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Featured Application: In our study, transcriptomes of different genders of lizardfish (Saurida elongata)
were compared. Interesting findings about sex-related genes for putative future aquaculture applica-
tions are reported here. We provide a transcriptome dataset of S. elongata that will be valuable for
further research into the reproductive biology of S. elongata and other teleost fishes.

Abstract: Among vertebrates, teleost fishes exhibit the largest array of sex-determining systems,
resulting in many reproductive strategies. Screening these fish for sex-related genes could enhance
our understanding of sexual differentiation. The lizardfish, Saurida elongata (Temminck & Schlegel,
1846), is a commercially important marine fish in tropical and subtropical seas of the northwest Pacific.
However, little genomic information on S. elongata is available. In this study, the transcriptomes
of three female and three male S. elongata were sequenced. A total of 49.19 million raw read pairs
were generated. After identification and assembly, a total of 59,902 nonredundant unigenes were
obtained with an N50 length of 2070 bp. Then, 38,016 unigenes (63.47% of the total) were successfully
annotated through multiple public databases. A comparison of the unigenes of different sexes of S.
elongata revealed that 22,507 unigenes (10,419 up-regulated in a female and 12,088 up-regulated in a
male) were differentially expressed between sexes. Then, numerous candidate sex-related genes were
identified, including dmrt2, dmrt4, foxl2, zps and starts. Furthermore, 23,941 simple sequence repeats
(SSRs) were detected in SSR-containing sequences. This informative transcriptome analysis provides
valuable data to increase the genomic resources of S. elongata.

Keywords: demersal fish; synodontidae; RNA-seq; gene ontology; differentially expressed genes

1. Introduction

Sex determination has received significant research attention in various animals, and
numerous genes involved in sex determination have been found in many model species
(human, mice, goat, chicken, zebra fish, killifish and cichlid), including sox9, foxl2, wnt4 and
dmrt1 [1–3]. Facilitated by high conservation, sex-related genes in other species have been
identified through homology screening [4,5]. However, the sex-determination mechanisms
in fish (especially teleost fishes) are not as well conserved as those in mammals or birds [6,7].
Fishes are extremely diverse in the sex chromosome systems and exhibit a variety of sex-
determining systems among vertebrates, resulting in many reproductive strategies [8,9].
Therefore, it is important to screen differentially expressed genes (DEGs) in different sexes
and enhance our understanding of sexual differentiation in fishes. Furthermore, growth
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is often related to gender. Sexual growth dimorphism could be observed in many teleost
fish, and these species often show different growth rates between the genders [10,11].
Fish growth is a complex polygenic trait. It is regulated by numerous factors, including
the nutrients, energy metabolism, environment and reproductive activity [12]. Thus,
elucidating the sex differentiation in fish could help us understand the behavioral, cellular
and phenotypic differences between sexes in vertebrates [13].

The lizardfish, Saurida elongata (Temminck & Schlegel, 1846), is a commercially impor-
tant teleost species that distributes in subtropical and tropical seas of the northwest Pacific,
ranging from the coastal waters of Japan to the northern South China Sea (SCS) [14,15].
Lizardfish is primarily used to produce various fish gel products (fish cakes or surimi) due
to its high gel-forming ability and meat yield [16]. In addition, it has been reported that
lizardfish can be the basic raw material of biologically active peptide production for the
treatment of hypertension, heart failure and other cardiovascular disease [17,18]. The lizard-
fish is abundant, and it has been reported that the production of lizard fish is estimated at
more than 120,000 tons in Guangxi of China [17]. As an economic fishery species, there are
many studies on the stock resources [19], biology [15], food chemistry [18] and population
genetics [20] of S. elongata. However, the biogenetical and molecular studies on S. elongata
are insufficient due to limited gene sequence information, as only a few sequences were
encountered during searches of public domain nucleotide and protein databases. Moreover,
genomic studies on lizardfish are lacking, as these species are difficult to rear. There were
only nine records in the SRA (Sequence Read Archive) database of NCBI.

Recently, with rapid advances in next-generation sequencing (NGS) technologies,
RNA sequencing has emerged as a useful tool for transcriptome analysis enrichment [9,21].
This technique is ideal for identifying candidate genes and pathways underlying the traits
of species whose genome is not yet available [22,23]. Recently, numerous studies have
successfully used this approach for genes, single-nucleotide polymorphism (SNP) and
simple sequence repeat (SSR) discovery in numerous teleost fishes, such as turbot (Scoph-
thalmus maximus) [24], silver sillago (Sillago sihama) [25] and crimson seabream (Parargyrops
edita) [26], among others. Despite the economic importance of lizardfish (Synodontidae), no
published genome or transcriptome sequence is currently available for these species. In the
present study, the first transcriptome of different tissues (muscle, gonad, liver and heart) in
male and female S. elongata was reported. We focused on genes related to sex differentiation
of S. elongata. In addition, we also screened numerous simple sequence repeats (SSRs) loci
in the transcriptome of S. elongata and developed the SSRs markers. The present study
provided valuable genomic information of lizardfish and will facilitate further molecular
biology research in teleost.

2. Materials and Methods
2.1. Sample Collection

The three female and three male lizardfish used in the present study were collected
from the Beibu Gulf of China (N 21.2793◦, E 108.9580◦). After acclimating in the tank, the
lizardfishes were killed immediately after anesthesia. We collected liver, heart, gonads and
muscle tissues from each sample.

2.2. Transcriptome Sequencing

Total RNA was extracted from each tissue using TRIzol reagent. Then, we used Agilent
2100 Bioanalyzer to assess integrity of the RNA. Only the RNA sample with the integrity
number (RIN) ≥ 7 was used to subsequent analysis [27]. The RNA of tissues of every
sample was pooled in equal amounts. Then, cDNA libraries were constructed using 3 µg of
RNA from each sample via a conventional protocol. The prepared cDNA libraries were
sequenced on a BGISEQ-500 platform (BGI, Shenzhen, China).
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2.3. De Novo Assembly and Functional Annotation

In the present study, we used SOAPnuke v 2.10 to control the raw read quality (https:
//github.com/BGI-flexlab/SOAPnuke/releases/tag/SOAPnuke2.1.0, accessed on 24 July
2019). Clean data were obtained after raw read trimming by using Trimmomatic v0.35 [28].
The transcriptome was de novo assembled and combined using the clean data based on
the Trinity software package (version: 2.0.6) [29]. Then, completeness of the assembly was
assessed using BUSCO v 5.0.0 (Benchmarking Universal Single-Copy Orthologs) base on
the Actinopterygii reference set [30]. All unigenes were annotated through comparison with
databases, including NR (version: Release-20190312) and NT (version: Release-20190312)
database of NCBI, Gene Ontology (GO) database (version: Release-20191101), Eukaryotic
Orthologous Group (KOG) database (version: Release 201407), Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (version: Release 89.1) and Swiss-Prot protein
database (version: Release 201902) (BLASTn 2.6.0 and BLASTx 2.5.0 with an E-value
threshold of 1 × 10−5).

2.4. Candidate Sex-Related Genes Analysis

The assembled transcriptome was selected as a reference because of the lack of genome
information of S. elongata. All clean reads were aligned to the references with Bowtie
2 [31]. Then, RSEM version v1.2.12 was used to normalize the expression levels of the
unigenes [32]. R package DEG-seq was used to identify differentially expressed genes
(DEGs) [33]. The thresholds of DEGs were defined as |log2 fold change| ≥ 2 and a
p value ≤ 0.001. Enrichment analyses (GO and KEGG) of the DEGs were performed based
on the hypergeometric distribution test. A significance test was applied, and a Q-value
value ≤ 0.05 indicated significantly enriched terms.

2.5. Potential Simple Sequence Repeat (SSR) Marker Detection

In the present study, we used the MIcroSAtellite identification tool (MISA, version 2.1,
https://webblast.ipk-gatersleben.de/misa/, accessed on 25 August 2020) to detect SSR
loci in the S. elongata transcriptome. In order to detect the useful SSR maker, we referenced
the selection criteria of pervious SSR maker devolvement studies [24–26]. We used Primer
3 software to design primers for the detected SSR loci [34].

2.6. Quantitative Real-Time PCR (qRT-PCR) Validation

To validate the RNA-seq data, eight DEGs were randomly selected and analyzed
via qRT-PCR. The eight selected genes showed significantly different expression between
different genders, including four up-regulated genes and four down-regulated genes in the
female. According to previous studies, the β-actin gene and 18S gene were proved to be con-
stitutively expressed across different genders in teleost fish species [35,36]. Thus, the two
genes were selected as reference genes for internal standardization. We used Primer Premier
6.0 to design the primers (PREMIER Biosoft International, Palo Alto, CA, USA). The ampli-
fication reaction system and procedure of qRT-PCR were the same as those described by
Lou [23]. We calculated the relative expression levels of eight target unigenes based on the
2−∆∆Ct method (∆CT = CTtarget unigene − CTreference gene, −∆∆CT = ∆CTfemale − ∆CTmale),
and the log2 fold change was then used for comparison with the log2 fold change of
RNA-seq.

3. Results
3.1. Transcriptome Sequencing and De Novo Assembly

In this study, 49.19 million raw read pairs were generated for males and females,
respectively. After preprocessing, 44.65 and 45.08 million clean paired-end sequence
reads with Q30 percentages of 88.36% and 88.81% were obtained (Table S1). A total of
59,902 unigenes were assembled with an N50 length of 2070 bp and a mean length of
1121 bp (Table S2). The results of BUSCO showed that 94.39% of the genome (73.93%
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as single genes and 20.46% as duplicated genes) was complete, and 0.01% was missing,
indicating the high quality of S. elongata transcriptome (Figure S1).

3.2. Functional Annotation of the S. elongata Transcriptome

In summary, there were only 7627 unigenes (12.73%) annotated to the NT database.
Meanwhile, 38,006 were annotated to at least one of the five protein databases (NR, Swiss-
Prot, KEGG, KOG, GO) (Table 1). Specifically, 2113 unigenes were annotated with the five
protein databases that were searched in the present study (Figure 1).

Table 1. Summary of unigenes annotations.

Database Number of Unigenes Percentage (%)

NR 35,479 59.23%
Swiss-Prot 30,201 50.42%

KEGG 30,840 51.48%
KOG 26,122 43.61%
GO 16,439 27.44%
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Figure 1. Venn diagram of the functional annotation.

A total of 30,840 unigenes were annotated to different pathways based on the KEGG
pathway analysis; the top two pathways were ‘Human Diseases’ (15,982 unigenes) and
‘Organismal Systems’ (12,845 unigenes). The predominant pathway subcategories were
‘Signal Transduction’ (5188), ‘Immune System’ (3313) and ‘Cancers: Overview’ (3120)
(Figure 2). In total, 16,439 unigenes were assigned to three GO categories. As Figure S2
show, the dominant terms were ‘binding’ (8261 unigenes), ‘catalytic activity’ (6036 unigenes)
and ‘membrane part’ (4878 unigenes). In addition, 26,122 unigenes were assigned to the
KOG. These unigenes were classified into 25 subcategories (Figure 3).
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3.3. Candidate Sex-Related Genes and Functional Enrichment Analysis Results

To detect the potential genes and pathways related to sex, comparative analyses were
performed to identify differentially expressed unigenes between genders. In the present
study, unigenes with |log2 Fold Change| ≥ 2 and p-value ≤ 0.001 were determined to be
differentially expressed genes. After filtering, 22,507 DEGs were identified between the
sexes, 10,419 of which were female-biased DEGs, while 12,088 were male-biased DEGs
(Figure 4 and Figure S3). Many well-known sex-related genes were detected. For instance,
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zona pellucida sperm-binding protein genes (zps), StAR-related lipid transfer protein genes
(start), spermatogenesis-associated protein genes (spatas), doublesex- and mab-3-related
transcription factor (dmtr), P43 5S RNA-binding protein-like (42sp43), follicle stimulating
hormone receptor (fshr) and forkhead box protein L2 (foxl2) (Table 2).
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Table 2. Genes related to the sex differentiation of Saurida elongata.

Unigene Annotation log2 (♂/♀) p-Value

CL1525.Contig1_All Zona pellucida sperm-binding protein 1 −17.663 0
Unigene35458_All Zona pellucida sperm-binding protein 2 −9.959 0

CL1340.Contig1_All Zona pellucida sperm-binding protein 3 −8.554 8.109 × 10−101

CL4606.Contig2_All Zona pellucida sperm-binding protein 4 −8.602 3.971 × 10−224

Unigene16088_All StAR-related lipid transfer protein 4 2.207 4.498 × 10−28

Unigene42268_All StAR-related lipid transfer protein 5 −3.659 9.132 × 10−09

Unigene3434_All StAR-related lipid transfer protein 7 −2.968 2.820 × 10−74

Unigene7294_All StAR-related lipid transfer protein 13 1.237 3.248 × 10−08

Unigene10706_All Spermatogenesis-associated protein 20 −1.184 3.857 × 10−05

CL3615.Contig1_All Spermatogenesis-associated protein 5-like protein 1 −8.618 1.846 × 10−26

Unigene15846_All Spermatogenesis-associated protein 7 −1.838 4.243 × 10−26

Unigene3310_All Spermatogenesis-associated protein 2 −1.208 1.846 × 10−30

Unigene9109_All Spermatogenesis-associated protein 13 1.496 6.667 × 10−19

Unigene44347_All Zteroidogenic acute regulatory protein −8.039 5.755 × 10−05

Unigene12505_All Meiotic nuclear division protein 1 homolog −1.587 3.245 × 10−26

CL3550.Contig1_All Wee1-like protein kinase −8.342 0
Unigene21067_All Doublesex- and mab-3-related transcription factor 2 8.150 1.289 × 10−04

Unigene40645_All Doublesex- and mab-3-related transcription factor 4 −9.348 1.183 × 10−204

Unigene39523_All Forkhead box protein L2 −8.071 2.528 × 10−11

Unigene44534_All P43 5S RNA-binding protein-like −10.204 0
Unigene8224_All Sex hormone-binding globulin 1.450 5.326 × 10−34

Unigene43332_All Follicle stimulating hormone receptor −8.492 1.461 × 10−15

Furthermore, the results of enrichment analyses of the 22,507 DEGs showed that 7832
unigenes were assigned to 3293 GO terms. The results in GO terms showed that sex-biased
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genes were predominantly associated with ‘integral component of membrane’ (GO:0016021)
(Table S3). In addition, results suggested that the three most-enriched KEGG pathways
were ‘Pathways in cancer’ (ko05200), ‘PI3K-Akt signalling pathway’ (ko04151) and ‘Human
papillomavirus infection’ (ko05165) (Figure 5). Figure 5 showed the top twenty statistically
significant KEGG classifications of the DEGs.
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3.4. SSR Markers Detection

We identified 23,941 SSRs, of which 10,592 44.24% were di-nucleotide repeats, followed
by mononucleotide (8320 SSRs, 34.75%) and trinucleotide (3458 SSRs, 14.44%), and other
types SSRs (6.57%). Among these loci, SSRs with six tandem repeats were the most dominant
(Figure 6). Furthermore, we gave the primers and other information of these SSR loci.
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3.5. Transcriptome Data Validation

To validate the transcriptomic data, quantitative RT-PCR (qRT-PCR) was performed on
eight DEGs. Four were up-regulated and four were down-regulated in the female. Specific
primers of each gene were listed in Table S4. As shown in Figure 7, these randomly selected
genes displayed similar expression patterns in both RNA-seq and qRT-PCR, confirming the
reliability of our RNA-seq data.
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4. Discussion

In the present study, 59,902 de novo assembled unigenes were obtained. Moreover,
the results of BUSCO showed 94.39% of the genome was complete. These results showed
the quality of transcriptome in our study was high, and it was reliable for subsequent
analyses. Among the unigenes, 63.45% were annotated to public databases. The match
ratio was low because of the lack of genetic data of lizardfish species in the public databases.
To date, only three protein sequences have been deposited for species in genus Saurida
in the NCBI NR database, explaining the low number of BLAST top hits for lizardfish.
The result of main species distribution matched against the NR database showed that
11.99% of the annotated unigenes shared similar sequences with Lates calcarifer, whose
draft genome was published in 2015 [37]. Seriola lalandi dorsalis, Larimichthys crocea, Seriola
dumerili and Stegastes partitus also shared similar sequences with S. elongata. Thus, unigenes
of S. elongata transcriptome matched well to proteins of other teleost fish. It has been
reported that the annotation results of the non-model species were highly dependent on the
availability of annotated sequence information in the database, and the sizes of their contig
sequences [38,39]. Compared to other non-model teleost species, the number of transcripts
obtained for S. elongata from this study was at moderate level [24,26,40].

It is evident that genes involved in gonad development and related to sex differenti-
ation play important roles in controlling the sex ratio of teleost fishes [24]. It is crucial to
elucidate the mechanisms of sex determination and gonad differentiation. In the present
study, we identified numerous DEGs and suspected that these genes may play important
roles in the sex differentiation between genders of S. elongata. However, sex determination
in teleost fish is an extremely complex process, regulated by numerous genes [9,25]. Due
to the limitations of the present study, we could not clarify the exact mechanisms of sex
determination or gonad differentiation. The transcriptome data in this study will facilitate
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further studies of S. elongata. With the annotation results, we identified several well-known
genes relate to sex control and gonadal development (zp, dmtr, 42sp43, start, Wee1, foxl2, etc.).

The zona pellucida plays many important biological functions, including postfertil-
ization blockade of polyspermy and relative species-specific binding of sperm to ovulated
eggs [41,42]. In fish oocytes, the zona pellucida plays a protective role in sperm binding [43].
It has been reported that zona pellucida protein 3 plays a crucial role in acrosome reaction,
and zona pellucida 4 participates in primordial follicle formation [44,45]. In the present
study, zp 1-4 showed significantly higher expression in females, showing these genes may
play important roles in reproduction and folliculogenesis in S. elongata.

In teleost, dmrt gene families play crucial roles in sexual differentiation and determi-
nation [46,47]. It is well known that the dmrt gene family includes many members. These
genes encode putative transcription factors with evolutionarily well-conserved Doublesex
and Mad-3 (DM) domains [48]. The DM domain is involved in sexual differentiation and
development in many species (insects, fish and mammals) [49,50]. Eight dmrt genes (dmrt1
through dmrt 8) have been reported in mammals [51], and some of them have also been
detected in teleosts. These include Oreochromis niloticus [52], Gadus morhua [53], Danio
rerio [54], Takifugu rubripes [55] and Cynoglossus semilaevis [56]. As an important member,
the dmrt2 gene plays a key role in neurogenesis, testicular hypoplasia and even embryonic
sex reversal [57,58]. Recently, the dmrt2 gene was found to play a crucial factor in germ cell
maturation and gonadal differentiation in male teleost fishes [56]. Consistent with previous
studies, the dmrt2 gene showed significantly higher expression in males. Unlike dmrt2,
dmrt4 has different expression patterns in different fish. Guan [59] demonstrated that dmrt4
showed female-specific expression pattern in gonads in Oreochromis niloticus, and Cao [60]
detected that dmrt4 was expressed in the endbrain, pituitary gland, thalamencephalon and
ovary in Oreochromis aureus. However, dmrt4 showed strong expression in the testis but
weak expression in the ovary of the adult olive flounder (Paralichthys olivaceus) [61]. In our
study, we detected that the dmrt4 gene showed significantly higher expression in female
S. elongata. Results showed that the dmrt4 gene may have potentially important roles in
ovary development.

Among sex differentiation genes of teleost fish, foxl2 is one of the earliest known mark-
ers of ovarian differentiation [62]. The foxl2 is expressed as a transcription regulator of the
cytochrome P450 family and maintains cyp19a expression, which could convert androgens
into estrogens [63]. Numerous previous studies demonstrated that foxl2 exhibits significant
sex-dimorphic expression patterns and plays a key role in fish gonad development and
differentiation [64,65]. In our study, foxl2 was highly expressed in females, indicating that
foxl2 participates in the development of gonads in S. elongata.

5. Conclusions

In summary, we sequenced the transcriptomes of female and male S. elongata. After
assembly, identification and annotation, numerous putative genes related to sex differ-
entiation were detected. Our results will be useful for improving our understanding of
sexual differentiation and the molecular mechanism of sex determination in fishes. It will
also facilitate future functional analyses of sex-associated genes. Furthermore, SSR loci
was detected in the transcriptome of S. elongata, providing valuable markers for future
molecular biology on S. elongata. Ours is the first comparative transcriptomic analysis
of different genders of S. elongata. The transcriptome in the present study will provide
valuable data to enrich the genomic resources of S. elongata.
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