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Featured Application: This work presents common-mode driven synchronous filtering (SF) of
powerline interference (PLI) by a software demodulator-remodulator concept. SF is shown to be
robust against deviations in PLI amplitude, frequency, and phase with calibration and physio-
logic ECG signals. The presented SF algorithm is generalizable to different biopotential acqui-
sition settings via surface electrodes (electroencephalogram, electromyogram, electrooculogram,
etc.) and can benefit many diagnostic and therapeutic medical devices.

Abstract: Powerline interference (PLI) is a major disturbing factor in ground-free biopotential ac-
quisition systems. PLI produces both common-mode and differential input voltages. The first is
suppressed by a high common-mode rejection ratio of bioamplifiers. However, the differential PLI
component evoked by the imbalance of electrode impedances is amplified together with the diag-
nostic differential biosignal. Therefore, PLI filtering is always demanded and commonly managed
by analog or digital band-rejection filters. In electrocardiography (ECG), PLI filters are not ideal,
inducing QRS and ST distortions as a transient reaction to steep slopes, or PLI remains when its
amplitude varies and PLI frequency deviates from the notch. This study aims to minimize the filter
errors in wide deviation ranges of PLI amplitudes and frequencies, introducing a novel biopotential
readout circuit with a software PLI demodulator–remodulator concept for synchronous processing of
both differential-mode and common-mode signals. A closed-loop digital synchronous filtering (SF)
algorithm is designed to subtract a PLI estimation from the differential-mode input in real time. The
PLI estimation branch connected to the SF output includes four stages: (i) prefilter and QRS limiter;
(ii) quadrature demodulator of the output PLI using a common-mode driven reference; (iii) two servo
loops for low-pass filtering and the integration of in-phase and quadrature errors; (iv) quadrature
remodulator for synthesis of the estimated PLI using the common-mode signal as a carrier frequency.
A simulation study of artificially generated PLI sinusoids with frequency deviations (48–52 Hz,
slew rate 0.01–0.1 Hz/s) and amplitude deviations (root mean square (r.m.s.) 50–1000 µV, slew rate
10–200 µV/s) is conducted for the optimization of SF servo loop settings with artificial signals from
the CTS-ECG calibration database (10 s, 1 lead) as well as for the SF algorithm test with 40 low-noise
recordings from the Physionet PTB Diagnostic ECG database (10 s, 12 leads) and CTS-ECG analytical
database (10 s, 8 leads). The statistical study for the PLI frequencies (48–52 Hz, slew rate ≤ 0.1 Hz/s)
and amplitudes (≤1000 µV r.m.s., slew rate ≤ 40 µV/s) show that maximal SF errors do not exceed
15 µV for any record and any lead, which satisfies the standard requirements for a peak ringing noise
of < 25 µV. The signal-to-noise ratio improvement reaches 57–60 dB. SF is shown to be robust against
phase shifts between differential- and common-mode PLI. Although validated for ECG signals, the
presented SF algorithm is generalizable to different biopotential acquisition settings via surface
electrodes (electroencephalogram, electromyogram, electrooculogram, etc.) and can benefit many
diagnostic and therapeutic medical devices.

Keywords: electrocardiogram; digital filter; powerline interference; 50 Hz; biopotential readout
circuit; automatic gain control; quadrature amplitude demodulator; filter error; signal-to-noise ratio
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1. Introduction

Recording myocardial electrical activity, namely, an electrocardiogram (ECG), through
electrodes placed on the human body skin is a standard clinical diagnostic practice for
noninvasive screening of the heart status and timely detection of rhythm and conduction
disturbances [1,2]. The human body is a volume conductor, which collects interference
currents like antennas. The power grid is the major source of interference currents. The
capacitance between the body and the ground (neutral wire) is considered to be about 200 pF.
The coupling capacitance to the live wire is usually about 2 pF [2,3]. The maximum values
of these stray capacitances have been measured up to 4 nF and 5 pF [4,5]. These capacitive
couplings conduct a powerline interference (PLI) current of nearly 200 nA that flows
through the body to the ground. PLI currents partially pass through the electrodes directed
to the signal ground of the amplifier. Therefore, bioamplifiers with a high common-mode
rejection ratio (CMRR) are demanded to prevent the voltage drop to the common-mode
input impedances. The unshielded leads are a kind of antenna collecting PLI currents.
In highly isolated front ends, they pass the electrodes in a direction toward the earth via
the body capacitance. Finally, the total amount of PLI currents flowing via electrodes
is multiplied by the electrode impedance imbalance, thus producing the differential PLI
voltage drop [6]. This is adversely amplified along with the useful ECG signal and then
has to be filtered by analog or digital band-rejection filters.

The analog notch filters are the simplest and most routinely applied PLI suppression
techniques. Due to their transient response effect, the impulse response has an oscillatory
behavior [7], which appears as ringing artifacts in ST segments after sharp QRS transi-
tions [8,9]. Furthermore, they cause attenuation of the signal components in the stop band
around the central frequency (50 or 60 Hz), thus potentially distorting diagnostic ECG
components. Contemporary biomedical devices contain analog-to-digital converters (ADC)
and microcontrollers (MCU) that allow the application of efficient algorithms for digital
filtering, combined with artificial intelligence for feature extraction and diagnostic interpre-
tation [10]. The requirements for the ADC resolution and sampling rate are demanding for
precise numerical computations, such that 1 µV/LSB with a sampling frequency higher
than 1 kHz is a common practice when processing high-resolution ECG signals.

The simplest and most common options for PLI suppression are the low-pass aver-
aging digital comb filters with a first notch at the PLI main harmonic [10]. These are also
known as averagers, smoothers, or moving-average, rolling-average, or running-mean fil-
ters. In spite of their simple structure and linear phase response, such filters limit the signal
bandwidth and can significantly attenuate important frequency components. A repeat-
able filtration–addition–subtraction approach can partially improve their high-frequency
response [11]. While PLI frequency can vary, an adaptive moving-average filter with a
variable length could lower the output filter error [12].

More complex are the infinite impulse response (IIR) filters, which have a simple
structure but provide a non-linear phase response, and for minimal distortions should have
a high Q and slow reaction time [13]. Implementing high Q leads to reduced performance
when PLI frequency varies from its nominal value. If the filter does not have a comb
response, a multiple notch IIR filtering could cancel the higher PLI harmonics [14]. Common
ECG signal distortions are, however, caused by the transient impulse response of high-Q
IIR filters, majorly triggered by the QRS complexes as the steepest parts of the ECG signal.
The resulting damped oscillations and ringing artifacts in ST segments could be suppressed
if the ECG is preliminarily low-pass filtered by a moving-average filter [15].

High-Q finite impulse response (FIR) comb filters benefit from a linear phase response
but introduce a large group delay. The concept of averaging several differences between
samples shifted in multiple PLI periods could gain a high-Q response at the cost of a large
amount of data [16]. Adaptive tunable notch FIR filters could increase the performance
when PLI frequency deviates [17].

A smart PLI filtering approach is the subtraction procedure [18,19], which accurately
measures the PLI waveform in linear or isoelectric signal segments and subtracts this
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estimation in non-linear segments. Its advantage for the rejection of all PLI harmonics has
been extensively studied for ECG signals; however, it is not applicable to other biosignals
without linear segments. The proper operation requires accurate detection of signal linearity,
and the sampling rate should be a multiple of the PLI frequency. While this is not the
common case, many additional calculations are needed [20]. Novel modifications of the
subtraction procedure for high-sampled signals have been recently reported [21].

Adaptive filters are very popular for PLI filtering. They change their characteris-
tics and adapt to the filtered noise [22,23]. Such filters operate like a servo system with
negative feedback, which minimizes a given error function while optimizing the filter
coefficients and extracting the noise. Usually, these filters minimize the output signal
power by minimizing the mean squared error (MSE), and such an approach of itera-
tively modifying the filter coefficients using the MSE is referred to as a least-mean-square
(LMS) algorithm [24–26]. Various modifications of a recursive least-squares algorithm [27],
block-based time–frequency domain adaptive filters [28], or cascaded multistage adaptive
structures [29] present improved efficiency.

Digital lock-in techniques for adaptive PLI extraction have been introduced in [30].
The lock-in techniques are based on a quadrature amplitude demodulation (QAD) used
to estimate the in-phase and quadrature PLI components. As soon as the in-phase and
quadrature components are found, the PLI is orthogonally synthesized as a sine wave,
which is subtracted from the input signal. A QAD frequency estimation scheme could be
used to control a notch filter for precise PLI suppression [31].

Frequency domain filtering of PLI is based on Fourier transforms [32–34]. The signal
is converted from the time into the frequency domain by fast Fourier transform (FFT), and
after rejection of noise spectral components it is restored back into the time domain by
inverse FFT (IFFT). Such FFT/IFFT filtering takes up a lot of computing resources and is
usually implemented in special digital signal processing (DSP) chips or field-programmable
gate arrays (FPGA). Similar in complexity is the wavelet decomposition, which transforms
the signal into the time–frequency wavelet domain by a set of coefficients and mother
wavelets, defining frequency sub-bands. After zeroing wavelet detail coefficients in the
noise sub-bands, the signal is reconstructed out of the wavelet domain [35,36].

A common disadvantage of most PLI filters is their reduced efficiency when PLI
frequency deviates from the nominal value. Under such conditions, the sampling rate is
not a multiple of the PLI frequency, so the latter does not match the filter notch frequency.
Other disadvantages are the introduced group delay and the increased complexity, which
interferes with their real-time processing application. A recently developed and validated
impedance balancing approach overcomes these problems [37]. It syncs to the actual PLI
frequency by a dedicated software phase-locked loop (SPLL), which uses the common-mode
voltage as a synchronizing reference [38,39]. PLI is canceled by an automatic summation of
the differential signal with a part of the common-mode signal in a mixed analog–digital
concept. The experimental results in [37] validated the efficiency of synchronous PLI
filtering, which has been our main motivation to further explore the potential of digital
synchronous PLI filtering with a new biopotential readout circuit design.

This study aims to present a novel PLI filtering approach that surpasses all existing
methods. The biosignals are acquired by an original biopotential readout circuit wherein
both the common-mode and the differential-mode signals are processed together. The
implemented digital signal processing features with an innovative synchronous filtering
(SF) concept, based on a digital demodulator–remodulator algorithm for the filtering of
the differential-mode signal, wherein the common-mode signal is used as a synchronizing
reference. The amplitude of the common-mode signal is stabilized by a tricky open-loop
all-digital automatic-gain-control (AGC) stage, making possible the SF operation without
a dedicated SPLL. The presented closed-loop SF algorithm is analyzed in detail. The SF
approach is validated by an exhaustive test concept, involving clinical and synthesized
ECG signals and PLI with variable amplitude and frequency.
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2. Materials and Methods
2.1. ECG Databases
2.1.1. CTS-ECG Database

Artificially generated ECG-like signals with well-defined amplitude–time characteris-
tics by mathematical functions were taken from the test atlas of the “Conformance Testing
Services For Computerized Electrocardiography”, namely, the CTS-ECG calibration and
analytical database [40]. It was originally sampled at 500 Hz in the amplitude range
of ±5 mV and various amplitude and interval duration settings of waves similar to P, Q, R,
S, or T (heart rate from 60 to 150 bpm, ST amplitudes of ±200 µV, configuration of RS, R,
Q, QR, QRS, short RS). A total of 16 files (1 ECG lead) were used in the CTS-ECG calibra-
tion dataset, namely, CAL05000, CAL10000, CAL15000, CAL20000, CAL20002, CAL20100,
CAL20110, CAL20160, CAL20200, CAL20210, CAL20260, CAL20500, CAL20502, CAL30000,
CAL40000, CAL50000. Three files were used from the CTS-ECG analytical database with re-
alistic and different waveforms in 8 ECG leads (I, II, V1-V6), namely, ANE20000, ANE20001,
ANE20002. This database has been included in the IEC 60601-2-25:2011 standard [41] for
ensuring the optimum performance of the hardware circuits and software programs in
reliable diagnostic electrocardiographs, addressing ECG filters and automated amplitude
and interval measurement algorithms.

2.1.2. PTB Diagnostic ECG Database

For the test purposes, clinical ECG signals included in the PTB Diagnostic ECG
Database [42] from the PhysioNet archive [43] were used. Originally, the database con-
tained 549 conventional 12-lead resting ECGs, which were digitized with a sampling rate
of 1000 Hz, resolution of 0.5 µV/LSB, and 16-bit ADC, including healthy controls and
various pathologies for myocardial infarctions (MI), arrhythmias, heart blocks, myocardial
hypertrophy, etc. Most of the recordings, however, contained noises induced during the
primary ECG acquisition stage and, therefore, were unusable for benchmark testing of
filters. In such testing, the filter could potentially suppress the genuine noisy compo-
nents, which would be read as generating distortions. Therefore, before the study, the
noise content of the PTB Diagnostic ECG Database was automatically estimated in the
low-frequency band (selective for baseline wander) and high-frequency band (selective
for powerline and muscle noises), and only low-noise recordings were considered eligible
for general benchmark testing of filters. The low-frequency band was estimated at the
output of a linear pass-band filter (0.3–0.5 Hz) to not exceed 25 µV in all 12 ECG leads. The
high-frequency band was estimated at the output of a linear-slope finite impulse response
(FIR) filter (30–48 Hz)—order 182, equiripple (negligible in pass and stop bands)—that does
not produce ringing as an effect after steep QRS. The maximal tolerated high-frequency
content outside QRS complexes was limited to 12.5 µV in all 12 ECG leads. The eligible best
quality records numbered 40, all used in the filter benchmark study, including: s0064lre
(diagnosis: anterior MI), s0127lre (inferior MI), s0219lre (inferior MI), s0137lre (antero-septal
MI), s0313lre (antero-lateral MI), s0411lre (inferior MI), s0291lre (healthy control), s0292lre
(healthy control), s0006_re (diagnosis: n/a), s0154_re (palpitation, coronary heart disease,
arterial hypertension), s0301lre (healthy control), s0325lre (healthy control), s0366lre (con-
genital complete AV block), s0374lre (healthy control), s0490_re (healthy control), s0308lre
(healthy control), s0433_re (anterior MI), s0449_re (infero-lateral MI), s0452_re (healthy
control), s0455_re (infero-lateral MI), s0458_re (healthy control), s0483_re (healthy control),
s0460_re (healthy control), s0462_re (healthy control), s0465_re (healthy control), s0466_re
(healthy control), s0471_re (healthy control), s0478_re (healthy control), s0485_re (hypertro-
phy, arterial hypertension), s0487_re (healthy control), s0491_re (healthy control), s0495_re
(inferior MI), s0502_re (healthy control), s0504_re (healthy control), s0529_re (diagnosis:
n/a), s0531_re (healthy control), s0533_re (healthy control), s0534_re (healthy control),
s0552_re (healthy control), s0546_re (dysrhythmia).
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2.2. Biopotential Readout Circuits with Synchronous PLI Filtering

Two simplified biopotential readout circuit concepts are shown in Figure 1. Generally,
they consist of an analog front end (AFE), two ADCs, and a digital part embedding the
novel SF algorithm. AFE includes at least two amplification channels for the differential-
and common-mode input signals and an optional driven reference electrode (DRE) circuit.
It is worth noting that DRE is a generalization of the well-known driven-right-leg circuit
coming from the standard 12-lead ECG setup where the reference electrode is placed
on the right leg [44]. The number of differential channels can be arbitrarily increased.
For example, in a 12-lead ECG system, the differential channels are 8 (6 precordial and
2 peripheral leads), but for simplicity only 1 differential channel is shown in Figure 1. The
proposed SF algorithm can be embedded in biopotential acquisition configurations with
and without DRE. In systems with DRE, the common-mode signal could be taken from the
DRE electrode, as shown in Figure 1a. In ground-free systems shown in Figure 1b, the AFE
common-mode input impedance should be low enough to provide flowing path for both
bias and interference currents and to keep the amplifier inputs within their operating range.
Both differential- and common-mode channels have appropriate gain coefficients, namely,
Ad and Acm, respectively. They must also have appropriate bandwidths. For example, the
diagnostic ECG bandwidth of the differential channel is broad from 0.05 Hz to 150 Hz,
while the bandwidth of the common-mode channel could be considerably limited within
a span of a few Hertz around the fundamental PLI harmonic. Since the amplitude of the
common-mode signal is uncontrollable and can vary along with the input PLI level, the
common-mode gain Acm must be controllable too. We have previously proposed such
an option by means of a software automatic gain control (SAGC) [45], which could be
embedded either as a variable gain amplifier (VGA) in AFE or as a digital multiplier in the
digital part. The amplified differential- and common-mode analog signals are digitized
by two ADCs, which could be either stand-alone integrated circuits or embedded into
the digital processing part. Thus, the SF algorithm can input and synchronously process
the samples of both differential- and common-mode signals. Generally, depending on the
specific readout circuit design, the digital SF algorithm could be embedded either in a DSP,
FPGA, or in the system MCU. For mains-powered medical instrumentation, AFE must
be supplied from a medical-grade power supply. AFE provides safe and reliable patient
isolation by limiting the safe level of the viable mains currents, usually through optical,
magnetic, or wireless signal transmission to the non-isolated part.

Figure 1. Biopotential readout circuits for synchronous filtering with (a) and without (b) a driven
reference electrode (DRE) module.

2.3. Synchronous Filtering Concept

Synchronous filtering is a widely used technique for carrier recovery and image
rejection in radio-frequency signal processing [46]. A simplified diagram of a synchronous
filter is shown in Figure 2a. It consists of a core filter enclosed by mixers [47]. Each mixer
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is a precision multiplier. The first one (M1) is a demodulator, the second one (M2) is a
modulator, and the net result of the SF system behaves as an equivalent filter without mixers.
Synchronous filtering has the functionality to accomplish some typically difficult tasks for
design filters (i.e., very high-frequency, very high-Q band-pass filters) with a relatively
simple core filter design [47].

Figure 2. Diagram of the synchronous filtering concept: (a) in-phase SF, (b) out-of-phase SF design
with a quadrature demodulator–remodulator.

The SF operation can be simply explained with the following example. Let us assume
that the reference signal (VREF) is in phase with the input signal (VSIG) and both are
sinusoidal waveforms, as written in Equations (1) and (2):

VSIG = Vs sin(ωt) (1)

VREF = Vr sin(ωt) (2)

The output of the first mixer M1 is the product of (1) and (2), expressed by (3):

VM1 = 0.5VsVr − 0.5VsVr cos(2ωt) (3)

The core filter is usually a low-pass filter (LPF) with a sufficiently low cutoff frequency
(f 3dB); therefore, it passes the DC component and filters out the AC component with
doubled frequency in (3). Thus, the SF output signal becomes:

VSF = 0.5VsV2
r sin(ωt) = GVs sin(ωt), (4)

where the gain G of the SF algorithm is expressed by (5):

G = 0.5V2
r (5)

When Vr = √2 = 1.414 V, the SF algorithm recovers the input signal VSIG with unity
gain. The second mixer M2 is an up-converter and translates the cutoff frequency f 3dB of
the core filter in two sidebands around the VREF frequency (fref). Thus, the SF filter acts as a
band-pass filter with a quality factor Q, given by (6):

Q =
fre f

2 f3dB
(6)

It can be deduced from (6) that a very high Q factor can be achieved by configuring
the cutoff frequency f 3dB and its ratio to fref. SF algorithms have great advantages in carrier
extraction and recovery. For example, let us assume that VSIG is disturbed by a spike noise
and occasionally a few periods are missing. Due to the large LPF time constant, the filtered
carrier (VSF) can be recovered and free of such spike noise disturbance. In order to operate
with arbitrary phase differences between VSIG and VREF, an orthogonal SF architecture is
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conventionally used [48]. It includes two parallel SFs shown in Figure 2a, operating with
quadrature reference signals. Their outputs are summed, as shown in Figure 2b. The left
mixers M1 and M3 are quadrature demodulators, while the right mixers M2 and M4 are
quadrature remodulators, and together all of them perform two frequency conversions.
First, the spectrum of the input signal is shifted from the two sidebands around fref to the
baseband, i.e., close to DC. After low-pass filtering of the demodulated spectral components,
they are shifted again from the baseband to the two sidebands around fref, i.e., the spectrum
is restored into the two sidebands, but the bandwidths are limited to fref ± f 3dB. Thus,
the quadrature SF architecture, employing quadrature demodulator–remodulator (QDR),
exhibits a band-pass frequency response.

The QDR architecture was introduced about 70 years ago by Donald Weaver for the
generation and detection of single-sideband radio signals [48]. We should point out some
important properties of the QDR architecture. First, in case LPF core filters are missing
(i.e., bypassed), Equation (7) is valid, resulting in restoration of the input signal at the QDR
output by a gain Vr

2, which depends neither on the DC nor AC form of VSIG:

VSF = VSIGV2
r (sin2(ωt) + cos2(ωt)) = VSIGV2

r (7)

Otherwise, in case LPF core filters are present and the input signal is a pure DC offset,
then it is converted by the first mixers into sine and cosine waves with a frequency fref. The
LPL core filters reduce output amplitudes (Vx) and introduce a phase lag of 90◦. Further, in
the second mixers, LPF outputs are again multiplied by sine and cosine waves, and their sum
produces zero QDR output (VSF in Figure 2b), given the basic trigonometric identity in (8):

VSF = VSIGVxVr

(
sin
(
ωt − π

2

)
sin(ωt) + cos

(
ωt − π

2

)
cos(ωt)

)
= 0 (8)

Therefore, it is important that LPFs have a minimum phase response, thus introducing
a phase lag of 90◦ in their stop bands. An important effect of the QDR operation is the sup-
pressed input DC offset. In a similar manner, according to the basic trigonometric identity:

sin(2ωt) cos(ωt)− cos(2ωt) sin(ωt) = sin(ωt) (9)

the second harmonic, produced by the useful differential signal VSIG from Equation (1)
does not generate a third harmonic but can produce only a fundamental harmonic.

While QDR is connected in the negative feedback, its band-pass response is subtracted
from the input signal and is converted into a band-stop response for the forward path, thus
rejecting the PLI. Such a closed-loop synchronous filter for PLI extraction with QDR in the
negative feedback is shown in Figure 3a. QDR estimates the PLI error appearing in the
demodulator output signals and automatically changes the amplitude and phase of the
synthesized PLI in order to minimize the estimated error. The operation of the closed-loop
SF concept from Figure 3a is illustrated in Figure 3b. It can be seen that after settling of
the in-phase and quadrature control signals for the remodulator, namely, I and Q, the PLI
is canceled. The longest transient processes of I and Q (settling over less than 0.2 s) is
normally observed after turning on the filter, hereafter referred to as the start-up time.

The closed-loop architecture must ensure automatic zeroing of the steady-state residual
PLI. Therefore, the loop filter must have infinite gain for low frequencies and DC, and low
gain for high frequencies, which can ensure a stable response. The digital integrator is the
main gain block in servo control. The loop filter must contain at least one integrator. The
transfer function of the loop filters LF(z) used in [37] is given by (10):

LF(z) = ki
1 − z−40

40(1 − z−1)

1 − z−40

40(1 − z−1)

1
1 − z−1 (10)
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Figure 3. Closed-loop SF with QDR in the negative feedback: (a) SF architecture, (b) example SF
operation showing the noisy filter input (top), settling of the in-phase and quadrature control signals
for the remodulator after PLI filter start-up (middle trace), and the filter output (bottom trace). The
input VSIG denotes the differential ECG channel; VREF denotes the common-mode channel.

Equation (10) includes the coefficient ki, two cascaded averagers (one PLI period),
and a digital integrator. We can further consider the stability of the closed-loop system in
detail by using (10) as an example for LF(z). The two averagers in (10) are optional, and, if
omitted, the stability constraints are simplified. Note that the digital integrator behaves
as an ideal integrator whose frequency response has an infinite DC gain and roll-off of
–20 dB/dec. Thus, its infinite DC gain minimizes the steady-state error within ±1 LSB. The
sampling frequency is set up to Fs = 2 kHz and corresponds to an integration time constant
τi = 1/Fs = 0.5 ms or to an integrator unity-gain frequency, UGF = 1/(2πτi) = 318 Hz. For
stable operation and filtering of the PLI fundamental harmonic, the integrator time constant
must be expanded to compensate for the 20 ms group delay of the two averagers. As
the outputs of the averagers are divided by the coefficient ki, the UGF of the integrator is
shifted to DC, i.e., the time constant of the integrator is incremented. It should be noted
that the frequency response of an ideal integrator can be determined from only one point,
e.g., its UGF. The integrator roll-off was known and was 1/f or −20 dB/dec. The coefficient
ki determines the overall stability of the system. It must be carefully tuned to ensure a
stable operation with fast transient response and short start-up time. Considering that the
cutoff frequency of the two averagers is much higher than the bandwidth of the closed-loop
response, we can neglect the averagers’ transfer function. Thus, (10) could be expressed by
means of Fs and the integrator 1/f roll-off, as shown in (11):

kLF = ki·
UGF

f
= ki·

Fs

2π f
(11)

The coefficient ki can be regulated by the loop gain (LG) of the QDR servo loop. The
loop gain determines the stability of the control system with a negative feedback. In case
LG = 1 (0 dB), the crossover frequency settles the loop bandwidth and defines −3 dB cutoff
frequency of the closed-loop response (f 3dB). Deduced from Figure 3, the SF loop gain is
expressed by (12):

LG(z) = G × LF(z) ≈ G × kLF (12)
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Replacing G and kLF in (12) by Equations (5) and (11), LG becomes:

LG ≈ 0.5V2
r

Fs

2π f
ki (13)

Equation (13) shows that the LG of the SF algorithm is proportional to the squared
amplitude of VREF. For a constant closed-loop bandwidth and constant speed of the closed-
loop response, the product Vr

2ki should keep constant, i.e., when Vr changes, the coefficient
ki should change accordingly. For example, when Vr is increased two times, the coefficient
ki should be decreased four times to maintain the same stability reserve. Equalizing (13) to
unity, the cutoff frequency f 3dB of the closed-loop response could be found:

f3dB ≈ V2
r

Fs

4π
ki (14)

The two averagers have the same −3 dB cutoff frequency (fc = 16 Hz), introducing a
20 ms group delay. If f 3dB is much lower than fc, e.g., let us say ten times, it guarantees a
stable operation with a phase margin of about 90◦. In Equation (14), we could substitute:
Vr = 200 LSB, ki = 2−23, Fs = 2 kHz, thus estimating the closed-loop response at f 3dB to be
about 0.7 Hz. The exact phase margin of the closed-loop response can be calculated taking
into account that the two averagers are linear-phase (constant group delay) filters. The
group delay of 20 ms corresponds to 360◦ phase lag at 50 Hz. Thus, the phase lag of the
two averagers at 0.7 Hz can be calculated using the rule of three, i.e., the phase lag at 1 Hz
is 360◦/50 Hz = 7.2◦/Hz, and at 0.7 Hz it is 0.7 Hz × 7.2◦/Hz ≈ 5◦. Thus, taking into
account that the integrator has a constant phase lag of 90◦, the actual phase margin of the
closed-loop system is just 90◦ − 5◦ ≈ 85◦. The crossover frequency f 3dB has a reserve to
be increased up to five times and can preserve a stable response within a phase margin
of 65◦. The loop gain LG(z) is simulated for Vr = 200 LSB, ki = 2−23, and Fs = 2 kHz, and
the simulated magnitude and phase responses are shown in Figure 4. These simulations
confirm the detailed analysis of the stability of the system.

Figure 4. Magnitude and phase response of LG(z) for Fs = 2 kHz, Vr = 200 LSB, and ki = 2−23.

Replacing f3dB = 0.7 Hz and fref = 50 Hz in Equation (6), the quality factor of the SF
algorithm is estimated to be Q = 35.7. Further decrement of ki would lead to a higher Q but
also to a slow reaction time. Note that 0.7 Hz corresponds to a time constant of 0.23 s and to
a settling time from 10% to 90% of 2.2 × 0.23 s ≈ 0.5 s, which is a reasonable start-up time.
Further, the coefficient ki should be selected with a tradeoff between Q and the limited
speed of the closed-loop response. For sine wave mixing, as in our case, the two averagers
are optional, and if they are not included, the phase margin of the system would always be



Appl. Sci. 2022, 12, 11328 10 of 29

90◦ in a large variation in ki, allowing higher values of ki to be selected. For example, if ki is
incremented four times, i.e., ki = 2−21, the Q factor becomes: Q = 35.7/4 ≈ 9.

2.4. Automatic Common-Mode Gain Control

The amplitude of the common-mode voltage VREF (Figure 2) corresponds to the actual
PLI level and can vary in a wide range depending on the stray capacitances of the body to
the power grid and earth. It depends on the physical position of the body and its proximity
to the mains-powered household appliances. Thus, VREF amplitude must be stabilized by
AGC to remain independent of the PLI amplitude. A closed-loop software AGC has been
previously developed to stabilize the amplitude of the common-mode voltage, used for
SPLL synchronization to the line frequency [37,45]. Generally, the gain control element
could be implemented either with digitally controlled analog circuits (e.g., multiplying
digital-to-analog-converters (DACs), digital potentiometers, analog switches, and opamps
in the AFE) or with a digital multiplier in the digital part. The major advantage of the closed-
loop AGCs is their ability to minimize some deficiencies of the multiplier transfer function.
The accuracy of the digital multiplier depends on the digital word of the multiplicands, i.e.,
on the ADC resolution. Because of the ideal transfer characteristics of the digital multipliers
and detectors, the entire AGC could be implemented in the digital part, and thus to have
an all-digital implementation. The simplest AGC has the open-loop architecture shown
in Figure 5a. It relies on the ideal transfer characteristic of the digital multiplier. The
major advantages of the open-loop AGC are related to the stable control system as well the
independent settling time from the input signal level. The settling time is determined only
by the settling time of the implemented low-pass filter (LPF) [49].

Figure 5. Open-loop automatic gain control: (a) architecture, (b) start-up simulation.

The open-loop AGC operates as follows. Assuming that VREF has a sinusoidal wave-
form expressed by (2), the output of the low-pass filter (VLPF) equals the averaged absolute
value of VREF. Thus, the AGC output VAGC can be expressed by (15), where VREF is
substituted by (2):

VAGC =
VREFVtar

Vr2/π
=

Vr sin(ωt)Vtar

Vr2/π
=

π

2
Vtar sin(ωt) (15)

From Equation (15), it is clear that the amplitude Vr drops, and the stabilized amplitude
depends only on the target value Vtar. The latter should be selected taking into account
the introduced π/2 gain. For example, if the stabilized VAGC amplitude is 200 LSB (1 LSB
corresponds to 1 µV), Vtar should be preset to 128 LSB. For proper operation of AGC,
any VREF offset should be removed with a high-pass pre-filter. An appropriate digital
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solution is a simple first difference filter (FDF), which removes the offset and passes the PLI
fundamental frequency at a unity gain. Its transfer function for a sampling rate of 2 kHz is
given by (16):

TFDF(z) =
1 − z−20

2
(16)

Just after turning on the system, the LPF output starts from zero, which produces
very high values in AGC output VAGC. Therefore, an output limiter is added to truncate
the output to ±Vlim, where the limiter threshold is equal to the nominal peak value of
VAGC. Thus, at start-up, VAGC begins as a rectangular wave, which automatically converts
to a trapezoidal wave, then to a truncated sine wave, and finally when LPF is settled it
becomes a pure sine wave, according to the start-up simulations in Figure 5b. It should
be noted that the open-loop AGCs are also known as feed-forward AGCs; however, the
published architectures require complex computations with logarithmic and exponential
functions [50]. The presented open-loop AGC has the advantage of being much simpler. The
open-loop AGC architecture is based on the ideal transfer characteristics of the implemented
digital blocks, such as digital detectors and multipliers. When a peak detector is used,
AGC can operate even without LPF. However, we considered rectification and LPF as a
noise-robust pre-processing stage for computation of the averaged absolute value of the
signal instead of the simplest design with a single peak detector.

2.5. Optimization of SF Architecture for PLI Suppression in ECG Signals

Although the presented SF principle is fundamental, the SF architecture was further
optimized for the specific application for PLI filtering in ECG signals. The implementation
and optimization of the digital SF algorithm was performed in Matlab 2020b (MathWorks
Inc., Natick, MA, USA) using artificial and clinical ECG signals from CTS-ECG and PTB
databases, respectively. The proposed optimal architecture of the SF filter is shown in
Figure 6. Both inputs VSIG and VREF were considered at a sampling frequency Fs = 2 kHz,
which is higher than the original ECG databases. Therefore, all ECG signals at VSIG input
were preliminarily upsampled using the Matlab function resample(). The reference input
VREF is originally generated as a sinusoidal wave at 2 kHz sampling rate. The branch for
PLI estimation includes a simple FDF band-pass filter with a transfer function (16). FDF has
a unity gain response for the PLI frequency. It removes the DC offset and differentiates QRS
complexes. Next, QRS limiter is necessary to cut extreme signal amplitudes, such as QRS
complexes and high T waves exceeding a certain amplitude threshold. The threshold of the
limiter is adaptively defined as follows. The absolute value of the signal at the FDF output
is processed in a window of 10 ms (half PL period), and the maximum value is measured.
In the next step, the extracted maximal values are averaged in a window of 50 ms in order
to remove accidental spike artifacts. Finally, the averaged values are evaluated within a
window of 200 ms (chosen to exceed the longest QRS duration). The minimum value is
deduced and used as the positive and negative thresholds of the QRS limiter, thus being
adapted to the current PLI level. The QRS limiter does not introduce group delay in the
loop. It just limits the amplitude and helps to reduce the QRS influence on the demodulated
signals fed to the two integrators in the loop filter. The loop filter is simplified and the
two averagers are removed. It consists only of an integrator and a stability coefficient ki. If
we assume ki = 2−21, the Q factor of the SF filter would be Q ≈ 9, rejecting a bandwidth
of ±2.8 Hz around the PLI frequency. The added FDF and QRS limiter do not reduce
the stability reserve in the closed loop, as it passes the PLI frequency by approximately
zero phase shift.

The used AGC open-loop architecture has already been discussed in Section 2.3.
Its stabilized VAGC amplitude was set to 200 µV as an approximation of the geometric
mean between the minimal and maximal PLI amplitude in the real ECG signals, (e.g.,
50 and 1000 µV, respectively), and thus it ensures symmetrical control range of AGC.
LPF was implemented in AGC as a simple one PL period averager. For better filtering,
the widow of this averager is adjusted when PL frequency deviates from its nominal
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value. Although many other LPF architectures can be used, the averager gives the fastest
response. While there is no need for linear-phase LPF, the minimum-phase LPFs explained
in [13] or cascaded LPFs could also be used for better filtering. It should be noted that
the implemented absolute value converter doubles the PLI frequency. Thus, LPF should
accurately cancel the second harmonic of PLI, otherwise it would be converted in a third
harmonic at the AGC output.

Figure 6. Optimized architecture of the closed-loop SF algorithm for PLI filtering.

2.6. Estimation of the SF Performance

The inputs of the SF algorithm are simulated as follows: the differential-mode signal
VSIG is generated by superposition of an original ECG signal (without noise) and artificially
generated PLI sinusoid with predefined amplitude (APLI) and frequency (fPLI), as shown
in (17); the common-mode reference input VREF is generated as an artificial sinusoid with a
reference amplitude (AREF), frequency (fPLI), and phase shift (ϕPLI) as defined in (18):

VSIG = ECG(n) + APLI(n) sin(2π fPLI(n)n/Fs) (17)

VREF = AREF sin(2π fPLI(n)n/Fs + ϕPLI) (18)

where n denotes the sample number within the duration of the signal with N samples
(n = 1, 2, . . . N). APLI and fPLI can be linearly changing values, starting from a baseline
APLI0 and fPLI0 with predefined slew rates, namely, ∆APLI (µV/s) and ∆fPLI (Hz/s), for-
mally written as:

APLI(n) = APLI0 + n∆APLI/Fs (19)

fPLI(n) = fPLI0 + n∆ fPLI/Fs (20)

When ∆APLI = 0 µV/s or ∆fPLI = 0 Hz/s, the generated PLI sinusoid has a constant
baseline amplitude or frequency, respectively.

This simulation study considered ECG and PLI signals with duration of 10 s sampled
at Fs = 2 kHz, N = 20,000 samples. The following ranges of PLI parameters were defined:

• PLI with constant amplitude: APLI0 = 50–1000 µV r.m.s. computed over 10 s. The
maximal setting was chosen to represent a severe realistic scenario with peak-to-peak
PLI amplitude reaching 2800 µV.

• PLI with constant frequency: fPLI = 48–52 Hz, exceeding the standards for maximal
mains frequency deviation in the synchronous European grid of 49.8 Hz to 50.2 Hz.
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• PLI with linear amplitude change: ∆APLI = ±(10–200) µV/s. The maximal slew rate
was chosen to represent the worst realistic scenario with peak-to-peak PLI amplitude
span from 0 to 4000 µV within 10 s.

• PLI with linear frequency change: fPLI = 50 Hz, ∆fPLI = ±(0.01–0.1) Hz/s. The maximal
slew rate was chosen to represent the worst realistic scenario for a change in the
frequency of 1 Hz over 10 s, e.g., covering a span of 49–50 Hz and 50–51 Hz.

• PLI with phase shift of the reference input VREF: ϕPLI = 0–360◦ in Equation (18).

The SF algorithm performance was estimated by means of three benchmark metrics,
namely, maximal error (MAXE), root-mean-square error (RMSE), and improvement in the
signal-to-noise ratio (SNRimp), as follows:

MAXE = max
1≤n≤N

√
[ECG(n)− VSF(n)]

2 (21)

RMSE =

√
1
N∑N

n=1[ECG(n)− VSF(n)]
2 (22)

SNRimp = SNRout − SNRin (23)

where the input SNR (SNRin) and output SNR (SNRout) are computed as follows:

SNRin = 10log10

(
∑N

n=1 [ECG(n)]2

∑N
n=1 [VSIG(n)]

2

)
(24)

SNRout = 10log10

(
∑N

n=1 [ECG(n)]2

∑N
n=1 [VSF(n)]

2

)
(25)

MAXE and RMSE are the peak value and the root mean square value of the filter
error equal to the difference between the filtered and original ECG signals. MAXE can be
considered representative of the ringing noise after QRS complexes, which are typically
the steepest ECG waves producing the maximal filter error. Smaller values of MAXE and
RMSE imply a better performance of the filter. SNRimp is the improvement in the SNR
levels between the input and the output. A higher SNRimp represents a better quality of the
filtered ECG.

The statistical analysis considered the three SF performance metrics as non-normal
continuous variables and reports their median values, interquartile ranges, and min–max
ranges in each lead of ECG recordings in specified databases (Section 2.1) using the software
package Statistica 7.0 (StatSoft Inc., Tulsa, OK, USA).

3. Results
3.1. Optimization of SF Algorithm

The optimization of the SF algorithm is focused on the choice of the stability coefficient
ki = 2−µ in the loop filter (Figure 6) so that the SF could provide the best performance for
different PLI parameters. The optimization process considers a range of scanned values for
ki = [2−23, 2−22, 2−21, 2−20, 2−19] in the worst-case scenario, wherein PLI parameters are
scaled to the maximal settings in this study with respect to the r.m.s. amplitude (1000 µV),
amplitude slew rate (±200 µV/s), and frequency slew rate (0.1 Hz/s). Table 1 summarizes
the three optimization strategies, namely, PLI constant (PLI with constant amplitude and
frequency), PLI with linear amplitude change, and PLI with linear frequency change. While
the three PLI optimization scenarios were applied with the CTS-ECG calibration database
(CAL records, 1 lead, 10 s), the input SNR was estimated to be [−7.8 to −8.8 dB] (mean
value), [−18 to −3 dB] (min–max range).

The optimization performance of the SF algorithm is shown in Figure 7 with respect
to MAXE, RMSE, and SNRimp. The optimal setting can be read for ki = 2−21, seeking for
minimization of (MAXE, RMSE) and maximization of (SNRimp) as a conciliation between
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the three scenarios for PLI parameter change. Higher values of ki > 2−21 are associated with
a reduction in the Q factor and to higher errors during steady state, observed as higher
errors for PLI with constant amplitude and frequency as well as for PLI with frequency
modulation (Figure 7a,c). Lower values of ki < 2−21 are associated with an increased
Q factor and a slow adaptation rate to amplitude changes, which therefore leads to higher
errors for PLI with amplitude modulation (Figure 7b).

Table 1. Simulation parameters of PLI with duration of 10 s for 3 optimization scenarios with
CTS-ECG calibration database.

PLI Amplitude
APLI r.m.s (µV)

PLI Amplitude
Slew Rate ∆APLI (µV/s)

PLI Frequency
Range fPLI (Hz)

PLI Frequency
Slew Rate ∆fPLI (Hz/s)

PLI constant 1000 0 50 0

PLI linear amplitude change 1000 ±200 50 0

PLI linear frequency change 1000 0 49–51 ±0.1

Figure 7. Optimization of the stability coefficient ki in the loop filter (Figure 6): Statistical distributions
(median; box: 25–75%; whisker: min–max) of MAXE, RMSE, SNRimp computed for 10 s with the
CTS-ECG CAL database with added PLI sinusoid according to the three settings in Table 1: (a) PLI
constant, (b) PLI linear amplitude change, (c) PLI linear frequency change. The red arrows show the
optimal choice of ki = 2−21, seeking for output error minimization and SNRimp maximization as a
conciliation between the three scenarios for variation in PLI parameters.
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The real operation of the SF algorithm for the denoising of ECG signals with the
optimal stability setting (ki = 2−21) is illustrated in Figure 8. It represents the noisy input
VSIG, where the artificial ECG signal (CAL20100, heart rate of 60 bpm) is diagnostically
unreadable due to the superimposed large PLI amplitude of 1000 µV r.m.s. over 10 s,
according to the three PLI parameter settings in Table 1. The filter output VSF contains a
denoised ECG waveform with a visually well-distinguishable P, QRS, and T waves, and
isoelectric lines in all PLI parameter scenarios. The ECG distortions are estimated by the
error of the filter, showing negligible values of RMSE = 1 µV, MAXE = 2 µV for constant PLI
(Figure 8a) and RMSE = 1.5 µV, MAXE = 5 µV for the PLI frequency change in the range
of 50–51 Hz (Figure 8c). The adaptation of the SF algorithm to the PLI amplitude changes
is slower, and the maximal error with extreme slew rates ∆APLI = 200 µV/s is estimated
to be RMSE = 12 µV, MAXE = 30 µV (Figure 8b). The suppression of the output noise
component at the SF output is equally effective for constant PLI and the PLI frequency
change (SNRimp = 57.3–59.5 dB) and slightly less effective for the PLI amplitude change
(SNRimp = 40 dB), as shown in Figure 7.

Figure 8. Performance of the SF algorithm with the optimal setting ki = 2−21 for an ECG example
record (CAL20100 from CTS ECG dataset). The filter input (first trace), filter output (second trace),
and filter error (third trace) are computed for three PLI settings in Table 1: (a) PLI constant, (b) PLI
linear amplitude change, (c) PLI linear frequency change.

3.2. Test of SF Algorithm with PTB Diagnostic ECG Database

The SF algorithm (ki = 2−21) was tested with all 12 leads of the low-noise recordings
in the PTB Diagnostic ECG database (listed in Section 2.1), which are superimposed with
simulated PLI sinusoids in five scenarios for parameter changes (Table 2). A statistical
analysis and comment on the results is presented in the respective subsections below.

3.2.1. Test 1: PLI Constant (Amplitude Test)

The design of PLI constant (amplitude test) in Table 2 simulates five different settings
of PLI amplitudes (50, 100, 200, 500, and 1000 µV r.m.s.) corresponding to an input SNR
of about 15, 10, 5, −5, and −10 dB (median value for 12 ECG leads) as deduced from
the detailed statistical distributions in Figure 9. The SF algorithm leads to a considerable
improvement in the output SNR to about 75, 70, 65, 55, and 50 dB, respectively, keeping the
same level of the coefficient SNRimp = 60 dB for all 12 ECG leads, notably not impacted by
lead-specific amplitudes and waveforms.
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Table 2. Simulation parameters of PLI with duration of 10 s for five test scenarios with PTB Diagnostic
ECG database.

PLI Ampl.
APLI r.m.s

(µV)

PLI Ampl.
Slew Rate

∆APLI (µV/s)

PLI Frequency
fPLI
(Hz)

PLI Frequency
Slew Rate

∆fPLI (Hz/s)

VREF Phase
ϕPLI (◦) ECG Leads

Test 1: PLI constant
(amplitude test)

50, 100, 200, 500,
1000 0 50 0 0 12 leads

Test 2: PLI constant
(frequency test) 1000 0 (48, 48.1, 48.2, . . . ,

51.8, 51.9, 52) 0 0 worst lead in
Test 1

Test 3: PLI constant
(common-mode

phase test)
1000 0 (48, 49, 50, 51, 52) 0

(0, 45, 90, 135,
180, 225,
270, 315)

worst lead in
Test 1

Test 4: PLI linear
amplitude change

(50, 100, 200, 500,
1000)

±(10, 20, 40,
100, 200) 50 0 0 12 leads

Test 5: PLI linear
frequency change 1000 0 50 ±(0.01, 0.025,

0.05, 0.075, 0.1) 0 12 leads

The statistics of the SF errors in Figure 10 indicate a negligible dependency on the PLI
amplitude in the full range (50–1000 µV r.m.s.), measured within a relatively narrow span of
median values (min–max ranges) of RMSE = 0.8–1.5 µV (0.2–4 µV) and MAXE = 3–6.5 µV
(1.5–12 µV) for all 12 ECG leads. We note that the ECG leads have different maximal errors,
which are smallest for leads V1-V6 and largest for lead II (median MAXE elevation of 2 µV),
although inter-lead RMSE differences are negligible (<0.3 µV).

Figure 9. SNR characteristics for PLI constant (amplitude test), computed for 10 s 12-lead ECG from
the PTB Diagnostic ECG database and added PLI sinusoid with settings according to Table 2 (Test 1).
The boxplots of SNRin, SNTout, SNTimp (median; box: 25–75%; whisker: min–max) for 12 ECG leads
are ordered (from left to right): I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, V6.

3.2.2. Test 2: PLI Constant (Frequency Test)

The design of PLI constant (frequency test) in Table 2 simulates 41 different PLI
frequencies in the range of 48–52 Hz and step of 0.1 Hz. In order to study potentially
maximal errors induced by different PLI frequencies, we simulated the worst-case scenario
in Figure 10, which is highlighted for the extreme PLI amplitude of 1000 µV r.m.s. in lead II
(SNRin = −10 dB, shown in Figure 9). According to the statistical distributions in Figure 11,
the minimal errors (MAXE, RMSE) and maximal SNRimp are observed for frequencies
approaching an integer multiple of the sampling rate to fPLI, equal to 50 Hz (2000/40),
51.28 Hz (2000/39), and 48.78 Hz (2000/41) due to adjusting the processing window of the
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LPF in the implemented AGC. Nevertheless, the performance span is very narrow within
the full frequency range (48–52 Hz), estimated as the median value (min–max range) of
RMSE = 2.5–3 µV (1.2–3.9 µV), MAXE = 6.5–8.5 µV (3.6–15 µV), SNRimp = 56.8–59.5 dB.

Figure 10. SF algorithm errors for PLI constant (amplitude test), computed for 10 s 12-lead ECG from
the PTB Diagnostic ECG database and added PLI sinusoid with settings according to Table 2 (Test 1).
The boxplots of MAXE and RMSE (median; box: 25–75%; whisker: min–max) for 12 ECG leads are
ordered (from left to right): I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, V6. The red arrows indicate the
worst case with highest errors MAXE and RMSE found in lead II and APLI = 1000 µV r.m.s.

Figure 11. SF algorithm performance for PLI constant (frequency test), computed for 10 s with the
PTB Diagnostic ECG database (lead II) and added PLI sinusoid with settings according to Table 2
(Test 2). The boxplots present MAXE, RMSE, and SNRimp statistical distributions (median; box:
25–75%; whisker: min–max).
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3.2.3. Test 3: PLI Constant (Common-Mode Phase Test)

The design of PLI constant (common-mode phase test) in Table 2 simulates eight
different common-mode phase shifts in the range of 0–360◦ (step of 45◦) introduced to
five different PLI frequencies (48–52 Hz, step of 1 Hz). Similarly to the previous test, the
maximal effect is reported for the extreme PLI amplitude of 1000 µV r.m.s. added to lead II
as the representative lead of the worst case with maximal errors in the comparative study
of all 12 leads (Figure 10).

The statistical results in Figure 12 show that MAXE, RMSE, and SNRimp are periodically
synchronized to the common-mode phase with a maximal median value span of 1 µV
(RMSE), 2 µV (MAXE), and 15 dB (SNRimp) for fPLI = 50 Hz (the exact multiple of the
sampling rate where the rounding errors are normally minimal). Nevertheless, considering
that other PLI frequencies produce an even smaller span of min–max performance metrics,
our general conclusion is that the common-mode phase has a negligible influence on SF
algorithm performance. In practice, the common-mode phase could be any and cannot be
controlled due to the unknown phase shift in the common-mode channel of AFE; therefore,
these results are considered for test purposes but cannot be used as a variable setting for
optimization of the SF algorithm performance.

Figure 12. SF algorithm performance for PLI constant (common-mode phase test), computed for 10 s
with the PTB Diagnostic ECG database (lead II) and added PLI sinusoid with settings according to
Table 2 (Test 3). The boxplots present MAXE, RMSE, and SNRimp statistical distributions (median;
box: 25–75%; whisker: min–max).

3.2.4. Test 4: PLI Linear Amplitude Change

The test design of PLI linear amplitude change in Table 2 simulates 10 different slew
rates of the PLI amplitude ∆APLI = ±(10, 20, 40, 100, 200 µV/s), where positive and negative
signs indicate tests with increasing or decreasing PLI amplitudes over 10 s (50, 100, 200, 500,
1000 µV r.m.s.), respectively. Our preliminary observation of RMSE, MAXE, and SNRimp led
to the conclusion that there are not substantial differences between positive and negative
sign tests; therefore, Figure 13 reports the statistical evaluation of all the performance
metrics combined for ±∆APLI.

Figure 13a shows that SF errors gradually increase while increasing the PLI slew rate.
The maximal error among the 12 ECG leads is observed for leads II and V1–V3, with
median values of RMSE = 1, 2, 4, 8, 14 µV and MAXE = 5, 7, 12, 24, 42 µV for ∆APLI = ±10,
20, 40, 100, 200 µV/s, respectively. In such test conditions, the maximal error in any lead of
any ECG record does not exceed 12, 14, 17, 32, 61 µV, respectively.

Considering that the amplitudes of the test sinusoids were designed with the same
r.m.s. values over 10 s as Test 1, i.e., 50, 100, 200, 500, and 1000 µV, the input SNR is the
same as the distributions in Figure 9. The improvement in SNR is, however, lower than for
Test 1 (by 20 dB), keeping the same coefficient SNRimp = 39.8 dB for all amplitude slew rates
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and all 12 ECG leads, notably not impacted by lead-specific amplitudes and waveforms,
as demonstrated by the ECG example in Figure 14. Here, SF sufficiently filters PLI in the
worst-case scenario of ∆APLI = 200 µV/s so that residual errors and QRS and ST distortions
are not visible in the typical ECG visualization plot with the 12 ECG leads. When present,
SF error is permanent over the filtering period (keeping a similar trend as in Figure 8b,
bottom plot), not deviating more than 50 µV from the original ECG trace, as can be seen in
the zoomed-in part of lead I (grid: 200 ms/div, 50 µV/div).

Figure 13. SF algorithm performance for PLI linear amplitude change, computed for 10 s 12-lead ECG
from the PTB Diagnostic ECG database and added PLI sinusoid with settings according to Table 2
(Test 4). The boxplots (median; box: 25–75%; whisker: min–max) represent: (a) MAXE and RMSE,
(b) SNRimp ordered for 12 ECG leads (from left to right): I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, V6.

3.2.5. Test 5: PLI linear Frequency Change

The test design of PLI linear frequency change in Table 2 simulates 10 different slew
rates of the PLI frequency ∆fPLI = ±(0.01, 0.025, 0.05, 0.075, 0.1 Hz/s), where positive
and negative signs indicate tests with an increasing or decreasing PLI frequency from the
nominal fPLI = 50 Hz, covering a maximal span of 49–50 Hz and 50–51 Hz over 10 s. Our
preliminary observation of RMSE, MAXE, and SNRimp led to the conclusion that there are
not substantial differences between positive and negative sign tests; therefore, Figure 15
reports the statistical evaluation of all the performance metrics combined for ±∆fPLI.

Figure 15a shows that SF errors remain stable regardless of the slew rate of the dynamic
PLI frequency change. We note a relatively narrow span of median values (min–max ranges)
of RMSE = 1.5–1.8 µV (1.2–4 µV) and MAXE = 6.2–8.1 µV (4.6–14 µV) for all 12 ECG leads.
The improvement in SNR is also weakly dependent on the frequency slew rate (Figure 15b),
presenting a narrow span SNRimp = 57.2–58.5 dB, which is noted to be in the same range
as the constant frequency test (Test 2) in Figure 11. We can therefore conclude that the
performance of the SF algorithm is weakly influenced by any kind of PLI frequency change
in the range of 48–52 Hz, introducing a maximal error of <15 µV in any ECG lead and any
ECG record of the test database. Such error levels are practically invisible as QRS or ST
distortions in the filtered 12-lead ECG plot in Figure 16b; although, the ECG signal with
the superimposed PLI (∆fPLI = 0.1 Hz/s and amplitude 1000 µV r.m.s.) is diagnostically
unreadable before filtering in Figure 16a. Although the provided y-scaling of leads is
adjusted without inter-lead overlap, any output distortions are likely not to be noticed in
augmented amplitude scales too.
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Figure 14. Example of 10 s 12-lead ECG trace (s0546_re.dat from PTB Diagnostic ECG database)
shown in a grid (200 ms/div, 500 µV/div): (a) 12-lead ECG superimposed by PLI (50 Hz) with linearly
changing amplitude over 10 s at the extreme slew rate (200 µV/s); (b) filtered 12-lead ECG by SF
algorithm with 10× zoomed segment of lead I (1 s, 50 µV/div), showing the overlap between original
ECG (red) and filtered ECG (green). The y-scaling of 12 ECG leads retains no inter-lead overlap; thus,
ECG in (b) is a zoomed-in representation of (a) after filtering of the large PLI component.

Figure 15. SF algorithm performance for PLI linear frequency change, computed for 10 s 12-lead ECG
from the PTB Diagnostic ECG database and added PLI sinusoid with settings according to Table 2
(Test 5). The boxplots (median; box: 25–75%; whisker: min–max) represent: (a) MAXE and RMSE,
(b) SNRimp ordered for 12 ECG leads (from left to right): I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, V6.
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Figure 16. Example of 10 s 12-lead ECG trace (s0137lre.dat from PTB Diagnostic ECG database) shown
in a grid (200 ms/div, 500 µV/div): (a) 12-lead ECG superimposed by PLI with extreme amplitude
(1000 µV r.m.s.) and linearly changing frequency (slew rate = 0.1 Hz/s, range = 50–51 Hz over
10 s); (b) filtered 12-lead ECG by SF algorithm with 10× zoomed segment of lead I (1 s, 50 µV/div),
showing the overlap between original ECG (red) and filtered ECG (green). The y-scaling of 12 ECG
leads retains no inter-lead overlap; thus, ECG in (b) is a zoomed-in representation of (a) after filtering
of the large PLI component.

3.3. Extremity Test of SF Algorithm against Standards

The standards for recording and analyzing diagnostic electrocardiographs [41] require
that filters for powerline frequency interference suppression shall not introduce in any lead
of the CTS-ECG analytical database (record ANE20000) more than 25 µV peak ringing in
ST segments. A key point to note with the ANE20000 waveform is the large S amplitude in
V2, which usually triggers high ringing in high-order mains frequency filters. Further, in
Table 3 we report the results for the extremity PLI parameters, which fulfil the standards
with a MAXE of <25 µV measured in all ECG waves (not limited to ST segments) and three
available ANE records (not limited to ANE20000).

In Table 3, we compare the performance of the SF algorithm with two databases
(CTS-ECG analytical and PTB Diagnostic ECG) and the extremity settings of the five tests
in Table 2. Overall, we observe that SNRimp remains equal for both databases, while output
filter errors (MAXE, RMSE) are similar or lower for the CTS-ECG analytical database. We
suggest the latter effect occurs due to the artificial nature of ANE waveforms, potentially
different from clinical ECG signals and without external noises. Conversely, the PTB
Diagnostic ECG records contain a certain amount of intrinsic noise (although limited
to the 40 least noisy records), which might be filtered by SF and bias the PLI error to a
falsely high estimation.
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Table 3. Extremity PLI parameters for which SF algorithm fulfils the standard for powerline filers
in diagnostic electrocardiographs [41]. Maximal SF errors are reported as median value (min–max
range) found in lead II (PTB Diagnostic ECG database) and V2 (CTS-ECG analytical database), where
denoted with *.

PTB Diagnostic ECG Database
12 Leads

CTS-ECG Analytical Database
8 Leads

Setting with Maximal
Error

MAXE
(µV)

RMSE
(µV)

SNRimp
(dB)

MAXE
(µV)

RMSE
(µV)

SNRimp
(dB)

Test 1: PLI constant
(amplitude test)

Lead II, V2 *
APLI = 1000 µV r.m.s.

fPLI = 50 Hz

6.7
(3.5–12.5)

1.5
(1.2–2.8) (60) 2.4

(2.3–5.5)
1.1

(1.1–1.7) (60)

Test 2: PLI constant
(frequency test)

Lead II, V2 *
APLI = 1000 µV r.m.s.
fPLI = 49.3–49.9 Hz

8.5
(5–15)

2
(1.2–3.8) (57–58) 6.4

(4–8.2)
1.5

(1.4–2.1) (57–58)

Test 3: PLI constant
(common-mode

phase test)

Lead II, V2 *
APLI = 1000 µV r.m.s.

fPLI = 48, 52 Hz

8
(2.5–14)

2
(1.8–3.8) (57–62) 5

(2.5–8.1)
1.6

(0.7–2.8) (57–62)

Test 4: PLI linear
amplitude change

Lead V2
∆APLI = ±40 µV/s

fPLI = 50 Hz

12
(7–17)

4
(2–7) (39.8) 13

(11–14.5)
5

(2.8–6) (39.8)

Test 5: PLI linear
frequency change

Lead II, V2 *
APLI = ±1000 µV r.m.s.

∆fPLI = 0.1 Hz/s

8.2
(5–14)

1.8
(1.5–4) (57.3) 6.5

(4.1–19.8)
1.5

(1.2–4.2) (57.3)

4. Discussion

The described synchronous filtering approach uses the common-mode signal as a
synchronizing reference for demodulation and remodulation of PLI. We make the most
of the common-mode signal by extracting the unique information about both the PLI
frequency and the level of interference, using this advantage to catch the PLI frequency
deviations in the runtime. Nevertheless, the PLI amplitude must be stabilized. The
proposed solution is an open-loop AGC, which has a fast response and does not need
additional SPLL such as in [37]. The PLI sinusoidal signal is automatically synthesized
and is subtracted in an innovative closed-loop digital algorithm. The included integrators
in the two servo loops ensure a high DC gain, resulting in a steady-state error of ±1 LSB.
The loop filter in QDR is optimized for ECG signals by removing the two averagers and
adding an FDF and QRS limiter in the servo loop. The optimized concept gives superior
results when PLI amplitude and frequency are constant but also in cases of amplitude and
frequency deviations.

The present study offers a major advantage of canceling PLI without distorting the
useful differential signal. PLI is removed by summing both the differential- and common-
mode signals; thus, in cases where the SF operation is not perfect, residual PLI noise
can be introduced, but the trace of the useful ECG signal is preserved. Therefore, the
common-mode driven synchronous filtering features a high-Q PLI filtering, where the
filter Q factor is adjustable and depends on the closed-loop bandwidth, defined by the
coefficient ki and the amplitude of the common-mode voltage VREF. The PLI amplitude
in the differential signal does not affect the stability or the bandwidth of the closed-loop
system. For a constant stability reserve and constant settling time, the product Vr

2ki should
remain constant. Thus, Vr amplitude is stabilized by AGC. The simplest AGC suitable
for this purpose is an open-loop concept, which has been designed in the methodological
background of this study.

Compared to existing PLI filters, the most important advantage of the presented SF
algorithm is its ability to follow PLI frequency deviations. Moreover, the approach is
easily reconfigurable to the frequencies of the standard powerline energy distribution
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networks (50 or 60 Hz), as well as to the specific power frequency of some railway systems
(16.67 Hz). The PLI frequency and amplitude could be automatically measured by the
MCU; thus, the corresponding parameters and coefficients could be automatically adapted,
such as averaging windows, coefficients ki in the servo loops, common-mode gain Acm
in the AFE, etc. It is worth noting that PLI filtering with a frequency of 16.67 Hz (limits
15.7 and 17.4 Hz) is a very challenging task because one PLI period is approaching the
QRS duration, and thus unideal filtering has been shown to disturb the rhythm analysis
of normal rhythms and slow ventricular tachycardias in automated external defibrillators
(AEDs) [51]. Similarly, in settings where the ECG represents rapid heart rates, it is difficult
to filter 50 Hz or 60 Hz without ECG distortions, leading, for example, to slightly reduced
rhythm detection performance in AEDs [51] or affected laboratory ECG measurements in
humans and animals [52]. The presented approach does not have such problems and is
particularly suitable for these applications.

The described SF approach is based on quadrature demodulation, integration (low-
pass filtering), and subsequent modulation. This operation performs frequency domain
filtering in a relatively simple approach. The classical frequency domain filters are based
on FFT followed by inverse IFFT [32,33]. Thus, the time-domain signals are converted to
the frequency domain by FFT, multiplied with a dedicated filter function, and then again
restored in the time domain by IFFT. FFT/IFFT transforms are complex calculations; their
complexity depends on the analysis window and are not suitable for real-time processing
in general. In contrast, the SF approach performs frequency domain filtering in a relatively
simple way, suitable for real-time operation. Furthermore, the SF approach has the advan-
tage of not introducing a group delay in the processed signal. It automatically adapts the
amplitude and phase of the PLI and tracks their variations in time.

It is worth noting that for PLI amplitudes as high as 1000 µV r.m.s., frequencies in the
full range (48–52 Hz), and frequency slew rates as high as 0.1 Hz/s, the maximal MAXE
error does not exceed 15 µV for any record and any lead, which satisfies the standard
requirements for peak ringing noise below 25 µV [41]. With the setup stability coefficient
ki = 2−21, the SF filter can operate within the standards for PLI amplitude slew rates up to a
40 µV/s r.m.s. amplitude change. The SF filter does not produce ringing artifacts. ECG
distortions of <15 µV are practically invisible to the human eye in standard 12-lead ECG
plots (Figures 14 and 16), and they have to be put into serious consideration in automated
ECG measurement systems.

The computed output metrics are standard and can be used for direct comparison
of the presented SF filter with other published PLI filtering techniques. The comparative
study in Table 4 is a survey on published papers for PLI filtering in ECG, including only
those with a numerical evaluation of their filter outputs, represented by at least one of
the performance metrics (SNRimp, SNRout, MAXE, RMSE, or some equivalent that can
be directly recomputed). The list of 18 studies in Table 4 is not reduced to those with
statistical summaries in the ECG databases (the approach of this study) but also includes
studies with limited experimental tests with one short-duration ECG lead. That none of the
research studies used the CTS-ECG analytical database recommended by the standards [41]
might be because it is not freely accessible. Therefore, the comparative results of this
study are focused only on the clinical ECG records in the PTB Diagnostic database (mean
performance among records and leads), and the performance score of SF evaluated with
clinical records is worse compared to tests with the artificial signals in the CTS-ECG
analytical database (Table 3).
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Table 4. Comparative study with other published papers on PLI filtering in ECG found to provide a comprehensive numerical evaluation of the filer outputs by at
least one of the performance metrics calculated in this study. The performances are listed as reported in original articles, representing mean values if several records
from a test database were evaluated, otherwise representing a single measurement from one ECG signal.

Study Database Methods PLI Freq
[Hz]

SNRin
(dB)

SNRout
(dB)

SNRimp
(dB)

MAXE
(µV)

RMSE
(µV)

This study DB1 • Common-mode Driven Synchronous Filtering

50 −10–15 50–75 60 3–6.7 0.8–1.5

48 −5 52 57 7.6 1.9

52 −5 53 58 7.0 1.8

50 −10–15 # 30–55 40 1–14 5–42

49–51 # −5 52 57 6.8 1.8–2

Chaitanya and Sharma (2022) [53] DB2 • Four-stage cascaded Savitzky–Golay filter
50 −5 20.3 25.3 NA 9.6

50 −10 16.8 26.8 NA 14.4

Tanji et al. (2021) [12] 1 ECG record • Moving average PLL
60 −11.6 38.9 50.6 300 NA

66.7 −11.6 46.9 58.5 300 NA
50.9 −11.6 30.6 42.2 500 NA

Martens et al. (2006) [54] 1 ECG
record

• Improved adaptive filter 50 −20–20 36 16–56 NA NA

• Simple adaptive filter 50 −20–20 19–24 4–49 NA NA

• Wide notch filter 50 −20–20 15 5–35 NA NA

• Narrow notch filter 50 −20–20 23 3–53 NA NA

• Improved adaptive filter 48–52 # 0 37 37 NA NA

• Simple adaptive filter 48–52 # 0 20 20 NA NA

• Wide notch filter 48–52 # 0 15 15 NA NA

• Narrow notch filter 48–52 # 0 11 11 NA NA

Rahman et al. (2013) [28] DB2 • Leaky block adaptive filter 50 NA NA 11–31 NA NA

Razzaq et al. (2016) [55] 1 ECG record • State space RLS adaptive filter

50.38 1.4–7.5 25–32 24 NA NA

50.38 2.5 # 28 26 NA NA

50.4–51.8 7.5 22 15 NA NA

Saxena et al. (2019) [56] DB2

• Normalized LMS adaptive filter 50 NA 51 NA NA 1.5

• Discrete wavelet transform 50 NA 36 NA NA 8.6

• IIR filter (order 8) 50 NA 28 NA NA 19.5

• FIR filter (order 50) 50 NA 26 NA NA 25.8

Tomasini et al. (2016) [57] DB1 • RLS adaptive filter 50–51 −20–20 35 15–55 NA NA

Verma and Singh (2015) [17] 1 ECG record • Adaptive notch FIR filter with tunable notch frequency 50 7–15 14–25 7–10 NA NA
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Table 4. Cont.

Study Database Methods PLI Freq
[Hz]

SNRin
(dB)

SNRout
(dB)

SNRimp
(dB)

MAXE
(µV)

RMSE
(µV)

Biswas and Maniruzzaman (2014) [58] DB2

• Normalized LMS adaptive filter 50 NA 6.3 NA NA 5.6

• RLS adaptive filter 50 NA 6.7 NA NA 8.9

• Notch filter 50 NA 6.7 NA NA 7.9

Satija et al. (2017) [59] DB2

• Notch filter 50 NA 30.1 NA 100 NA

• LMS adaptive filter 50 NA 25.3 NA 130 NA

• Algorithm using ECG noise-aware dictionary, sparse signal
decomposition, and reconstruction 50 NA 32.9 NA 50 NA

Kumar et al. (2020) [60] DB1, DB2, DB3 • Synchrosqueezing transform with adaptive filter

50 −3 NA 48–52 NA 8.2–13

48 −3 NA 47–49 NA 3.6–15

52 −3 NA 49–50 NA 3.4–12

Bodile and Talari (2021) [61] DB2

• Discrete wavelet transform 50 −10–10 6–23 13–16 NA NA

• Empirical mode decomposition 50 −10–10 20–23 23–30 NA NA

• Kalman filter 50 −10–10 22–23 13–22 NA NA

• Kalman backward–forward filter 50 −10–10 22–23 13–33 NA NA

Zhou and Zhang (2013) [9] DB1 • Hybrid filter with two-sided filtration and multi-iterative
approximation techniques 50 10 25.4 15.4 NA NA

Leski (2021) [62] DB1 • Nonlinear aggregation operator 50 (−5; 0) * NA NA 1.3–35.5 1–17.4

Mateo et al. (2008) [63]
DB1,
DB2,
DB3

• Notch filter 48.5–51.5 NA NA 14 NA 3.5–42

• Notch adaptive filter 48.5–51.5 NA NA 15 NA 2.1–32

• Artificial neural network 48.5–51.5 NA NA 19 NA 1.5–16

Qui et al. (2017) [64] DB2

• Recurrent neural network 50 ± 0.1 0 36 36 NA NA

• Kalman smoother 50 ± 0.1 0 32 32 NA NA

• IIR notch filter 50 ± 0.1 0 23 23 NA NA

Poungponsri and Yu (2013) [65] DB2 • Wavelet transform and artificial neural network 60 11 33 22 NA NA

Chatterjee et al. (2022) [66] DB2 • Sparsity-based wavelet denoising neural
network autoencoder 50 5 27.4 22.4 NA 16.8

LMS: least mean square; RLS: recursive least square; IIR: infinite impulse response; FIR: finite impulse response; PLL: phase-locked loop; NA: no available data in the original paper. DB1:
PTB diagnostic database; DB2: MIT-BIH arrhythmia database; DB3: St. Petersburg 12-lead arrhythmia database. # PLI with linearly changing amplitude or frequency. * Results in [62] are
reported for peak-to-peak PLI amplitude of 500 µV, corresponding to SNR in range of −5 to 0 dB, according to Figure 9 (PLI amplitude range between 200 and 500 µV r.m.s. estimated
with samples from the same ECG database (DB1)).
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The research in Table 4 finds the most studies on PLI filtering published in the last
10 years, which is evidence of continuous technological interest in signal quality improve-
ment. Table 4 orders the technologies by the types of their methods, including the Savitzky–
Golay filter [53]; moving average PLL [12]; notch filters [54,56,58,59,63,64]; adaptive fil-
ters [17,28,54–60,63]; discrete wavelet transforms [56,61,65]; more complex algorithms
using an ECG noise-aware dictionary, sparse signal decomposition, and reconstruction [59];
empirical mode decomposition [61]; Kalman filters [61,64]; a hybrid filter with two-sided
filtration and multi-iterative approximation techniques [9]; a nonlinear aggregation opera-
tor [62]; and artificial neural networks [63–66]. Among all the studies, only one was found
to conduct tests with variable amplitude and frequency [55] and another with variable
frequency [54]. Both of them, however, reported up to a 20 dB lower SNRout and SNRimp.
The majority of the other studies, regardless of the complexity of their algorithms, also
reported a lower SNRimp and/or higher errors compared to this study. We could distin-
guish the normalized LMS adaptive filters with RMSE equal to 1.5 µV [56] and 5.6 µV [58]
which are closest to the RMSE range in this study (0.8–1.5 µV). The studies with the best
SNRimp are the moving average PLL [12] (42.2–58.5 dB) and the synchrosqueezing trans-
form with an adaptive filter [60] (47–52 dB), which are, however, slightly lower than this
study (57–60 dB) for constant amplitude PLI. Surprisingly, the deep artificial networks
and autoencoders [63–66] present limited SNRout (23–36 dB) and SNRimp (22–36 dB). In
conclusion, the SF filter demonstrates excellent performance among state-of-the-art studies,
which was confirmed by the statistical evaluation of each of the 12 ECG leads.

5. Conclusions

This paper reports the design and exhaustive testing of an innovative biopotential
readout circuit with a common-mode driven synchronous filtering of the PLI in ECG. The
presented SF approach, and the one recently published in [37], set up a new standard
for recording biosignals, in which the common-mode and the differential-mode signals
are processed together. The SF approach applies to both systems with and without DRE.
In the systems with DRE, the common-mode signal could be taken from the reference
electrode. In order to be applicable for SF, AFE should be equipped with a common-mode
amplification channel followed by an ADC. The SF approach was analyzed in detail, and
the closed-loop bandwidth and stability considerations were determined. The SF approach
is applicable to all permanent biosignals, taken with electrodes from the body surface like
ECG, EEG, EMG, EOG, etc., and can benefit all diagnostic and therapeutic medical devices
where these signals are in use. The implemented loop filters could be further optimized
for different applications using other biosignals like EEG, EMG, EOG, etc. Note that the
QRS limiter should be omitted. Moreover, such optimization can also be directed to better
results by adding high-pass or band-pass pre-filtering in the common-mode chain of the
analog or digital part. Note that increasing the Q factor would further stabilize the PLI
amplitude but also reduce performance when the PLI frequency deviates from its nominal
value. Fractional band-pass filters have recently been shown to potentially cope with
this problem [67].

The developed, implemented, and validated innovative design solutions and concepts
are as follows:

• A novel biopotential readout circuit processing both differential-mode and common-
mode signals in systems with and without DRE.

• An innovative closed-loop SF algorithm, robust against amplitude and frequency
variations in PLI.

• An optimized loop filter for operation with ECG signals.
• A novel QRS limiter with an adaptive threshold, effectively eliminating the QRS influence.
• A tricky all-digital open-loop AGC with a fast response and making possible the SF

operation without SPLL.
• A novel, extensively tested, and validated concept using real and synthesized ECG

signals and PLI with variable amplitude and frequency.
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6. Patents

The common-mode driven synchronous filtering of the powerline interference is
currently in the process of being patented in the Bulgarian Patent Office.
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