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Abstract: Robots able to roll and jump are used to solve complex trajectories. These robots have
a low level of autonomy, and currently, only teleoperation is available. When researching the
literature about these robots, limitations were found, such as a high risk of damage by testing, lack
of information, and nonexistent tools. Therefore, the present research is conducted to minimize the
dangers in actual tests, increase the documentation through a platform repository, and solve the
autonomous trajectory of a maze with obstacles. The methodology consisted of: replicating a scenario
with the parrot robot in the gazebo simulator; then the computational resources, the mechanism, and
the available commands of the robot were studied; subsequently, it was determined that the genetic
micro-algorithm met the minimum requirements of the robot; in the last part, it was programmed in
simulation and the solution was validated in the natural environment. The results were satisfactory
and it was possible to create a parrot robot in a simulation environment analogous to the typical
specifications. The genetic micro-algorithm required only 100 generations to converge; therefore, the
demand for computational resources did not affect the execution of the essential tasks of the robot.
Finally, the maze problem could be solved autonomously in a real environment from the simulations
with an error of less than 10% and without damaging the robot.

Keywords: trajectory planning; mobile robot; micro-algorithm; genetic algorithm; simulation

1. Introduction

The technological variety of unmanned vehicles has grown with the development of
ground and robotic aerial systems. On the one hand, robotic aerial systems tend to be faster,
although they require more effort to control. On the other hand, terrestrial vehicles can
move better in confined spaces, with the disadvantage of limited movements on elevated
surfaces, as described by Tan et al. [1].

Studying this type of robot leads to the development of algorithms to make such
movements autonomous by following an optimal trajectory. For example, in [1], Tan et al.
use a fast exploration random tree method called RRT, a heuristic search algorithm based
on sampling. Huizinga et al. [2] use a combinatorial multi-objective evolutionary algorithm,
allowing all combinations of subtasks to be explored simultaneously. Such combinations
are a series of steps to be followed for robot locomotion.

Using a three-layer neural network, Ramos et al. [3] have one of the three inputs
connected to a sensor, an output connected to the actuators, and a hidden layer connecting
the previous two layers. A simple evolutionary algorithm is also used to synthesize the
control of the robot. Lan et al. [4] proposed a multi-objective trajectory planning method for
collaborative robots; the higher-order-B-spline interpolation method is utilized to construct
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a continuous trajectory. Then, a trajectory competitive multi-objective particle swarm
optimization is used to optimize the joint trajectory.

The algorithms and others whose purpose is the autonomous motion of mobile robots
generally explore a wide range of possible solutions simultaneously. Such exploration
involves significant wear and tear on the physical robot, which is why a simulator is
commonly used; with a simulator, an algorithm can be run and optimized as many times as
necessary. This strategy was developed by Zhang et al. [5] for a wheeled robot employing
an improved dolphin swarm algorithm on a real platform with the help of a simulation.

Another example is JBotEnvolver, a Java-based software with an open-source multi-
robot simulation platform used by Ramos et al. [3]. Alternately, Huizinga et al. [2] and
Dinev et al. [6] use PyBullet, a python module, to simulate robots utilizing a physics engine
and machine learning.

Mulun Wu et al. in [7] used a simulation environment in a mixed reality implementing
a modified vector field histogram (VFH) based routing algorithm as a path planning
algorithm. The simulated environment and the modified VFH algorithm showed that this
method proposed valid motion paths for the four-wheeled mobile robot concerning the
operator’s requirements for obtaining good obstacle avoidance performance.

Molina-Leal et al. [8] presented a long short-term memory (LSTM) neural network
that allows a mobile robot to find the trajectory between two points and navigate while
avoiding a dynamic obstacle. The authors used a LIDAR sensor to measure the distance
between the robot and obstacles. The linear and angular velocity of the robot is obtained
using a model to learn the mapping between input and output data. The mobile robot and
its dynamic environment are simulated in Gazebo. The computer simulation showed that
the network model could plan a safe navigation route in a dynamic environment.

In [1], Tan et al. use MATLAB to simulate the scenario and the proposed algorithm,
solving the traveling salesman problem. Finally, in [9], Klemm et al. use Gazebo, an
open-source 3D robotics simulator, to create a high-performance physics engine.

Other techniques are found in [10] and [11], where Hao et al. describe a path plan-
ning of mobile robots based on a multi-population migration in the genetic algorithm
(see Figure 1).

Figure 1. Flowchart for trajectory planning of mobile robots.
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The heterogeneous contributions in the literature are classified into relevant metrics
and compared, as shown in Table 1.

Table 1. Robot metrics comparison.

Reference Simulator Used/
Operating System Embedded Algorithm Implementation

or Simulation Algorithm Used Time for Travel/Computing
Time./Other

Tan et al. [1] MATLAB/Windows No, the solutions are
computed on MATLAB Both Rapidly exploring random

tree (RRT)
36 s

Huizinga and
Clune [2] Bullet, Fastsim No Simulation

Multi-objective
evolutionary algorithm

(CMOEA)

It depends on the
optimization result.

Ramos et al. [3] JBotEvolver/Java-based
open-source

No, the solutions are
computed on software

Simulation Continuous-time
recurrent neural network

A simple obstacle
(1.71 to 1.84 s)

Dinev et al. [6] Simulator PyBullet
No, the solutions are

computed using CasADI
and KNITRO

Simulation

KNITRO and selected the
Interior/Conjugate-

Gradient algorithm suited
for large-scale

5 s

Klemm et al. [9] Gazebo/ROS
Yes, the solution was

implemented directly on
the chip

Both
Optimal control strategy

for regulating
a linear system at minimal

cost LQR

Time to jump 2 s

Chávez et al. [12] MATLAB/Windows Yes, in a P8X32A 8-core
Architecture

Both Genetic algorithm Another type of robot

Lee et al. [13] Java JDK1.8 /
Windows 10

No, the solutions are
computed using CasADI

and KNITRO
Simulation

Genetic algorithm (GA)
and

a direction factor toward a
target point

Not presented. Only shows
computing time 1.87 s

de Oliveira
et al. [14]

MobileSim, Pioneer
Software Development Kit

to commercial Pioneer
3-DX robot./ROS.

No. Personal computer is
responsible for acquiring

the sensor data and
controlling the robot.

Both Hybrid path-planning
strategy with A* algorithm

It depends on the
optimization result

Hao et al. [11]
MATLAB

r2018a / Windows
10(64-bit)

No, the solutions are
computed in MATLAB Simulation

Multi-population
migration genetic

algorithm

Not presented. Only shows
computing time 120.59 s

Mengmei Liu [15] MATLAB and SIMULINK
No, the solutions are

computed on MATLAB.
Do not use a mobile robot

Simulation Genetic Algorithm Time to do one simulation
2.5 s. total of simulation 1600

Lan et al. [4] MATLAB, ROS No, the solutions are
computed on MATLAB Simulation

Multi-objective particle
swarm optimization

algorithm (TCMOPSO)

It depends on the
optimization result

Zhang et al. [5] none
Yes, the solution was

implemented directly on
the chip

Implementation Dolphin swarm
algorithm 35 s time to trajectory

Mulun et al. [7] ROS, Rviz/Windows No, the solutions are
computed on ROS Both Vector field histogram *

(VFH *)
Not presented. Only shows

computing time 62.2 s

Molina-Leal
et al. [8] GAZEBO/Windows Both, TurtleBot 3 Waffle Pi Both Adam optimization

algorithm
Another type of robot

Our proposed
solution ROS, GAZEBO, Linux.

Yes, the solution was
implemented directly on

the chip
Both Micro-genetic algorithm 33 s

2. Materials and Methods
2.1. Robot

In this work, we use a two-wheeled mobile robot with jumping capability, a low-cost
model called a Tuk-Tuk, and a multimodal locomotion robotic platform made by Parrot.
This robot is only 15.5 cm wide and 14.3 cm long, with a height of 11.6 cm and a weight of
200 g (see Figure 2).

It can turn 360◦ in less than a second, reach a maximum speed of 13 km/h, and have a
top jump of 80 cm.

The robot has a VGA camera with 640 x 480 pixels of resolution at 30 fps, an audio
system for speaking and listening, 4 GB of internal memory, a 550 mAh average battery
duration that allows us to use it for 20 min, and 2.5 GHz and 5 GHz Wi-Fi.
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Figure 2. Tuk-tuk parrot robot.

2.2. Algorithm

For the robot’s autonomous navigation, a bio-inspired algorithm was implemented,
which is a heuristic technique whose behavior is inspired by the biological evolution of
living beings and Neo-Darwinism. These algorithms are used in search, optimization, and
learning procedures. Furthermore, these algorithms handle several potential solutions
simultaneously as an alternative to commonly used techniques, which tend to search for
solutions linearly.

Within these heuristic techniques, we find a set of algorithms whose model is obtained
by applying the natural selection mechanism and the theories of evolution to population
schemes; these techniques are known as evolutionary algorithms in [13,14,16].

These algorithms can be divided into three main stages:

• Initialization: an initial population of n individuals is randomly generated;
• Generation: in this stage, the corresponding genetic operators are applied to the initial

population, depending on the paradigm being handled; they are also known as
evolutionary adaptation procedures;

• Cycle: Finally, the second stage is repeated until the convergence criterion or stop
condition is reached. Some algorithms cycle from the first stage, keeping the fittest
individuals and replacing the rest of the population within a second convergence cycle.

Three basic genetic operators are used in the generation stage: selection, crossover
(reproduction or recombination), and mutation;

• Selection: consists of a probabilistic or deterministic process that makes it possible to
choose the parent individuals of the next generation;

• Crossover: refers to the exchange of information between two parents selected based
on their fitness according to the objective function;

• Mutation: is responsible for making minimal changes to the newly created individuals
in the new population to explore areas of the search space that the crossover could not
reach, thus maintaining the diversity of the individuals.

Evolutionary algorithms use selection, mutation, and recombination to create di-
versity, and, according to Chávez [12] and Zhang et al. [17], are usually divided into
three paradigms:

• Evolutionary programming;
• Evolutionary strategies;
• Genetic algorithms.
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Currently, some trends combine characteristics of the three mechanisms and include
techniques from other fields of study, such as search algorithms, machine learning, or data
structures. This has given rise to paradigms such as the following:

• Differential evolution;
• Genetic programming;
• Memetic algorithm;
• Probabilistic models.

Genetic algorithms are used within the area of artificial intelligence in the field of
optimization, manipulating simultaneously a set of potential solutions to a given problem
that needs to be maximized or minimized.

In this work, we used a genetic algorithm with a reduced population, formally known
as a genetic micro-algorithm. It obtains competitive results while requiring fewer resources
than a standard algorithm. The genetic micro-algorithm is illustrated in Figure 3.

Figure 3. Genetic micro-algorithm fitness evaluation.

The algorithm begins generating a random population of five sets of movements,
which are named individuals. Then, this population is evaluated based on its fitness.
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The closer an individual is to the goal, the higher their fitness. Then, a crossing
process is performed in which the fittest individuals have higher chances of being used for
reproduction. They will also contribute the dominant alleles in the genetic recombination
to their parents, forming both the parents and children of a new population, which is
reevaluated by selecting the two best individuals (natural selection).

These individuals, together with three others selected randomly (genetic drift) will be
the survivors of autoregulation, in which the population returns to its original size. The
process is repeated cyclically until nominal convergence is reached. Then, through elitism,
the two best individuals of the last population are selected.

These two individuals, together with three new randomly generated individuals are
integrated into the new population that will appear at the beginning of the algorithm, thus
forming a second loop with a stop condition established in the general convergence. At the
end of this loop, we will have the best individual. This individual will result from genetic
inheritance through several generations, and therefore, the best solution found.

The last stage, where new, totally random individuals are introduced, is known as
stochastic noise. It helps to maintain diversity in the population, thus escaping premature
convergence and avoiding being trapped in local optima. At the same time, elitism allows
us to scale over the best solutions in search of a global optimum.

A balance must be maintained between the diversity provided, i.e., between the
exploration and exploitation of the micro-algorithm. Chavez [12] mentions that exploitation
is the process of using the information obtained from previously explored solutions to
determine which solutions are more convenient to continue advancing toward, while
exploration is the process of visiting new regions of the search space (new solutions) to see
if something promising can be found.

2.3. Simulator

The open-source 3D robotics simulator Gazebo has a high-performance physics engine
used to execute and evaluate each solution proposed by the genetic algorithm.

Gazebo uses a world description file in simulation description format (SDF). In this
file, it is possible to specify all the physical characteristics of a robot and its movements, as
well as the environment and lighting, among other objects.

To run the simulation, we use the Gazebo command followed by the name of the
world file. This file is read by Gazebo, which starts a simulation based on what is described
in the world file and ends the simulation when the user indicates that it should end.

The gzserver analyzes the world description file and performs the simulation without
including a graphical interface. It can be executed from the command line and end when
the user indicates it.

The gzclient takes care of the graphical interface by connecting to a running gzserver.
It is worth mentioning that when using the Gazebo command, both gzserver and gzclient
are executed together.

Gazebo allows us to save a log of the simulation in a file named state.log by adding
the -r option on the command line.

The gzlog command allows us to filter a state.log file in such a way that we simplify
the stored information according to the options specified by the user in the command line.

2.4. Chromosome bit-to-motion conversion

The Tuk-Tuk robot has two finite ranges of motion (Motion = [Turn, Adv]). The
first motion is a turn in degrees, Turn = [Turnmin, Turnmax]. The second motion is a
forward motion in cm, Adv = [Advmin, Advmax]. Each individual x has n subsets Si of
modd or meven bits in length (x = S1,m + S2,m + . . . + Sn,m). Then it will represent the
chromosome. For the movement, if the subset is odd, it corresponds Turn, and if even,
it corresponds Adv. Then, we would have the execution of the robot’s movement by
xmotion = Turn1 + Adv1 + . . . + Turnn + Advn. Finally, to perform the conversion, we use
the Turni =

Turnmax−Turnmin
modd

or Advi =
Advmax−Advmin

meven
.
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For the case study, an individual was tested with a 144 bits chromosome with n = 12,
modd = 14bits, meven = 10bits, Turnmin = −360◦, Turnmax = 360◦, Advmin = 0 cm, and
Advmax = 50 cm. The chromosome setup and an example are shown in Figure 4.

Figure 4. Chromosome-to-motion conversion.

2.5. Methods

The trajectories are generated offline and tested in two ways: The first method uses
the Gazebo simulator, for which an extensive methodology is proposed that is like those
used in other applications. The second method involves implementing the best trajectory
in the robotic platform, which is intrinsically executed.

The integration of the genetic micro-algorithm with the simulator (see Figure 5) was
done through a C language program executed in Ubuntu, through which the simulation
configuration files for Gazebo (world) are read and written.

Figure 5. Integration of the genetic micro-algorithm with the simulator.
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A world file contains all the necessary elements to simulate in Gazebo. For each set
of movements, a world file is created. Then, it is simulated from the terminal with the
gzserver command, which allows us to perform a simulation without using the graphical
interface. This command is executed using the fork() function from the C program.

The fork() function creates a process, in this case, gzserver, and allows us to determine
the duration of this process. Each simulation has a period depending on the number of
movements of the robot.

Once the simulation process is finished, Gazebo will keep a record of it. Thus, from
the C program, we execute the command gzlog, which allows us to interpret the description
above and filter this record’s information. Remember that we are interested in the final
position of the robot concerning the established goal to evaluate the aptitude of the set of
simulated movements.

The algorithm starts with the function RandomPopulation; Algorithm 1 is executed;
it generates the initial population, a two-dimensional array whose dimensions are the
population size times the size of the chromosomes. The population size is five, and each
chromosome is a 144-bit binary string.

Algorithm 1 RandomPopulation

Input: populationSize, chromosome,
sizeChormosome
Output: Random Population
1. function RandomPopulation()
2. set RandomSeed()
3. for i← 1 to populationSize do
4. RandomBinary(chromosome, sizeChromosome)
5. end for

Algorithm 2 shows the RandomBinary function used in line 4 of the RandomPopulation
function, which pseudo-randomly generates a single 144-bit binary string.

Algorithm 2 RandomBinary

Input: sizeChromosome, chromosome
Output: Random binary, chromosome
1. function RandomBinary()
2. for i← 1 to sizeChromosome do
3. RandomNum← random [1, 100]
4. if RandomNum ≤ 50 do
5. chromosome[ i ]← 0
6. else chromosome[ i ]← 1
7. end if
8. end for

In Algorithm 3, once the initial random population is created (line 1), the external
cycle of the algorithm of thirty iterations starts (line 2), and the serial variable is set to 0
(line 3) in each iteration before starting the internal cycle (nominalConv), which consists of
ten iterations (line 4).

At the beginning of the internal cycle (line 5), we generate a pseudo-random number
from zero to five corresponding to the six movements of the robot. Then, this number is
multiplied by 24, which is the number of bits occupied by each movement. Finally, the
result of this multiplication is stored in the variable fragment (line 6).

In lines 7 to 10 of the main algorithm, a selection of the number of bits for the dynamic
crossover is made. In the even iterations of the external cycle, this number will start at six
and increase in each iteration of the internal cycle. For the odd iterations, it will start at 23
and will decrease in each iteration of the internal cycle. This number will be stored in the
serial variable (lines 8 and 9).
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Algorithm 3 Main algorithm

Input: stopCondition, nominalConv, populationSize,
chromosomeSize
Output: bestChromosome, resultTest1
1. P← RandomPopulation()
2. for h← 1 to stopCondition do
3. serial← 0
4. for i← 1 to nominalConv do
5. rfrag← random[0, 5]
6. fragment← (24 × rfrag)
7. if module(h+1) = 0 do
8. serial← 6 + i
9. else serial← 23 – i
10. end if
11. RandomSeed()
12. FitnessEval(P)
13. CrossPop← Cross(P)
14. SortedPop← FitnessEval2(CrossPop)
15. NewPop← SelfRegulation(SortedPop)
16. for j← 1 to populationSize do
17. for k← 1 to chromosomeSize do
18. P[j][k]← NewPop[j][k]
19. end for
20. end for
21. end for
22. RandomBinary(sizeChromosome, P[1])
23. RandomBinary(sizeChromosome, P[2])
24. RandomBinary(sizeChromosome, P[3])
25. inputFile← openFile(“resultsTest1.txt”, “r”)
26. set g← 0
27. while inputFile 6= EOF do
28. inputData← readChar(inputFile)
29. Aux[g]← inputData
30. g← g + 1
31. end while
32. closeFile(inputFile)
33. outputFile← openFile(“resultsTest1.txt”, “w”)
34. set e← 0
35. while e < g do
36. outputFile← Aux[e]
37. e← e + 1
38. end while
39. outputFile← bestFitness
40. closeFile(outputFile)
41. bestFile← openFile(“bestChromosome.txt”,“w”)
42. for i← 1 to chromosomeSize do
43. bestFile← P[populationSize-1][ i ]
44. end for
45. closeFile(bestFile)
46. end for

We set the seed that generates the numbers pseudo-randomly as a function of time at
the beginning of each inner cycle (line 11).

In line 12, FitnessEval function evaluates the initial population fitness and orders them
from highest to lowest.

Subsequently, in line 13, we use the function Cross, which receives the initial population
already evaluated and sorted and creates ten more chromosomes that, together with the
initial population, will form the cross-population (CrossPop).

In line 14 of the main algorithm, we use FitnessEval2, which evaluates the cross-
population and sorts it from highest to lowest fitness (SortedPop).
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Then, in line 15, we use the SelfRegulation function, which selects the two best chro-
mosomes from the sorted population (SortedPop) and randomly selects three different
chromosomes, forming the new population (NewPop) of five chromosomes.

From lines 16 to 20, the new population (NewPop) is stored in the initial population
(P), closing the internal cycle in line 21 of the main algorithm. Once this cycle is finished,
the RandomBinary function is used to create three chromosomes in the last positions of
the initial population (lines 22, 23, and 24). Note that the first two positions contain the
two best chromosomes from the previous cycle.

In the following lines (25 to 32), we open the file named resultsTest1, save its content
in an auxiliary array, add the best distance achieved in this iteration, and overwrite this
file (lines 33 to 40). This action saves the progress of the algorithm over the generations.
Finally, we overwrite the file bestChromosome, where we store the binary string of the best
chromosome of this iteration (lines 41 to 45).

We close the outer loop at line 46, and the main algorithm concludes once the stop
condition is reached.

In the function FitnessEval, in Algorithm 4, we go through the input population (line 2)
and evaluate each of its chromosomes using the function Fitness (line 3), saving the result
in another array (line 4), as well as saving the position of the corresponding chromosome
(line 5). Subsequently, we use bubble sorting from lines 7–18 for the second array from
highest to lowest fitness. Once sorted, we obtained the numbers of the corresponding
chromosomes sorted and saved the chromosome in an auxiliary array (lines 19 to 24). Then,
it is stored in the original array (lines 25 to 30).

Algorithm 4. FitnessEval

Input: populationSize, orderedPopulation
Output: orderedPopulation, bestFitness, P
1. function FitnessEval()
2. for i← 0 to populationSize do
3. fitness← FitnessFunction_call_to_gazebo_simulator
4. orderedPopulation[i][0]← fitness
5. orderedPopulation[i][1]← i
6. end for
7. for i← 1 to populationSize-1 do
8. for j← 0 to populationSize-i do
9. if orderedPopulation[j][0] > orderedPopulation[j+1][0] do
10. aux← orderedPopulation[j][0]
11. orderedPopulation[j][0]← orderedPopulation[j+1][0]
12. orderedPopulation[j+1][0]← aux
13. aux← orderedPopulation[j][1]
14. orderedPopulation[j][1]← orderedPopulation[j+1][1]
15. orderedPopulation[j+1][1]← aux
16. end if
17. end for
18. end for
19. for i← 0 to populationSize do
20. k← orderedPopulation[i][1]
21. for j← 0 to chromosomeSize doend for
22. aux[i][j]← population[k][j]
23. end for
24. end for
25. for i← 0 to populationSize do
26. for j← 0 to chromosomeSize do
27. P[populationSize-i-1]← aux[i][j]
28. end for
29. bestFitness← orderedPopulation[i][0]
30. end for
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The fitness function is described in Equation (1).

F(xi) = G − xi (1)

where G is the goal and xi is the final position obtained for each individual simulation
where i = 1, 2, 3, ..., n.

3. Results

For the experimental stage, the genetic micro-algorithm was used with binary represen-
tation, with populations of five individuals. Each individual is a binary string of 144 bits.

The robot can perform 360◦ turns to the right or left, using 14 bits for each turn. It can
also move forward 50 cm, which requires 10 bits.

It follows that each individual will be able to perform six turns and six advances
interspersed with each other, i.e., after a turn it performs an advance and after an advance
it performs a turn. A mutation was implemented for each bit of (1/chain length) × 10.

A dynamic crossover process was implemented, varying between 6 and 23 bits per
string fragment throughout the generations. Each fragment is made up of 24 bits, which
represent a turn and an advance. Two of them are crossed randomly in each process.

The robot starts at point (0, 0) and must move over a stage with obstacles until it
reaches the goal, which is 2 m ahead of the starting point, has its center at (2, 0), and an
area of 20 cm. Table 2 shows the parameters for matching virtual and real orientations and
Table 3 shows the parameters for matching virtual distances with real distances.

Table 2. Turning parameters.

Measured Simulation Robot

360◦ 358◦–361◦ 354◦–366◦

180◦ 179◦–181◦ 173◦–184◦

90◦ 89◦–91◦ 86◦–94◦

45◦ 43◦–46◦ 43◦–48◦

10◦ 9◦–11◦ 8◦–12◦

5◦ 4◦–7◦ 3◦–8◦

Table 3. Advancing parameters.

Measured Simulation Robot

1 m 98–102 cm 94–107 cm

50 cm 48–52 cm 45–55 cm

25 cm 24–27 cm 21–28 cm

15 cm 14–16 cm 12–18 cm

10 cm 9–11 cm 8–12 cm

5 cm 3–7 cm 2–7 cm

The first experiment consists of a scenario with a single obstacle between the goal and
the starting point; this obstacle is 50 cm from the starting point (see Figure 6).
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Figure 6. Simulated scenario with one obstacle: (1) goal, (2) obstacle, (3) home, and (4) robot.

The real implementation of this scenario is shown in Figure 7.

Figure 7. Scenario with one obstacle: (1) goal, (2) obstacle, (3) home, and (4) robot.
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After three hundred generations, the best movement combination was obtained. These
movements make up the trajectory shown in Figure 8.

Figure 8. Trajectory in simulated scenario with one obstacle: (1) goal, (2) obstacle, (3) home, (4) robot,
and (5) trajectory.

The robot executed these movements using a similar trajectory to reach the goal (see
Figure 9).

Figure 9. Trajectory in scenario with one obstacle: (1) goal, (2) obstacle, (3) home, (4) robot, and
(5) trajectory.
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The graph in Figure 10 allows us to appreciate the algorithm’s evolution through
the generations, which gives better results as time passes. The goal, or optimal result, is
reached in the 120th generation.

Figure 10. Results of experiment 1.

The second obstacle is added to the stage 100 cm from the goal in the second experi-
ment. Each obstacle is 75 cm long, starting from the center-right and left, respectively (see
Figure 11), so the robot can avoid them both in the middle and on the sides.

Figure 11. Simulated scenario with two obstacles: (1) goal, (2, 3) obstacles, (4) home, and (5) robot.

The physical implementation of this scenario is shown in Figure 12.
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Figure 12. Scenario with two obstacles: (1) goal, (2,3) obstacles, (4) home, and (5) robot.

The best motion proposal obtained at the end of 300 generations is simulated. It
describes the trajectory shown in Figure 13.

Figure 13. Trajectory in simulated scenario with two obstacles: (1) goal, (2,3) obstacles, (4) home, (5)
robot, and (6) trajectory.

The robot executed the proposed movements, which used a similar trajectory to reach
the intended goal (see Figure 14).
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Figure 14. Trajectory in a scenario with two obstacles: (1) goal, (2, 3) obstacles, (4) home, (5) robot,
and (6) trajectory.

The behavior of the algorithm in a scenario with two obstacles can be seen in Figure 15.
Compared to the first experiment, in which close approximations to the goal are achieved
in a few generations, more generations are required to achieve better results when a second
obstacle is added.

Figure 15. Results of experiment 2.

The third experiment consists of a scenario composed of a closed maze with two
obstacles. The starting point and the goal are enclosed in the maze, forcing the robot to
negotiate the obstacles to create a successful trajectory (see Figure 16).
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Figure 16. Simulation of labyrinth with two obstacles: (1) goal, (2,3) obstacles, (4) home, and (5) robot.

We can observe the physical representation of the maze with two obstacles in Figure 17.

Figure 17. Maze with two obstacles: (1) goal, (2,3) obstacles, (4) home, and (5) robot.

After 300 generations, the best motion proposal obtained is simulated; it describes the
trajectory shown in Figure 18.
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Figure 18. Trajectory of the maze with two simulated obstacles: (1) goal, (2,3) obstacles, (4) home,
(5) robot, and (6) trajectory.

We can observe the results after 300 generations in Figures 19 and 20, where the
best-fitting solution results in the robot being 7 cm from the center of the goal, so it locates
the robot within the desired area.

Figure 19. Trajectory in a labyrinth with two obstacles: (1) goal, (2,3) obstacles, (4) home, (5) robot,
and (6) trajectory.
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Figure 20. Results of the maze with two obstacles.

We can observe the error graph of the algorithm: zero, the ideal distance, was reached
in generation 200, so 300 generations were not required. We can also observe a reduction
of the error in the first 150 generations; the distance to the goal decreased from 200 cm to
11 cm, within the tolerance margin of 20 cm. Then, the algorithm reduces the margin until
reaching the minimum error of 0 in generation 220.

Table 4 shows the results of ten experiments performed for 300 generations, consider-
ing the execution time and the target achieved.

Table 4. Time and goal results.

Experiment Generations Time (min) Goal (µm)

1 300 1920.0 040

2 300 1920.0 100

3 300 1920.6 000

4 300 1920.0 200

5 300 1928.4 100

6 300 1926.0 100

7 300 1923.0 020

8 300 1920.0 010

9 300 1920.0 000

10 300 1924.2 000

Table 5 shows the descriptive statistics, and we can observe that both the compute
time and goal error follow a normal distribution. This stochastic problem was estimated by
a limited number of random samples [15].

Table 5. Time and goal results.

Date Time (min) Goal (µm)

Maximum 1928.40 200

Minimum 1920.00 000

Mode 1920.00 000

Median 1922.22 057

Standard deviation 0002.88 062



Appl. Sci. 2022, 12, 11284 20 of 21

The behaviors for time and target are shown in Figure 21.

Figure 21. Time and goal results.

A recording of the algorithm performance, the simulation, and the real robot move-
ment can be found at https://youtu.be/i2rkelWQpQ4 (accessed on 6 November 2022).

4. Discussion

It is possible to generate a simulation configuration file (world) for each proposed
solution from a binary chain conceived by the genetic micro-algorithm. Likewise, the
simulation process is managed by employing the fork() function, which determines the
simulation’s start, end, and duration, allowing us to run simulations automatically.

Some indirect advantages of using simulations are the access to multiple complemen-
tary tools that the robots would not have physically. For example, saving the simulation
step by step in memory would allow analyzing parameter performances.

The robot crosses the trajectory in 33 s, successfully solving the maze; this result
is acceptable if we compare it with other algorithms used in similar studies, as is the
case of [1], where the robot crosses the trajectory on a stage with obstacles in a time of
36 s. The documentation and the repository code are available at the following link https:
//github.com/EduardoCardoza/Micro-AG-for-mobile-robot (accessed on 6 November 2022).

5. Conclusions

The objective of this work was achieved. In general terms, this development uses the
Gazebo robotic simulator, a suitable genetic algorithm, and implements the best trajectory
in a physical autonomous mobile robot. The main conclusions obtained are the following:

In the Gazebo simulator environment, a virtual model of a two-wheeled robot is
possible. A set of scenarios were modeled for the robot to travel from a starting point to a
predetermined destination without anomaly behavior. The simulator discovers failed tests
in the virtual world to focus only on the best trajectory planning for the real world.

The parrot robot represents a challenge because it has a closed-embedded system; this
limitation of resources and commands was solved with a heuristic technique. Implementing
algorithms that are intrinsically executed in embedded systems is a current trend that refers
to using architectures with limited resources, so the genetic micro-algorithm presented in
this work was implemented.

Searching for the best solution from a wide range of potential solutions is difficult for
the algorithm. The key to obtaining good performance is to have a functional chromosome
bit-to-motion conversion relationship, a correct fitness function, the size of individuals, and
the number of operations. Specifically, in the first experiments performed, an improvement
in the solutions is observed across generations, reducing the distance between the mobile
robot and the goal. The convergence graphs show good results after 100 generations and
successful results after 200 generations. In the final experiments, there were good results
at 150 generations and successful results at 300 generations. Other scenarios with more
obstacles or distance toward the goal require more generations and execution time to solve
the path in the algorithm.

https://youtu.be/i2rkelWQpQ4
https://github.com/EduardoCardoza/Micro-AG-for-mobile-robot
https://github.com/EduardoCardoza/Micro-AG-for-mobile-robot
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The wear and tear also were a critical criterion to validate the proposed work. As a
result of the parrot-robot physical implementation, an average of 10% relative error was
obtained. This percentage is enough to avoid partial or total damage to our robot to achieve
the goal of distances up to 2 m and few obstacles. A public test bed virtual repository is
available for interested readers who wish to prove different scenarios or make adaptations.

At this stage, we could move the parrot robot wheels to avoid obstacles in a simulated
and natural environment maze. For future work, we propose to improve the micro-genetic
algorithm. First, we are modifying the proposed micro-algorithm to generate the trajectory
of a jumping parrot robot considering an environment with dynamic obstacles, and second,
several virtual robots together in a collaborative scheme.
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