with the same focus as the sheer product codebase (they should be considered a part
of a product by definition), and prioritised accordingly.

As this is the second application of the CoDVA technique, we assume that the proposed
approach can be replicated, and the results may be generalised for telecommunication
software. The future work will embrace finalisation of this case study, further analysis
of TDI prioritisation dynamics considering a more diverse set of TDIs, as in this case
mostly generic improvements (affecting a higher amount of features) were implemented.
Finally, the results of applying the CoDVA approach should be compared with other
prioritisation techniques.

Author Contributions: Conceptualization, M.G.S.; methodology, M.G.S.; software, M.G.S.; validation,
M.G.S. and P.C; formal analysis, M.G.S.; investigation, M.G.S.; resources, M.G.S. and P.C.; data
curation, M.G.S.; writing—original draft preparation, M.G.S. and P.C.; writing—review and editing,
M.G.S. and P.C,; visualisation, M.G.S.; supervision, M.R.W. and P.C.; project administration, M.G.S.
and P.C.; funding acquisition, M.G.S. and P.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is funded by the Ministry of Education and Science in Poland under grant
no. 45/DW/2017/01 (Industrial Doctorate Programme) in cooperation with Motorola Solutions,
Krakéw, Poland, and AGH University of Science and Technology, Institute of Telecommunications,
Krakow, Poland.

Acknowledgments: We want to express our gratitude to Elzbieta Stochel who supported the work,
relentlessly editing and reviewing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022,12, 11347 18 of 19

References

1. Kruchten, P. The end of agile as we know it. In Proceedings of the ACM International Conference on Software and System
Processes (ICSSP), Montreal, QC, Canada, 25 May 2019; IEEE: New York, NY, USA, 2019; p. 104. [CrossRef]

2. Kruchten, P,; Robert, N.; Ozkaya, I. Managing Technical Debt: Reducing Friction in Software Development, 1st ed.; Addison-Wesley
Professional: Boston, MA, USA, 2019.

3. Stochel, M.G.; Chotda, P.; Wawrowski, M.R. Adopting DevOps Paradigm in Technical Debt Prioritization and Mitigation. In
Proceedings of the 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Maspalomas, Spain,
31 August-2 September 2022; pp. 306-313.

4. Stochel, M.G.; Chotda, P.; Wawrowski, M.R. Continuous Debt Valuation Approach (CoDVA) for Technical Debt Prioritization. In
Proceedings of the 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia,
26-28 August 2020; IEEE: New York, NY, USA, 2020; pp. 362-366. [CrossRef]

5. Surowiecki, J. Wisdom of Crowds. Why the Many Are Smarter Than the Few, 1st ed.; Abacus: London, UK, 2005.

6. Stochel, M.G. Reliability and Accuracy of the Estimation Process—Wideband Delphi vs. Wisdom of Crowds. In Proceedings of
the 35th Annual Computer Software and Applications Conference, Munich, Germany, 18-22 July 2011; IEEE: New York, NY, USA,
2011; pp. 350-359. [CrossRef]

7. Stochel, M.G.; Chotda, P.; Wawrowski, M.R. On Coherence in Technical Debt Research: Awareness of the Risks Stemming from
the Metaphorical Origin and Relevant Remediation Strategies. In Proceedings of the 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 26-28 August 2020; IEEE: New York, NY, USA, 2020;
pp. 367-375. [CrossRef]

8. Avgeriou, P; Kruchten, P.; Ozkaya, I.; Seaman, C. Managing technical debt in software engineering (dagstuhl seminar 16162).
Dagstuhl Rep. 2016, 6, 4. [CrossRef]

9. Whatis Devops? Available online: https://azure.microsoft.com/overview /what-is-devops (accessed on 2 April 2022).

10. Karanikiotis, T.; Papamichail, M.D.; Symeonidis, A.L. Analyzing Static Analysis Metrics Trends towards Early Identification of
Non-Maintainable Software Components. Sustainability 2021, 13, 12848. [CrossRef]

11. Aversano, L.; lammarino, M.; Carapella, M.; Vecchio, A.D.; Nardi, L. On the Relationship between Self-Admitted Technical Debt
Removals and Technical Debt Measures. Algorithms 2020, 13, 168. [CrossRef]

12. SonarQube. Available online: https://www.sonarqube.org (accessed on 16 September 2022).

13. Alti, A.; Boukerram, A.; Roose, P. Context-aware quality model driven approach: A new approach for quality control in pervasive
computing environments. In Proceedings of the 4th European Conference on Software Architecture, Copenhagen, Denmark,
23-26 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 441-448.

14. Lenarduzzi, V.; Besker, T.; Taibi, D.; Martini, A.; Fontana, F.A. Technical debt prioritization: State of the art. A systematic literature
review. arXiv 2019, arXiv:1904.12538.

15. Pina, D.; Goldman, A.; Tonin, G. Technical Debt Prioritization: Taxonomy, Methods Results, and Practical Characteristics. In
Proceedings of the 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Palermo, Italy,
1-3 September 2021; IEEE: New York, NY, USA, 2021; pp. 206-213. [CrossRef]

16. Kruchten, P. Voyage in the Agile Memeplex: In the world of agile development, context is key. Queue 2007, 5, 38—44. [CrossRef]

17. Stochel, M.G.; Wawrowski, M.R.; Waskiel,].]. Adaptive agile performance modelling and testing. In Proceedings of the 36th
Annual Computer Software and Applications Conference Workshops, Izmir, Turkey, 16-20 July 2012; IEEE: New York, NY, USA,
2012; pp. 446-451. [CrossRef]

18. Vassallo, C.; Palomba, F,; Gall, H.C. Continuous refactoring in CI: A preliminary study on the perceived advantages and barriers. In
Proceedings of the International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23-29 September 2018;
IEEE: New York, NY, USA, 2018; pp. 564-568. [CrossRef]

19. Belzunegui-Eraso, A.; Erro-Garcés, A. Teleworking in the Context of the COVID-19 Crisis. Sustainability 2020, 12, 3662. [CrossRef]

20. Saraiva, C.; Mamede, H.S.; Silveira, M.C.; Nunes, M. Transforming physical enterprise into a remote organization: Transformation
impact: Digital tools, processes and people. In Proceedings of the 16th Iberian Conference on Information Systems and
Technologies (CISTI), Chaves, Portugal, 23-26 June 2021; IEEE: New York, NY, USA, 2021; pp. 1-5. [CrossRef]

21. Alghamdi, A. Cybersecurity threats to Healthcare Sectors during COVID-19. In Proceedings of the 2nd International Conference
on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, 25-27 January 2022; IEEE: New York, NY, USA, 2022;
pp. 87-92. [CrossRef]

22. Zabardast, E.; Gonzalez-Huerta, J.; Palma, F. The Impact of Forced Working-From-Home on Code Technical Debt: An Industrial
Case Study. In Proceedings of the 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Maspalomas, Spain, 31 August-2 September 2022; pp. 298-305.

23. Yin, RK. Case Study Research: Design and Methods, 6th ed.; Sage Publications: Thousand Oaks, CA, USA, 2018.

24. Scrum Guide. Available online: https://scrumguides.org/download.html (accessed on 24 September 2022).

25. Holvitie, J.; Leppédnen, V.; Hyrynsalmi, S. Technical Debt and the Effect of Agile Software Development Practices on It—An
Industry Practitioner Survey. In Proceedings of the Sixth International Workshop on Managing Technical Debt, Victoria,
BC, Canada, 30 September 2014; IEEE: New York, NY, USA, 2014; pp. 35—42. [CrossRef]

26. Eades, K. The New Solutions Selling: The Revolutionary Sales Process That Is Changing the Way People Sell, 2nd Revised ed.; McGraw-

Hill: New York, NY, USA, 2003.

http://doi.org/10.1109/ICSSP.2019.00033
http://doi.org/10.1109/SEAA51224.2020.00066
http://doi.org/10.1109/COMPSAC.2011.53
http://doi.org/10.1109/SEAA51224.2020.00067
http://doi.org/10.4230/DagRep.6.4.110
https://azure.microsoft.com/overview/what-is-devops
http://doi.org/10.3390/su132212848
http://doi.org/10.3390/a13070168
https://www.sonarqube.org
http://doi.org/10.1109/SEAA53835.2021.00034
http://doi.org/10.1145/1281881.1281893
http://doi.org/10.1109/COMPSACW.2012.85
http://doi.org/10.1109/ICSME.2018.00068
http://doi.org/10.3390/su12093662
http://doi.org/10.23919/CISTI52073.2021.9476463
http://doi.org/10.1109/ICCIT52419.2022.9711659
https://scrumguides.org/download.html
http://doi.org/10.1109/MTD.2014.8

Appl. Sci. 2022,12, 11347 19 of 19

27.
28.
29.
30.

31.

32.

Google Jamboard. Available online: https://workspace.google.com/products/jamboard/ (accessed on 28 September 2022).
MURAL Documentation. Available online: https://www.mural.co/ (accessed on 28 September 2022).

Atlassian Jira Software. Available online: https:/ /www.atlassian.com/software/jira (accessed on 22 September 2022).

A brief Overview of Planning Poker. Available online: https://atlassian.com/blog/platform/a-brief-overview-of-planning-poker
(accessed on 28 September 2022).

Ralph, P.; Tempero, E. Construct validity in software engineering research and software metrics. In Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering 2018, Christchurch, New Zealand, 28 June 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 13-23. [CrossRef]

Aha! Suite Overview. Available online: https:/ /www.aha.io/suite-overview (accessed on 23 September 2022).

https://workspace.google.com/products/jamboard/
https://www.mural.co/
https://www.atlassian.com/software/jira
https://atlassian.com/blog/platform/a-brief-overview-of-planning-poker
http://doi.org/10.1145/3210459.3210461
https://www.aha.io/suite-overview

	Introduction
	Related Work
	Methodology
	Managing in the COVID Era
	Wisdom of Crowds
	CoDVA
	Technical Debt Identification and Prioritization
	Data Collection Process
	Data Analysis Process

	Discussion of Results
	Threats to Validity
	Conclusions and Future Work
	References

