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Abstract: Premature rain erosion damage development at the leading edges of wind turbine rotor
blades impair the efficiency of the turbines and should be detected as early as possible. To investigate
the causes of premature erosion damage and the erosion evolution, test specimens similar to the
leading edge of a rotor blade were modified with different initial defects, such as voids in the coating
system, and impacted with waterdrops in a rain erosion test facility. Using CT and XRM with
AI-based evaluation as non-destructive measurement methods showed that premature erosion arises
from the initial material defects because they represent a weak point in the material composite. In
addition, thermographic investigations were carried out. As it shows results similar to the two
lab-based methods, active thermography has a promising potential for future in-situ monitoring of
rotor blade leading edges.

Keywords: rain erosion; rotor blade leading edge; damage evolution; X-ray computed tomography;
X-ray microscopy; active thermography; artificial intelligence

1. Introduction

The progressive development of even larger wind turbines due to the continuously
growing demand for wind power, an important renewable energy technology, results in in-
creased tip speeds at the leading edges of modern rotor blades. With this development, the
damage potential and impact of rain erosion have also increased [1]. Rain erosion damage
to the rotor blade surface reduces performance and affects the lifetime of wind turbines [2].
Accordingly, rain erosion is an important aspect to be considered in wind turbine operation.
The current assumptions about failure mechanisms due to manufacturing defects in mate-
rial, coatings [3], and the interface [4,5] need to be reduced to increase the understanding
of rain erosion. Rain erosion damage on the leading edge of a wind turbine rotor blade has
already been investigated. For example, a guideline to qualify glass fiber-reinforced plastic
(GFRP) coating systems for rotor blade applications was developed [3]. It is based on test
specimens that were manufactured and eroded in the erosion test rig, and the damage was
subsequently evaluated using destructive measuring methods, e.g., micrograph analyses.
The test specimen condition before rain loading was not considered but can be essential
for the occurrence of erosion damage in many cases. Although this guideline-compliant
approach succeeds in distinguishing between different coating systems in terms of their
performance, no validated theories to date explain the formation mechanisms of erosion

Appl. Sci. 2022, 12, 11307. https://doi.org/10.3390/app122211307 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211307
https://doi.org/10.3390/app122211307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1555-3006
https://orcid.org/0000-0001-9453-7631
https://orcid.org/0000-0003-3778-8770
https://orcid.org/0000-0002-9166-718X
https://orcid.org/0000-0001-6536-3281
https://orcid.org/0000-0001-7349-7722
https://doi.org/10.3390/app122211307
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211307?type=check_update&version=3


Appl. Sci. 2022, 12, 11307 2 of 19

damage. Moreover, it does not allow any statement to be made regarding the expected time
course of the damage progress. However, this is important for enabling the early detection
of the damage and assessing the damage with respect to the decision and planning of
a repair.

In recent years, X-ray computed tomography (CT) has found wide application in
materials science research [6–8]. Furthermore, the determination of fiber orientation in
short fiber injection molded components [9] using CT is of great importance, as well
as the use and analysis of in-situ experiments for a deeper understanding of the failure
mechanisms of fiber-reinforced wind turbine blades. A cyclic study performed by Nash [10]
investigated the degradation of plate-like fiberglass composite structures in an erosion test
rig. An evaluation of the degradation was carried out using CT examinations and analyses.
The removal of the coating between the individual cyclic loads was determined using a
voxel size of 14.8 µm3 (Nikon XT H 225 LC X-ray system). Mishnaevsky [11] studied a
2 cm3 section of a wing leading edge stressed in a rain erosion test rig that was inspected
by scanning electron microscopy and X-ray microscopy (XRM, Zeiss Xradia 520 Versa). The
specimen examined included intact as well as damaged areas. With a voxel size of 2 µm3,
the defects were detected and documented by XRM. The data formed the basis of computer-
aided micromechanical modeling of the effect that structure and coating properties have
on rotor blade leading edge degradation. A causal analysis of the degradation was based
on this simulation. However, all of these select systematic studies do not contain any
early detection or time tracking of damage and failure due to rain erosion, so the failure
mechanisms are not yet fully understood [4]. In conclusion, intimate material damage has
not been considered in a specific and repeatable way, so the relationship between the initial
condition of the specimens prior to erosion exposure and the damage patterns that occur
after erosion exposure has not yet been investigated.

Lately, the use of artificial intelligence (AI) for the automated evaluation of large data
sets is becoming crucial. In the field of engineering, the methods of deep learning could be
applied to defect detection and differentiation in GFRP components. This requires datasets
of CT slices, which are divided into training, testing, and validation datasets. In addition,
deep learning tools such as “Data Augmentation” and “Transfer Learning” are used to facil-
itate the iterative learning of the algorithm. Banga et al. combined thermography tests with
deep learning techniques in order to detect cracks [12]. Badran et al. used convolutional
neural networks (CNN) to distinguish phases from shape and edge information rather
than intensity differences and successfully segment phases in a unidirectional composite
that also had a coating with similar image intensity [13]. In fact, such algorithms are also
suitable for defect detection. These neural networks use folding layers to detect the different
features of an image, such as edges, corners, and lines. The open-source nature of deep
learning offers an ever-growing online community that allows access to established neural
networks such as U-Net [14].

Since rain erosion on wind turbine blades has to be investigated in the open field
at the turbine itself, there is a need for a measurement technique for in-situ inspections.
Active thermography is a non-destructive measurement method for detecting defects
close to the surface. Unlike CT and XRM, it can be used in the open field for in-situ
measurements. Previous studies have already shown good suitability for defect detection
in rotor blade leading edge-like specimens, where the defects were simulated by drilling
holes from the back side of the specimens [15]. The extent to which realistic defects can
be detected, such as trapped air bubbles, which have different properties than inserted
borings, has not yet been investigated. With regard to the visualization and observation
of damage growth, several thermographic investigations have already been successfully
carried out on partially pre-damaged test specimens made of fiber-reinforced composites
with different loads. Colombo et al. performed thermographic studies on GFRP plates pre-
damaged with delaminations and observed the damage growth under tensile loading [16].
Thermographic imaging of impact damage to GFRP plates caused by impacts with different
hammers in a drop-weight testing machine was performed by Katunin et al. [17]. Meola
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et al. also thermographically investigated the impact damage on GFRP sheets, which
were pre-damaged by production defects such as porosity during hand lamination prior
to impact loading [18]. All studies show that thermography can be used to visualize the
condition of a pre-damaged or undamaged fiber-reinforced composite plate before and
after different impacts and to document the damage growth that occurred. However, the
detection capabilities of thermography with respect to damage growth beginning with a
realistic sub-surface defect in a rotor-blade-leading-edge-like test specimen up to the surface
damage—as it occurs on wind turbines in operation due to the exposure to rain—need to
be identified.

This work aims to clarify whether damage that is close to reality can be produced
in the laboratory and whether it induces surface damage under a rain load. It will also
address the lack of correlation between the condition before and after erosion in order to
enable the prevention and early detection of incipient erosion. To achieve this goal, defined
initial defects are introduced into rotor-blade-leading-edge-like test specimens, which are
then subjected to loading in a rain erosion test facility. The test specimens are analyzed in
the initial state and after the rain loading using XRM, CT, and an imaging surface analytical
method. Thermographic investigations are carried out as a feasibility study for in-situ
measurements at the rotor blade leading edge. In addition, the resolution of the current
damage state will be clarified and, thus, the visualization, detection, and differentiation of
the defects below and on the surface of rotor-blade-leading-edge-like specimens after rain
exposure.

Note that erosion protection concepts based on films will not be investigated within the
scope of this work, as these systems have not played a relevant role in practical applications
due to unresolved processing and application challenges.

2. Materials and Methods
2.1. Preparation of the Test Specimens

For the investigations, a single base type of test specimen is manufactured, and differ-
ent kinds of initial defects are introduced. The basic structure of the specimen is adapted
from a real rotor blade leading edge with a laminated GFRP half tube as a supporting
structure. On the GFRP, filler and coating are applied, as shown in Figure 1.
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Figure 1. Schematic representation of the basic specimen structure with the modification of
individual layers.

To recreate realistic rotor-blade-leading-edge-like specimens, different defects such as
voids and delaminations are introduced into different layers of the test specimen, labeled
in the following with the corresponding letter from Table 1. The GFRP test specimens were
manufactured using the vacuum infusion process. The laminate structure on the specimen
surface is ±45◦ with a structure of the scrim (surface) as biaxial, biaxial, unidirectional, and
biaxial. The specific gravity of the fibers is biaxial 830 g/m2 and unidirectional 990 g/m2

with a fiber volume content between 50% and 55%. The resin system used was RIM 135
with hardener type: RIM 137 from Hexion.
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Table 1. Overview of the different test specimen modifications.

Sign Modification Introduction Method of the Modification

L Voids in GFRP Introduction by air intake during GFRP lamination

D Delamination in GFRP Introduction by Teflon film between individual laminate layers

B Voids in coating Introduction of styrofoam balls withing the coating

S Voids in filler Introduction of styrofoam balls withing the filler

R Reference specimen No explicitly introduced initial defects

The voids in the GFRP composite material (L) were introduced during the production
of the test specimens in the vacuum process. In this process, undefined defects were
generated in the GFRP specimen in terms of localization and shape, as they can also occur
in the real manufacturing process, see Figure 2a.
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Figure 2. Photograph of part of the GFRP specimen with initial defects as (a) introduced voids (within
the red circle) and (b) introduced delamination, adapted with permission from [19].

The delaminations in the GFRP composite material (D) were already introduced
during the layer-by-layer buildup of the GFRP test specimen. For this purpose, round
Teflon foil cutouts with a diameter of 7 mm–10 mm were positioned at defined points
between the GFRP layers, see Figure 2b. The Teflon foil provides local debonding between
the individual fiber layers. The styrofoam balls for imitating voids in the coating system
(S) have a diameter of ∼ 1 mm ± 0.4 mm and were introduced manually directly during
the coating process of the filler, see Figure 3. Due to the electrostatic properties of the
styrofoam balls, they had to be adhered to the specimen surface using a thin underlayer.
This underlayer was applied as thinly as possible to the putty material using a flexible
comb. On top of the underlayer with applied styrofoam balls, a covering layer of the
putty material was applied. After a sufficiently long drying time, the putty was ground off
mechanically to produce the geometrically correct shape of the specimens and to generate
a sufficiently rough surface in preparation for the coating of the specimens afterward.

The introduction of voids in the coating (B) was carried out with the same styrofoam
balls, which were first positioned on an undercoat (on top of the putty) of the material
applied as thinly as possible before, in the next step, the test specimens including the
applied styrofoam balls were poured with coating. Note that the specimen with the applied
styrofoam balls in the coating had to be overpoured with several layers to completely
cover the applied styrofoam balls. Therefore, the specimens with this initial defect have a
significantly higher coating thickness compared to the other specimens.
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and (b) on the filler layer within the coating.

2.2. Cyclic Rain Loading Tests

In order to investigate the effects of initial defects on early rain erosion, the manu-
factured test specimens have to be impacted by rain. The specimens were tested in the
Fraunhofer IWES’ Leading Edge Lab, shown in Figure 4. The helicopter-style test facility
contains a rotating disc of 2 m in diameter, in which three test specimens of 236 mm length
are installed and can spin up to 120 m/s at the outer tip of the specimen. Then, four rain
tanks introduce water droplets 3 m above the test specimen. After a defined test interval,
the specimens were inspected.
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Figure 4. Photo of the inside of the IWES rain erosion test facility.

Thereby, the rain erosion system parameters were designed to be as close to reality as
possible. However, since damage progress under real conditions only occurs after a very
long period of time, the parameters of the test facility were adjusted so that initial erosion
damage occurs in an acceptable time of a few hours. The times at which erosion damage
occurs vary depending on the coating system and the condition of the specimen, e.g., initial
defects. With the parameters from Table 2, erosion damage could be generated within 4 h
of rain loading on a specimen with introduced defects in the form of voids in the coating.
The specified test parameters and the IWES test facility fit within the DNV-GL (Det Norske
Veritas and Germanischer Lloyd, classification society) recommended practice [20].
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Table 2. Overview of the parameter settings of the rotating rain erosion test facility.

Parameter Settings

rotation speed 120 m/s
drop size 1–2 mm

rain intensity 20 L/min
ambient temperature 23 ◦C

Figure 5 shows specimens installed in the holders and examples of rain erosion damage.
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2.3. Analysing Methods
2.3.1. XMR and CT with Artificial Intelligence Evaluation

For the investigation of the inner structure of the specimens, CT and XRM are com-
monly used non-destructive measuring methods; see Figure 6.
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In contrast to the conventional µ-CT, the XRM uses a two-stage magnification tech-
nique based on synchrotron caliber optics [8,9]. The geometrically enlarged projection is
further magnified using a scintillator layer that converts X-rays into visible light, which can
then be optically magnified using different objectives mounted to a microscope turret. The
two-stage setup provides Resolution at a Distance, allowing large, flexible working distances
while maintaining submicron resolution (spatial resolution < 700 nm) without the need
to downsize the specimen. Figure 7a shows an example for an initial overview XRM scan
capturing an (28 × 30 × 2) mm3 glass fiber-reinforced object. A cross-sectional image by
using a 0.4× magnification optic where the pixel size is 32 µm is shown in Figure 7b.
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as a sectional view, ROI with pore [19].

Once a region of interest (ROI) is determined, the distances between the source, object,
and detector along the optical axis are adjusted according to the desired magnification. In
addition, the component perpendicular to the optical axis (source-detector) can be adjusted
so that the ROI remains on the optical axis during component rotation. The second scan
captures a volume of 2.8 × 3 × 1.8 mm3 when using the lens with a 4× magnification
(Figure 7b). Here, the pixel size decreases to 2 µm. In the digital enlargement of the scan,
the four glass fiber layers, the matrix, the filler layer, and a pore can be seen.

The data generated by µ-CT is of large scale. With around 2000 cross-sectional images
per scan, split images obtained from CT measurements require an efficient data processing
scheme because the manual search for defects in a scan made of several slices is time-
consuming. Therefore, machine and deep learning were applied as a means to locate
defects in the specimens. Deep learning segmentation requires graphical computing power,
which in this project was provided by an NVIDIA Quadro M5000 with 8 GB of GPU
memory. It was capable of supporting CNN models up to 8,593,350 parameters. The defects
in this work are mainly styrofoam spheres, modeling voids in the coating and/or filler
layer, and glass fiber-reinforced laminate. The primary challenge limiting the success of
AI for engineering applications is the availability of labeled data sets. Such labeled data is
needed to train the neural network. For this reason, the first step towards automated data
processing using AI is to generate meaningful labeled data. The labeling was done using the
segmentation wizard [21], an image processing software. ORS Dragonfly [22] was used to
generate the virtually labeled data for training, and the built-in untrained neural networks
were used. A virtual rectangular white frame shown in Figure 8 represents a part of the
specimen within a black background. A coating layer, filler layer, glass fiber-reinforced
laminate, a surplus of the matrix, and a void in the coating layer are enclosed by the frame.
A few pixels of each material layer, the background, and the defect were manually labeled
with different colors, as seen in Figure 8a. Then machine learning was adopted to avoid
the manual labeling of all the pixels. Here, a random forest classifier based on a decision
tree delivered the segmentation of the to-be labeled frame in Figure 8b. The adjusted
random forest prediction delivers enough labeled pixels to start training a neural network.
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Convolutional neural networks (CNN) are standard deep learning tools in the field of
image processing. An established neural network for semantic image segmentation is the
U-Net [14], here for the automated defect detection in the specimen. The size of the images
used for U-Net segmentation is 774 px × 1284 px × 2013 px (width/height/depth).
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Figure 8. (a) Result of manual pixel-wise labeling of a CT-slice, (b) result of labeling of a virtual frame
using a random forest classification [19].

The first training of the U-Net took 15 min and was done using two virtually labeled
data sets, such as the one shown in Figure 8b. In total, the U-Net was trained 12 times and
fed with a new virtually labeled frame for each training session, and 12 virtually labeled
frames were used as the training data set. The training duration depended on the complex-
ity of the labeled frames and varied between 15 and 72 min, averaging 30 min per/training.
The training of the neural network consists of adjusting the values of the weights epoch-
wise using gradient descent, with the objective being error minimization. Here, the epoch
refers to one cycle through the full training dataset. In an epoch, an entire dataset is passed
forward and backward through the neural network only once. Usually, training a neural
network takes more than a few epochs. The evolution of the loss function during the first
training (where only two virtually labeled frames were used) is shown in Figure 9.
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Figure 9. Loss function vs. epochs during the first U-Net training [19].

Loss functions decrease with time, i.e., with an increasing number of epochs (which
are training cycles made out of several batches). The first training did not deliver the
required weights of the CNN to successfully segment all CT slices and locate all defects,
which is indicated by efficient training. Note the drop of the green curve (loss function)
with time, i.e., with the training evolution. For this reason, additional training was needed.

Figure 10 shows the evolution of the loss training after the final (10th) training of
the U-Net.
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Figure 10. Loss function after the last U-Net training [19].

The reduction of the loss function stagnated (0.163) after the 10th training. An error
minimization from 0.9 after the first training to 0.163 after the last training was attained,
and further training was not beneficial. Since the difference between the validation loss
function and loss function is partially less than 0.05, no conclusion regarding overfitting or
underfitting of the neural network could be made. The success of distinguishing between
different material layers can be seen in Figure 11a.
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Figure 11. Automatic segmentation of the virtual images using the U-Net CNN in the Segmentation
Wizard, adapted with permission from [21].

A greater challenge was the identification of pores (in purple, Figure 11b). The small
pores were fully detected, while the larger ones were only partially detected. It was also
found that the air bubbles in the coating, located above the pores in the filler layer, were
not detected. However, the obtained results did not improve with further training. For
this reason, a Sensor 3D [23] CNN with a different architecture was investigated to obtain
better results.

2.3.2. 3D Surface Analysis

The fringe light projection method is an optical measurement method for the three-
dimensional detection of surfaces. The surface to be measured is illuminated sequentially at
a defined angle with a pattern of light and dark stripes of different widths. Cameras capture
the projected fringe patterns from the captured temporal sequence of different brightness
values for the individual pixels, the underlying three-dimensional surface topography of
the captured object. The geometry of the detected surface is resolved in the µm range.
The measurements are carried out with a 3D profilometer of the type VR-3200 from the
manufacturer Keyence. For the evaluation of the measurement data, a surface shape
correction of the round specimen surface was applied in order to visualize the surface of
the specimens and their influence by the rain erosion as optimally as possible.
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2.3.3. Active Thermography

Long-pulse thermography belongs to the measuring methods of active thermography,
in which the measured object is first excited with a heat source for a few seconds. Then
the infrared radiation returned by the measured object is recorded using a thermographic
camera, see Figure 12. The thermal excitation causes a material-specific heat flow in the
measured object, resulting in characteristic surface temperature distribution. The infrared
camera then visualizes this temperature distribution in the form of thermograms [24,25].
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Figure 12. Schematic representation of the measuring principle of active thermography.

During measurement, the specimens are clamped in a test rig, see Figure 13. Then,
kinematics are used to correctly position the specimen in front of the thermographic camera
and the excitation unit, consisting of two halogen lamps. To avoid anomalies caused by the
thermal reflections of the excitation unit onto the curved specimen, the excitation unit is
positioned below and above the specimen. The two halogen lamps, each with a power of
1 kW, are placed at an angle of approximately 90◦ to each other and have a distance to the
specimen of k = 204 mm.
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Figure 13. Photo of the experimental setup for clamping and examination of the specimens at a
distance between the excitation unit and specimen of k = 204 mm.

Table 3 shows the excitation durations used, which differ depending on the type
of defect and the specimen. Specimens that have defects deeper in the material must
be excited for a correspondingly longer time since the heat must travel a longer path
through the material from the surface to the defect and return. Thermographic imaging
is performed with the VarioCam hr head from the company InfraTec, which has a tem-
perature resolution of 0.035 K, an image format of 640 px × 480 px, and operates in a
wavelength range of 7.5–14 µm. The frame rate is 10 Hz for a measurement duration of
30 s, so 300 images are available in total for the image evaluation. Table 4 summarizes the
experimental parameters.
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Table 3. Overview of the different excitation times of the respective test specimens.

Specimen with Defect Type Excitation Time texc [s]

Reference without defects 20
Voids in the coating/filler 10

Voids in GFRP 30
Delaminations 30

Table 4. Overview of the experimental parameters used.

Experimental Parameters

Excitation power 2 kW
Range of wavelet 7.5–14 µm

Thermal resolution 0.035 K
Image size 640 px × 480 px

Recording time 30 s
Recording frequency 10 Hz

For the evaluation of the measured images, the last image of the series is subtracted
from all previous images at first so that constant influences are subtracted. The differential
raw image with the highest contrast, i.e., the highest intensity difference between a defect
and a defect-free area, is selected from the recorded image sequence. According to previous
experiments, the image is located within the first 10 thermograms, corresponding to the
first second of the measurement acquisition for the parameters used.

3. Results and Discussion

The results are divided into three subsections based on the research questions pre-
sented. First, it is investigated whether real defects such as voids can be produced in the
laboratory. Then, the damage development of initial defects before and after exposure to
rain is observed and analyzed. Finally, the feasibility study of active thermography as
an alternative measurement method to CT and XRM takes place, including a technique
comparison for validation. Due to the large number of tests undergone and hence gener-
ated data, the results are focused on a specimen with built-in voids in the coating layer
(specimen Type B).

3.1. Analysis of the Initial Specimen State

Figure 14 shows the resulting images of a test specimen section with inserted voids
in the initial state from the high-resolution XRM measurements. Styrofoam spheres were
placed in the area of the filler where their imprints left circular structures of different
diameters in the sectional images. The spherical structures only become visible in the
3D images. The voids can be analyzed according to position, size, sphericity, and size
distribution in VolumeGraphics, or their volume can be visualized in color-coded form,
see Figure 14b. However, the analysis is time-consuming, so deep learning methods were
further used for data analysis.
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Figure 14. Image analysis on high-resolution XRM data of a specimen with voids in the filler. In
(a) sectional images and 3D view in VoliumGraphics without analysis. In the area of the trowel
application, there are particles with high density (bright dots) as well as artificially generated voids
(dark circles) in the test specimen in (b) void analysis with color-coded volume sizes, adapted with
permission from [19].

Figure 15 shows the results of the employed deep learning methods. In Figure 15a,
one slice of the CT images is shown. The different layers of fibers and the filler are clearly
visible. The void in the coating, the coating itself, and the resin of the GFRP laminate are
barely visible due to their almost similar density. Therefore, the XMR data segmentation
was done using U-Net (see Figure 15b. The U-Net was trained 12 times and an additional
virtually labeled frame from different parts of the specimen was fed into the training data
during each training. The average training duration was around 35 min. Since the results of
the segmentation were inaccurate in the coating layer and did not ameliorate with further
training, a Sensor 3D [25] CNN with a different architecture was examined for better results.
The results using the Sensor 3D shown in Figure 15c were obtained after five training
sequences, i.e., with five virtually labeled frames. Nevertheless, the training of the Sensor
3D is more time-consuming than that of the U-Net, with an average training duration of
68 min. The comparison of the achieved segmentation results using the U-Net and the
Sensor 3D models depicts a clear advantage of the sensor 3D over the U-Net for the current
purpose. The Sensor 3D CNN could not only differentiate between different material layers
and the background, but the defects were also completely and correctly located.
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In conclusion, manufacturing reproducible test specimens close to the structure and
geometry of a real rotor blade leading edge and the inserted styrofoam balls in different
coating system layers (filler and coating) to imitate voids was successful.

3.2. Analysis of the Erosion Evolution Using CT and XRM

In Figure 16, the 3D representation of the loaded specimen with three areas of different
degrees of degradation in the filler layer is marked and shown in the left partial view
(red circles).
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Figure 16. 3D representation of the loaded specimen (left) with marked positions (red circles) of the
sectional view. The sectional views (right) show identical positions (a–c) before and after loading in
the rain erosion test rig, adapted with permission from [19]. The red arrows mark voids in the GFRP,
surface damage, or cracks in the material.

Corresponding sectional images showing the area before and after rain loading are
shown on the right. Voids are present in the filler layer. It can be seen that the degree
of degradation depends on the position of the pore, i.e., the distance to the air-coating
layer interface, the size and number of voids, and the void volume. From the sectional
images, a “time history” of the damage dynamics can be derived. At first, the coating
layer gets broken and is therefore no longer present as protection of the filler, and cracks
appear in the filler layer (Figure 16a). Second, the filler layer gets removed by abrasion
or washed out (Figure 16c) until the GFRP structure is exposed (Figure 16b). Afterward,
the bursting raindrops wash out the boundary layer between the GFRP and the filler, and
cracks form outside the opening. The damage there is more extensive than the opening in
the coating layer.
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Figure 17 shows a cross-sectional view of the identical defect from Figure 16b at three
different locations. Delamination can be seen along the interface between the GFRP and
the filler (Figure 17a). The filler has been destroyed over a large area, and the extent is
significantly greater than the opening in the coating layer (Figure 17b). A visual inspection
of the defect from the outside would not capture the real extent of the destruction.
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Figure 17. Cross-section of the identical defect (XRM, 9 µm pixel size) at three different locations
(a) at the location with the deepest defect, (b) at the boundary location of the defect, and (c) at various
locations of the defect [19].

For a faster evaluation of the test specimen’s state, the version of the Sensor 3D training
with the segmentation wizard toolbox was subsequently used to automatically label the
2014 slices of the CT scan. The 3D results of the initial test specimen state are shown in
Figure 18a. The black 3D geometrical half cylinder represents the scanned specimen, and
the spheres colored purple represent the defects. The Sensor 3D labeled the artifacts, the
noise, and both ends of the specimen along the longitudinal edges as pores. This indicates
that further training of the CNN was required to reduce noise.
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Figure 18. Defect detection (a) in the initial state and (b) after rain loading, adapted with permission
from [19].

After loading the specimen with rain in the rain erosion test facility, the specimen
was scanned again, and the same procedure was applied to the new data set. The results
are displayed in Figure 18b. The effect of noise and ring artifacts is visible in this scan.
Nevertheless, the defects were successfully located. The voids increased in size due to
rain erosion. The trained CNN showed that the accuracy and training based on a handful
of frames were sufficient for the segmentation of the whole data set. Another training
strategy needs to be developed to ensure the robustness of the CNN. The training of neural
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networks required a small amount of annotated data sets, so the biggest hurdle to using AI
was overcome. With the help of the trained networks, the data analysis can be accelerated
with modern hardware, especially with a powerful graphics card. A relevant aspect at this
point is the use of cloud computing as an alternative to modernizing the existing hardware.

In addition to the computed tomographic measurements and AI evaluation, surface
analysis using the fringe light projection method (3D profilometer) was carried out to
generate an overview of the specimen surface and to document surface defects in their
three-dimensional shape. The initial test specimen state is shown in Figure 19. Figure 19a
shows a smooth surface based on the image recordings, which has a certain inhomogeneity
in the form of an undefined waviness. This is also clearly evident from the 3D profilometer
height representation in Figure 19b. In addition, individual defects introduced in the
coating can be seen in the height image using slightly indicated local elevations on the
surface, but not in the visual image.
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Figure 19. (a) Visual image and (b) 3D profilometer height image of a test specimen with voids in the
coating before rain loading.

Figure 20 shows the damaged test specimen state after loading with rain. In both the
visual image and the height image, the defects on the surface of the coating caused by rain
erosion are visible. Small defects appear on the surface along the entire specimen, which
is hypothesized to result from initially introduced defects since they weaken the material
structure. Significant damage due to rain erosion is visible in the area of the marking hole
of the GFRP specimen (about 1 cm to 1.5 cm from the left end of the specimen). In addition,
a coating peeling is visible in the front area of the specimen (up to 3 cm from the left edge).
These large-area coating peels are due to adhesion restrictions of the individual applied
coating layers on this specimen.
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In conclusion, the evaluated CT and XRM data results show that initial defects not
visible from the outside are weak points where the material is destroyed at first, and the
defects grow during rain loading. Furthermore, the surface defects appear to be smaller
when observed from the outside as they are inside the specimen, so in both cases, a visual
inspection of the leading edge of a GFRP rotor blade is not suitable for assessing the
entire damage, as the full extent of the degraded area cannot be determined. Therefore,
a measurement method for in-situ applications is necessary, which can visualize both
the damaged state of the rotor blade leading edge as well as the damaged state beneath
the surface.

3.3. Analysis of the Erosion Evolution Using Active Thermography

A feasibility study of thermographic measurements is carried out to show the potential
for later in-situ monitoring. Figure 21 shows a specimen section’s thermograms before and
after rain exposure as an example.
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Figure 21. Thermogram of a specimen section with the environment at an excitation time of texc = 10 s;
(a) unloaded condition; (b) loaded condition. The red boxes A–C show different defects; A: large
surface damage, B: subsurface dafects, C: pinhole.

Before rain loading, the introduced defects appear as bright or hot spots on the
specimen, see Figure 21a. Since the thermal conductivity of air with 0.0262 W/(m·K)
is significantly lower than the thermal conductivity of the coating with 0.2 W/(m·K)
(estimated value based on polyurethane as base material, since no data is available for
the coating in this respect), the heat introduced during excitation accumulates in front
of the defects. Here, the coating heats up more strongly than in areas without defects.
The thermogram after rain loading shows evolved surface damages (A) in addition to
sub-surface defects (B). The surface damages are indicated by lower temperatures or darker
areas; see Figure 21b. Special attention should be paid to the pinhole in the center of
the specimen at pixel position y = 600 px (C). Here, according to the bright border area
of the defect, the damage below the surface is larger than it is visible at the surface in a
visual image.

For the validation of the thermographic measurement method, a comparison of the
different measurement methods is shown in Figure 22.
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Figure 22. Result presentation of a section of a specimen with voids in the coating as a comparison
between the applied measurement methods, including visual images, height images, thermography
(normalized raw image), and the Sensor 3D segmentation results of the CT data, in (a) unloaded and
(b) loaded condition.

Figure 22a shows the image section in the unloaded state. While no irregularities can
be seen in the visual image and the 3D topography, the thermogram shows irregularities in
the form of hot spots. These irregularities can also be seen in the CT. Since the specimen has
inserted voids, it can be assumed that exactly these initial defects were detected. Therefore,
the specimen’s condition is not ideal, even if it appears to be so from the outside.

Figure 22b shows the same specimen section after a 4 h exposure to rain. In the
visual image and the 3D profilometer, defects are now clearly visible on the surface of the
specimen. In the thermogram, these defects can also be declared as surface defects in the
form of dark spots. It is noticeable that the surface defects are surrounded by a bright
border, which would mean that the defect under the surface is significantly larger than
visible at the surface. A look at the CT image confirms that the defects have grown in size
compared to before rain loading. Here, the defect size in the CT differs from the defect
sizes in the visual images, indicating that the defects have also grown below the surface,
which validates the thermographic results.

The investigations show that it is possible to generate realistic erosion damage in the
laboratory. Furthermore, the experiments show that premature erosion starts from initial
defects in the test specimen and then enlarges to different sizes after rain loading. The CT
and the XRM measurements show that surface defects are often bigger than visible at the
surface. The thermographic feasibility study shows the same results. Therefore, only visual
inspection of the rotor blade is not sufficient for integrated condition assessment of rotor
blade leading edges. Furthermore, the thermographic investigations show that not only
sub-surface defects but also surface damage can be visualized in a single thermographic
image, and an additional visual camera is unnecessary.

To conclude, the condition of a rotor blade’s leading edge should therefore be inspected
before it is used on a wind turbine. Active thermography, in particular, offers great potential
as a measurement method since it is highly flexible compared to CT and can be used at
various locations, including in the open field.

4. Conclusions and Outlook

Within this work, investigations were carried out to establish a correlation between
initial defects in rotor-blade-leading-edge-like specimens and erosion damage after rain
load to clarify the causes and mechanisms of premature damage. By modifying specimens
that closely resemble the structure and the material of wind turbine rotor blade leading
edges and impacting them in a rain erosion test facility, it was possible to generate realistic
erosion damage in the laboratory. The investigations have shown that erosion damage
occurs preferentially in those areas of the specimens that were already damaged before
the rain load, for example, in the form of voids in the coating. Early erosion damage is
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thus due, among other things, to a non-ideal specimen condition or non-ideal condition of
the rotor blade leading edge. The experiments with different measurement methods like
CT and XRM show that the surface erosion damage below the surface is larger than what
the surface damage would suggest. These results were obtained with the measurement
method of active thermography as well. In addition, thermographic measurements can
detect defects below the surface and on the surface within one image. Thus, in contrast to
simple surface analysis like visual inspection, the entire damaged state of the specimen can
be visualized and validated by the CT examinations. The feasibility study of thermography
thus shows promising potential for future in-situ applications.

In the further course of the investigations, the defect formation will be examined in
more detail through cyclic erosion tests and the performance of intermediate examinations
to make statements about the damage growth and to enhance our understanding of damage
mechanisms. Furthermore, a quantitative evaluation of the damage condition in the
different erosion stages is planned.
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Nomenclature
The following nomenclature is used in this manuscript:

AI artificial intelligence
CT X-Ray Computed Tomography
CNN convolutional neural network
GFRP glass fiber-reinforced plastic
ROI region of interest
XRM X-Ray Microscopy
texc excitation time in [s]
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