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Abstract: Unit distributions are typically used in probability theory and statistics to illustrate useful
quantities with values between zero and one. In this paper, we investigated an appropriate transfor-
mation to propose the unit-exponentiated half-logistic distribution (UEHLD), which is also beneficial
for modelling data on the unit interval. This distribution’s mathematical features are supplied, includ-
ing moments, probability-weighted moments, incomplete moments, various entropy measures, and
stress—strength reliability. Using well-known estimation techniques such as the maximum likelihood,
maximum product of spacing, and Bayesian inference, the estimators of the parameters relevant
to the proposed distribution were determined. A comprehensive simulation analysis is provided
to examine the performance of parameter estimation approaches on finite samples. The proposed
distribution was realistically applied to data on economic growth and data on the tensile strength
of polyester fibers to provide an explanation. Furthermore, the analysis of COVID-19 data from
Britain as a medical statistical dataset is provided. The experimental results demonstrate that the
suggested UEHLD yields a better comparison with some new unit distributions, as well as other
unbounded distributions.

Keywords: unit distributions; exponentiated half-logistic distribution; moments; entropy measures;
quantile; Bayesian method; COVID-19 data

MSC: 62E15; 62F15; 62F03; 46N10

1. Motivation and Introduction

In recent times, the construction of bounded distributions has grown tremendously.
The unit distributions are necessary for modelling proportions, scores, rates, indices, etc.
The benefit of these bounded distributions is that they allow the basic distribution to be
more flexible throughout the unit interval without introducing new parameters. The well-
known beta distribution is perhaps the first model that was employed for data observed in
the interval (0, 1). Besides this, Kumaraswamy’s distribution (Kumaraswamy [1]) and the
Topp-Leone distribution (Topp and Leone [2]) deserve attention.

Recently, several notable models have been presented as alternatives to the beta
and Kumaraswamy distributions in order to improve modelling flexibility using ap-
propriately transformed methods. The transformation of the well-known continuous
distributions has frequently been used to present the newly suggested unit distribu-
tions. The transformations of the form T = 1/(1+X), T = X/(1+X),and T = ¢~ %,
are popularly used when X is a positive-valued random variable. Several probability
distributions have been developed in this area for dealing with restricted datasets in
various domains using the previous transformation. Among the most notable distribu-
tions are: unit gamma (Grassia [3] and Tadikamalla [4]), unit logistic (Tadikamalla and
Johnson [5] and Menezes et al. [6]), unit Birnbaum—-Saunders (Mazucheli et al. [7]), unit
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Weibull (Mazucheli et al. [8,9]), unit inverse Gaussian (Ghitany et al. [10]), unit Gompertz
(Mazucheli et al. [11]), unit Lindley (Mazucheli et al. [12]), unit generalized half-normal
(Korkmaz [13]), unit modified Burr-III (Hagq et al. [14]), unit Burr-XII (UBXII) (Korkmaz
and Chesneau [15]), unit gamma/Gompertz (Bantan et al. [16]), unit log-logistic (Ribeiro-
Reis [17]), and unit generalized log Burr XII (UGLBXII) (Bhatti et al. [18]). In addition to the
preceding transformations, Cancho et al. [19] and Rodrigues et al. [20] developed a broad
strategy based on the cumulative distribution function (CDF)-quantile function (QF).

In a wide range of academic and professional fields, lifetime modeling and analysis
are essential components of statistical work. A complete explanation of an event that
only happens once in a lifetime typically follows a thorough data analysis based on a
carefully chosen statistical model. The development of new probability distributions
was necessary as a result of several attempts to construct models with different features.
Lifetime distributions, a crucial statistical technique, can be used to model the numerous
properties of lifetime datasets. These datasets can be analyzed using rather complicated
distributions found in the statistical literature. One of the most-significant lifetime models
is the exponentiated half-logistic distribution (EHLD). It has a number of characteristics
that make it a viable alternative to well-known distributions, and at the same time, it has
the ability to model various real datasets. It has been used in a variety of fields, including
insurance, engineering, medical, and education. The probability density function (PDF)
and CDF of the EHLD are represented by:

_ 20pe™%  (1—e% ¢ )
fly) = (1+€5y)2<1+6_5y) ;10,9 >0, 1)
1—e\?
F(]/):(M) ; ¥, 0,¢>0,

where J, and ¢ are the scale and shape parameters, respectively. PDF (1) gives the half-
logistic distribution (HLD) for ¢ = 1. The EHLD has recently caught the interest of a large
number of academics. The parameters and reliability estimators of the EHLD utilizing the
maximum likelihood (ML) and Bayesian techniques were examined using a progressive
censoring scheme [21-23]. Cordeiro et al. [24] enhanced the EHLD by proposing the
notion of the EHLD as a generator to produce the family of continuous distributions
with the goal of making the distributions more practical. Seo and Kang [25] examined
the moment and ML estimators of the EHLD parameters. EHLD’s ML, inverse moment,
and modified inverse moment estimators, as well as the joint confidence regions were
investigated by Gui [26]. Naidu et al. [27] created a reliability test strategy for the EHLD.
Jeon and Kang [28] used multiple Type-I hybrid censoring to look at estimators of the
EHLD parameters. Adaptive progressive censoring was used by Xiong and Gui [29] to
investigate the parameter estimators of the EHLD.

The goal of this essay is to construct a new probability, called the unit-EHLD (UEHLD)
by using transformation T = ¢~¥, where Y is the EHLD. We were motivated to propose the
UEHLD due to the following:

(i) To create various forms for the hazard rate function (HRF) and PDF.

(if) With a range of 0 to 1, the UEHLD is versatile and may be used to describe a variety
of datasets. It can be seen as a useful model for fitting skewed data that might not be
effectively fit by other popular distributions.

(iii) To give a comprehensive comparison of three approaches for estimating the UEHLD
parameters, as well as an examination of the performance of such estimators for
various parameter values and sample sizes. Our investigations were limited to the
ML, maximum product of spacing (MPS), and Bayesian methods. It is difficult to the-
oretically examine the behaviors of different estimating approaches; thus, we carried
out extensive simulation studies to evaluate the behaviors of different estimators with
the bias, mean-squared error (MSE), and length of the confidence interval (CI) criteria.
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(iv) To describe some practical uses in many disciplines, such as economic growth data,
tensile strength data, and COVID-19 data.

This article’s structure is as follows: In Section 2, we develop a brand-new model
known as the UEHLD. Some moments’ measures are deduced in Section 3. The stress—
strength model and some information measures are described in Section 4. Section 5
discusses a few of the various techniques for estimating the model parameters. Section 6
carries out a numerical investigation using Monte Carlo simulations. Section 7 conducts a
numerical examination of real datasets, and Section 8 gives the findings.

2. Unit-Exponentiated Half-Logistic Distribution

In this section, the CDF and PDF of the UEHLD are proposed. The HRF and QF of the
UEHLD are provided.

Definition 1. Let Y be a random variable having the EHLD, with parameters 5, and ¢
and T = e~ Y, then the CDF of the bounded UEHLD with support on (0, 1) is formed as:

G@:P@gw:P@”gQ:1—myg—mﬂ:1—ﬂ@mu
which eventually leads to
1—#

9
H=1-|——=] ;9 t<1. 2
G(t) (1+t5>”(’)>0’0< < (2)

From (2), we have G(t) = 0, for t <0, and G(t) = 1, for t < 1. The PDF of the UEHLD
is represented by:

20501 (1 -\ 77
=22 2( 5) ;o S,9>0,  0<t<l 3)
1+ 02 \T+t

For ¢ = 1, PDF (3) provides a UHLD. The UEHLD density is shown in Figure 1 in a
variety of forms, including right-skewed, left-skewed, revers-J, U-shaped, and asymmetric.
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Figure 1. Different shapes of the PDF for the unit-exponentiated half-logistic (UEHL) distribution.

The HRF and reverse HRF are as below:

h(t) = 25t~ (1 - t”) B

rh(t) = 2¢5t° 1 <1 B t§) -1 (1 n t(;) g+1 [1 - (14__;» (p‘| 71.
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The HRF and its reverse plots of the UEHLD are given in Figure 2 for specific values
of the parameters, which can be increasing, decreasing, J-shaped, and bathtub-shaped.

UEHL UEHL
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Figure 2. Different shapes of the HRF and reverse HRF for the UEHLD.
The QF of the UEHLD is yielded by inverting CDF (2) as follows:
1/5
_ 1—(1—u)
1
Q(u) = G71(¢) = . @
14+ (1—u)

where u is a uniform distribution on (0, 1). We can find the median, upper, and lower
quantiles, represented by Q(0.75), Q(0.25), and Q(0.5), by setting u = 0.75, 0.5, and 0.25 in (4).

3. Moments and Related Measures

In this section, the moments and other associated measures of the UEHLD such as
incomplete moments, mean residual life (MRL), mean inactivity time, and probability-
weighted moments (PWMs), are computed.

3.1. Moments and Incomplete Moments
If T has PDF (3), then the kth moment of the UEHLD is derived as:

W, = /12(p5tk+51 (1-+) v (1+¢) " a ()
0

Using the binomial expansion in (5), then we have

1

R - P+q\ [ kro+sg-1 5\?!
M—Z(—l)q&/ﬁ( . )/W*" (1—t) dt. 6)

q=0 0
After some simplification, then (6) obtains the form
00 + k
Wi= 1, (—1)”24)((’) ] q)B<5 +q+1, q)),
q=0

where B(.,.) is the beta function. Furthermore, the kth central moment of a given random
variable T is defined by

K
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Table 1 shows numerical values for the first four moments, variance (02), skewness
(a3), and kurtosis (x4) of the UEHLD.

Table 1. Moment measures of the UEHLD.

/ =05, =05, =05, p=1, =15, p=1, =15,
Fi 5=05 s=1 5=15 5=05 5=05 s=1 5=15
" 0.429 0.227 0.137 0.571 0.655 0.386 0.401
1) 031 0.121 0.055 0.429 051 0.227 0217
1, 0.255 0.082 0.031 0.356 0.429 0.159 0.137
i, 0.221 0.062 0.02 031 0.376 0.121 0.09
2 0.126 0.07 0.036 0.103 0.081 0.078 0.056
o3 0292 1241 1.934 —0.205 —0.494 0.486 0.41
a4 1569 3471 6.429 1.664 2017 2.093 2287

Table 1 demonstrates that, when the value of ¢ increases for a fixed value of ¢, we
observe that the first four moments and the 0?2 and &3 measures decrease, while the a4
measure increases. When the value of ¢ increases for a fixed value of J, we conclude
that the first four moments and the &4 measure decrease, while 02 and a3 increase. The
distribution is positive-skewed and negative-skewed. Consequently, the UEHLD can be
used for modeling both positively and negatively skewed datasets. Furthermore, it is
leptokurtic and platykurtic. Figure 3 provides the 3D plots of the mean (i}), 02, a3, as,
coefficient of variation (CV), and index of dispersion (ID).

4e+07
2000

30407
1500

1000

0Oe+0C o

Figure 3. The 3D shapes of the mean, 02, w3, &g, CV, and ID for the UEHLD.
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The kth incomplete moment, say & (x), of the UEHLD is given by:
7 -1 —p—1
&(x) = /2¢5tk+5*1 (1-2)" (1+40) " a.
0

Using binomial expansion and letting y = t° = dy = 6t°~1dt, then &(x) can be

written as: .
Ck(x) = Z(—1){72?(4);'])13(1;+q+1,(p,x5), )

where B(.,.,x) stands for the incomplete beta function. The first incomplete moment, for
k=1,in (7), is used in a variety of ways, including the Bonferroni and Lorenz curves. These
curves are commonly utilized in a variety of disciplines.

3.2. Residual and Reversed Residual Life Functions

The mth moment of the residual life (RL), say Ap(x), denoted by
Am(x) = E[(T—x)"|T > x]|,m =1,2,..., uniquely determines the CDF G(t). The mth
moment of the RL of T is defined by:

1
An(x) = ng) / (T = x)" dG(#). ®)

Using the binomial expansion, more than one time in (8), then A, (x) of the UEHLD
can be expressed as follows:

1

= -1

Am(x) = G(r;j)/&rwwa (1—1“5)4) dt,
X

where, &, ; = g E (_1)q+mfr(x)m42¢ <m> (qp + q>'

r=04g=0 r q
Let y =1—t = dy = —5t°"1dt, then Ay (x) is as below:
")

1—x

Ap(x) = =1 /(1—y)%”y‘”’1dy:

—_
(=)
—y

a4 n(r s
=—B(<+4q¢1—x%). 9
G) ( ;Tae ) ©)

The MRL of the UEHLD is the expected value of the remaining lifetimes after duration
t, which is obtained by putting m = 1 in (9). The mth moment of the reversed RL, denoted
by Y (x) =E[(x—T)"|T<x],x>0,m=1,2,..., isdefined by:

X

Yo () = G(lx) [ —amac(. (10)

0

Using the binomial expansion, more than one time in (10), then Y, (x) of the UEHLD
can be formed as follows:

Yo(x) = G(lx) i i (—1)""2¢ (T) (4) + q) xmfrB(% +q+1, (p,x‘s) )

r=0 q:O q

The MIT, also known as the mean reverse RL function, is defined as
Y1(x) = E[(x — T)|T < x], and reflects the amount of time that has passed after an item
has failed (0, x). By setting m = 1, we obtain the MIT of the UEHLD.
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3.3. Probability-Weighted Moments

The PWM approach is seen as a generalization of the classical probability distribution
moments. The estimators of the parameters and quantiles of generalized distributions may
be derived using PWMs. These moments have low variances and no significant biases, and
they outperform estimators derived using the ML technique. The PWMs, denoted by 9, 5,
fora > 1, b >0, of arandom variable T, can be designed as:

M,y = E[TG(H"] = [ #(G() g(t)dt.

—00

(11)

- faees ey 1 (1)

C— =

The PWMs (11), based on binomial expansion, can be written as:

b o 1
ma,b YOy (1)u+d( z ) ( (P(M +d1) +d )f2¢5t“+5(d+1)_1(1 _ t5)(p(u+1)—1dt
u=0d=0 0

=Ky aB(4+d+1,¢+ qu),

b o
whereK, ;= ¥ ¥ (—1)”+d2(p (z) (go(u +d1) + d) , and B(.,.) is the beta function.
u=0d=0

4. Stress Strength Reliability and Information Measures

In this section, the stress-strength (S-S) reliability of the UEHLD is provided and some
information measures such as the Rényi (Ré), Havrda and Charvat (H-C), and 0— entropies
are examined.

4.1. S-S Parameter

The notion “S-S reliability”, denoted by R = P[T, < Ty], is illustrated by T represent-
ing component strength and T representing stress. If T > T in S-S modeling, the system
is a mail function. Let T; ~ UEHLD (4, ¢1) and T, ~ UEHLD (9, ¢,), then R is determined
as follows:

1 _
R=1- [ 291 (g1 + @2)01 (1 - t5>¢1+¢2 P (12)
= 7 5 = :
b (pr+ @) (1410)" N1 (914 92)

The S-S reliability in (12) depends on ¢1, and ¢5.

4.2. Information Measures

Entropy measures the presence of uncertainty or variability in a random variable.
The higher the entropy number, the more uncertain the data are. This section focuses on
determining the UEHLD expression for various entropy measurements. The Ré entropy of
a random variable T is mathematically specified by:

[e0]

R(g) =(1-¢) 'log ( / (g<t))¢dt) L#LL>0. (13)

0

Substituting PDF (3) in (13) and using binomial expansion, then the Ré entropy of the
UEHLD is

oo

1
R({) = (1-¢) 'log (2 (-1)f (“(P +q1> " q) (200)° [ 614001 t‘s)é((’)l)dt) .
0

9=0
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Suppose that y = t° = dy = 6t°~1dt, then R({) obtains the form:

R(O) = (1~ €)110g<i (SO D) gt S g et -1+ 1))

7=0 I
The Havrda and Charvat entropy measure of the UEHLD is given by:

ho) =t [(fol(g(t))édt)"l? = 1},6 £1,0>0
= 5t [(ﬁ (—1)"< C((qu) 4 )(2<p)§5€15(§— Srg+L0(p- 1))) L 1] .

The Tsallis entropy of the UEHLD is calculated as follows:

q

Table 2 gives some numerical values of R({), h({), and R({) for some selected param-
eter values.

- Z;11[1_ <§ (_1)q( Ge+1)+q >(2(p)§5§1B<g—g—|—q+}5,§((p—1))>].

Table 2. Entropy measures of the UEHLD.

7 Measures =05, =05, =05, p=1, =15, =1, =15,

6=05 6=1 6=15 6=05 6=05 6=1 6=15

R(Z) —0.229 —0.098 —0.185 —0.56 —1.022 —0.064 —0.099

0.8 R(Z) —0.374 —0.162 —0.303 —0.878 —1.516 —0.106 —0.165
N(Z) —0.224 —0.097 —0.181 —0.53 —0.924 —0.063 —0.098

R(Z) —0.682 —0.365 —0.565 —1.557 —2.295 —0.118 —0.154

15 h(Q) —0.872 —0.441 —0.708 —2.323 —3.924 —0.137 —0.18
N(Z) —0.813 —0.4 —0.653 —2.356 —4.302 —0.121 —0.161

We conclude from Table 2 that, when the value of { increases, all entropy measures
decrease, resulting in greater information. When the value of 0 rises, for the same value of
¢, we conclude that the R({), 7({), and X({) measures decrease, implying that there is less
variability. Furthermore, we infer that the R({), #({), and X({) measurements decrease as
the value of ¢ rises, for the same value of J, implying decreased variability.

5. Estimation of the UEHLD’s Parameters

The parameter estimators of the UEHLD, using the ML, MPS and Bayesian methods,
are discussed in this section. The approximate CI and credible Bayesian intervals are given.

5.1. ML Estimators

Assume ty, ..., t, are the observed values from the UEHLD with parameters ¢, and ¢.
The likelihood function, say L(t|¢, ), of the UEHLD is expressed as:

S 11—t o1
L(t|g,8) = (298 . ( ) : (14)
(tlg, ) ((p)g(1+ti‘>)2 v



Appl. Sci. 2022,12,11253 9 of 24

Then, the log likelihood function, say ¢1, of the UEHLD is given as

6 = nn(2) +In(e) + In(6)] + (6 — 1) ¥ In(t;) — zé In(1+ )

i=1
+(e-1) Y [In(1-t%) —In(1+£%)].

T

1

Therefore, the ML equations are given by:

(5]

4y

=1y [In(1 - £9) ~In(1+17)],

s

1

n n n n On(t:
+ L In(t) —23 S~ (p - 1) & [0,

i=1

(5]

4y

K]

Mx

Solving the non-linear equations d¢;/d¢ = 0, and 9¢; /94 numerically by using
optimization algorithms such as the Newton-Raphson (NR) algorithm, we determine the
ML estimators of ¢, and ¢.

Furthermore, it is known that, under regularity conditions, the asymptotic distribution
of the ML estimators of the UEHLD parameters is given by:

(9 —¢),(8-0)~N(O,I"(¢,9)),

where I~!(¢, §) is the variance-covariance matrix of the UEHLD parameters. Therefore, the
two-sided approximate (1 — a)% Cls for the ML estimates of ¢, é can be obtained as follows:

Ly = ¢ —zu2/var(9) , Uy = ¢ + zy/2/var(9),

and

Ly = 8 — zyjpy/var(8) ,Us = § + 2, p4/ var(d).

where z, /; is the 100(1 — &) % th standard normal percentile and var(.) denotes the diagonal
elements of the variance—covariance matrix corresponding to the model parameters.

5.2. MPS Estimator

A strong alternative method known as MPS was introduced by Cheng and Amin [30]
for determining the population parameters of continuous distributions. Take a look at the
ordered products T(l), T(z), cer, T(n), which constitute a random sample of size n drawn
from CDF (2). Hence, the geometric mean D* of the product spacing function is defined by:

n+1 1/(n+1)
-{iep

Pl (tqu)/ )
Pi: Pi:F(ti,(p,(S)—F(ti_l,(p,é) i:2,...,n
Pyj1=1—F(tn, ¢,0)

such that }° P; = 1; for simplicity, we write ¢; instead of ¢;. Then, the product spacing
function is

5\ P 5\ P 5 \® s\ 9y /()
D*=J1_ -4 1-t ﬁ 1-t, _ 1-# '
1+# T+ ) oo \ 148, 1+

The natural logarithm of the product spacing function is

im0 — i (28) ] s () g () (Y 15
TS b Sy B R 1+t‘5 Zn e, ) e ) | (19
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Partially differentiate (15) from ¢, and J, then equal them to zero. By using numerical
analysis, it is possible to find the estimators §, 5 of @, 6 as the non-linear equations’ solutions.

5.3. Bayesian Estimators
Here, we obtain the Bayesian estimator of the UEHLD parameters. The Bayesian
estimators of ¢, and J are regarded under the squared error loss function (SELF), which are,
respectively, defined by:
~ ~ 2
~ ~ 2
L(§,@) = (§— ) L(3,6) = (3-5)".

Assume that the prior distribution of ¢, § denoted by 7t(¢), 7t(J) has an independent
gamma distribution. The joint gamma prior density of ¢, can be written as

mi(¢p,d) q)ql*le*wlq’éque*wﬂ;q]-, wj>0,j=12 (16)

The ML estimator for ¢ and ¢ is obtained by equating the estimates and their variances
with the inverse of the Fisher information matrix of ¢ and J in order to extract the hyper-
parameters of the informative priors (see Dey et al. [31] for more information). The joint
posterior of the UEHLD with parameters ¢ and ¢ is obtained using (14) and (16) as:

(@, 0|t) o< 7t(¢,6)L(t|@,0).

Then, the joint posterior can be written as:

+n—1 I S e T
n((P,(SE) IS goﬁ n=le= WP gp2rn—1p,=w2 ( ) .
g (1+10) \1+8°

We can employ the Markov Chain Monte Carlo (MCMC) method to acquire the
Bayesian estimators. Gibbs sampling and the more general Metropolis within Gibbs
samplers are useful subclasses of the MCMC techniques. The two most-well-known
MCMC methods are the Gibbs sampling and Metropolis—Hastings (MH) algorithms. We
created random samples from conditional posterior densities of ¢, J using the MH inside
the Gibbs sampling steps as follows:

n ! 1,tit5
~olwr— £ n (115

m(p|d,t) x @t 1e wy — iln -t
’= 4 14t

~ Gamma <q1 +n,
i=1

and

e PLUENY S 1t p-1
(8], t) oc J2TIT e 2 < > .
E (1+ti5)2 14t
The Bayesian estimators were obtained via SELFE. The 95% two-sided highest den-
sity credible region interval for the unknown parameters or any function of them is

given as [¢0.025N:N, 90.975N:N] and [Jo.025N:N, d0.975N:N] Dy using the method proposed by
Chen and Shao [32].

6. Performance Analysis by Monte Carlo Simulation

In this section, a Monte Carlo simulation experiment is carried out to analyze the
performance of point estimates in terms of the bias and MSE, as well as the performance of
the interval estimates in terms of the CI length (L.CI). With various parameter values and
sample sizes in mind, the simulation study was carried out. This section is broken into two
sections, the first of which is a simulation study and the second of which outlines findings
of the simulation.
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6.1. Simulation Study

First, we set the true value with various parameter values of the UEHLD as: ¢ = 4 and
0 =0.5, 2, 4in Table 3, while ¢ = 0.5, 2 and é = 0.5, 2, 4 in Table 4. Altogether, nine sets
of simulations of the UEHLD data with different sample sizes as n = 30, 75, and 150 were
generated. To avoid the starting bias, MSE, and length of CIs, 10,000 points were generated
for each sample simulation. The generated data of the UEHLD were obtained by using
QF (4). The estimates of the ML, MPS, and Bayesian techniques were obtained, and we
used the NR algorithm for the numerical analysis to obtain the ML estimates (MLEs) and
MPS estimates, as well as the MH algorithm to obtain the Bayesian estimates. The iterative
algorithms were used to obtain 10,000 estimates for each parameter of the UEHLD when
the first initial one was the actual parameter. In CI, we used the 5% level of significance.
This simulation study was implemented via R packages.

Simulation algorithm: By creating all simulation controls, we may develop our model.
The steps below must be completed in this stage in the following order:

Step 1: Assume various values for the sample size, as well as the UEHLD parameter vector.
Step 2: Using the QF, create the sample random values for the UEHLD.

Step 3: To acquire the estimators of the parameters for the UEHLD, we computed by solving
non-linear equations for each estimate technique.

Step 4: Perform this experiment (L — 1) times.

Table 3. Different estimates for the UEHLD parameters at ¢ = 4.

ML MPS Bayesian
@ é n Bias MSE LACI Bias MSE LACI Bias MSE LCCI
2.0073 52698 43686  1.1855  2.0800 3.2213  0.0099  0.0206  0.5464
30 6 0.2168  0.0690  0.5818  0.1290 0.0308 0.4674 0.0349 0.0074  0.2975
05 - @ 17336 3.3980 24577 14091 22988 21950 0.0082  0.0793  0.3429
6 0.1835  0.0402 03161  0.1474 0.0270 0.2856  0.0310  0.0342  0.1868
@ 17281 32058  1.8377  1.0685 19471 1.6054 0.0078  0.0298  0.2079
150 o 0.1817  0.0358 0.2078 0.1180  0.0312  0.1958 0.0235 0.0169  0.1289
@ 1.3661 23880 28328 0.8318 1.0361 23012 0.0060 0.0204 0.5552
30 6 17326 42751 44255  0.9446 13462 26423 0.0116  0.0187  0.5409
4 5 - @ 1.2307 17054 1.7132 09823 1.1135 15118 0.0042 0.0740  0.3301
6 1.3928 22318 21193  1.0534 1.2833 1.6344 0.0124 0.0796  0.3451
@ 12105 15649 1.2379  0.7713  1.0360  1.1219  0.0044  0.0290  0.2062
150 o 1.3343 19335 15348 0.8278 1.2356 12745 0.0075 0.0314  0.2189
@ 12142  1.8066 22608 0.5266 04207 14846  0.0025 0.0191  0.5404
30 6 23127  8.8163 89583 14443 2.6906  3.0498 0.0076  0.0211  0.5526
. - @ 1.1564 14955 15608 0.6366  0.4640 09504 0.0051 0.0770  0.3365
6 2.0123 77098 63376  1.8318  3.6308 2.0584 0.0075 0.0837 0.3514
150 @ 1.1326 13535  1.0424 04978 04368 0.6574  0.0012  0.0283  0.2052
o

1.7292 69873  3.8550 1.3834 27085 1.3902 0.0032 0.0321  0.2203
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Table 4. Different estimates for the UEHLD parameters at ¢ = 0.5, 2.

ML MPS Bayesian
@ é n Bias MSE LACI Bias MSE LACI Bias MSE LCCI
@ 0.2473  0.0782 05112  0.1569  0.0369 04355 0.0449 0.0089  0.3123
30 6 0.2129  0.0659 05623 0.1312 0.0313 04656 0.0353  0.0074  0.2889
05 - @ 0.2269  0.0587 0.3327 0.1894 0.0421 0.3087 0.0418 0.0433  0.1996
6 0.1886  0.0417 0.3070 0.1549  0.0292 0.2823  0.0328 0.0396  0.2008
@ 0.2153  0.0498 02317 0.1551  0.0411 0.2216  0.0310  0.0237  0.1468
150 o 0.1793  0.0352  0.2164 0.1277 0.0286  0.2063  0.0265  0.0189  0.1348
@ 0.1395  0.0289 02991  0.0921 0.0128 0.2565 0.0242  0.0030  0.1868
30 6 12332 21865 25161  0.7204 0.7119  1.7227  0.0080  0.0198  0.5589
05 5 - @ 0.1380  0.0222 02216  0.1098  0.0139 0.1700 0.0198 0.0130 0.1174
6 1.1628 15706  1.8335 0.8738 0.8563  1.1949 0.0148 0.0739  0.3342
@ 0.1397  0.0207  0.1352  0.0883  0.0129  0.1222  0.0147 0.0068  0.0847
150 o 1.2083 15556  1.2131  0.6919  0.7262  0.8620  0.0121  0.0302  0.2152
@ 0.0646  0.0062 0.1777  0.0404 0.0031 0.1507 0.0140 0.0013  0.1283
30 6 12262 11192 3.0775 0.6686  0.5838  1.4502  0.0025 0.0221  0.5722
s - @ 0.0459 0.0044 0.1174 0.0462 0.0027 0.0933 0.0104 0.0026  0.0828
) 0.8027  0.9243 20755 0.8254 0.7335 0.8957 0.0077 0.0777  0.3443
@ 0.0606  0.0042 0.0918 0.0324 0.0026  0.0672  0.0072  0.0029  0.0607
150 o 12160 0.8693 1.8136 0.6087  0.5203  0.6822  0.0068  0.0282  0.2026
@ 0.9910 1.3135 22578 0.6300 0.6371  1.9222  0.0105 0.0185  0.5236
30 6 0.2071  0.0607 05225 0.1267  0.0283  0.4343 0.0350 0.0075  0.3021
05 - @ 0.8987  0.9215 1.3228 0.7403  0.6448 1.2201 0.0152 0.0775  0.3304
6 0.1932  0.0445 03330 0.1571  0.0307 0.3042 0.0309  0.0333  0.1887
@ 0.8709 0.8106  0.8952 0.7882  0.6690  0.8565 0.0119  0.0270  0.1943
150 o 0.1820  0.0361  0.2144 0.1634  0.0294 0.2042 0.0235 0.0168  0.1243
@ 0.6791  0.6031 14772 04232 0.2815 1.2551 0.0085 0.0166  0.4915
30 6 1.6394 37521 4.0461 09140 12861 2.6331 0.0112 0.0197  0.5318
5 5 - @ 0.6189 04290 0.8414 05037 02921 0.7682 0.0155 0.0619  0.2932
6 1.3982 22541 21450 1.0811 1.3608 1.7192  0.0132  0.0788  0.3385
@ 0.5957  0.3789  0.6091  0.4000 0.2689 0.5739  0.0096  0.0246  0.1892
150 o 1.3239  1.8850 1.4259 0.8927 1.3390 12459 0.0066  0.0301  0.2133
@ 0.5359  0.3686  1.1194 02775 01194 0.8075 0.0141 0.0148  0.4686
30 6 15037 15.2652 6.7812  1.5006 29003  3.1584  0.0082  0.0201  0.5378
. - @ 0.5223  0.2997 0.6432 03178 0.1165 04886 0.0112 0.0556  0.2958
6 14833 63802 43790 1.8346 3.6374 2.0437 0.0117 0.0842  0.3511
@ 0.4947  0.2627 05260 02535 0.1141 03576  0.0062  0.0220 0.1774
150 o 0.9451 22699 32671 13503  2.6338 14620 0.0064 0.0312  0.2140

6.2. Simulation Results

The outcomes of the proposed methods for estimating the point and interval pa-
rameters are displayed in Tables 3 and 4. They provide the results and some interesting
information. The following comments can be made:



Appl. Sci. 2022,12,11253

13 of 24

W As the sample size increases, the estimates become increasingly precise, indicating that
they are asymptotically unbiased.

B When the MSE value is close to zero, the parameter estimates are from the best
unbiased estimator.

B The MSE decreases in each estimate as the sample size increases, indicating consistency
among the different estimates.

B At true value ¢ = 0.5 and as the value of J increases from 2 to 4, the MSE of both
estimates, based on three different techniques, decreases.

B As the true value of ¢ increases, the MSE of both estimates, based on three different
techniques, increases at the same true value of J.

B The MSE and length of the CI for the MPS estimates is smaller than the ML estimates for
all true parameter values.

B Both parameter estimates have the largest MSE for the three proposed methods at the
true value of ¢ = § = 4, except a few cases.

M In the majority of situations, we conclude that the MPS estimates are preferable compared
to the ML estimates due to their precision measures being the smallest.

B As n grows larger, the length of the CI (ML: LACIL MPS: LACI; Bayesian: LCCI) for the
estimates decreases, suggesting that the CI is the shortest.

W For all true parameter values, the LACI of the MPS estimate is lower than the LACI of
the ML estimates.

B The length of the CI for both estimates obtains its largest value, based on the three
suggested methods, as the true values of the parameters increase.

7. Real Data Applications

We used the traditional value of criteria (VC) to compare the fit models, such as the
Akaike information criterion (AIVC), consistent AIVC (CAIVC), Bayesian information
criterion (BIVC), Hannan—Quinn information criterion (HQIVC), Anderson-Darling value
(ADV), Cramer—von Mises value (CMV), Kolmogorov-Smirnov distance (KSD), p-value of
Kolmogorov-Smirnov (PKS), and standard error (SE). Our primary statistical goal was to
use a fitting approach model to examine three real datasets that are significant in different
fields. In this respect, we compared the fit of the proposed UEHLD with that of the
unit Weibull (UW), the Kumaraswamy (K), beta (Beta), Kumaraswamy-Kumaraswamy
(KK) (El-Sherpieny and Ahmed [33]), Marshall-Olkin-Kumaraswamy (MOK) (George and
Thobias [34]), UBXII, and UGLBXII distributions.

The effectiveness of the parameter estimator for the UEHLD for the three datasets
under consideration was also assessed using the ML, MPS, and Bayesian techniques via
the standard error and confidence interval length criteria measures. We obtained the
estimators of the new model for three techniques for the datasets under consideration, with
the exception of the first dataset, for which the MPS approach was not employed because it
has more equal values. For further clarification, the log-likelihood of the suggested model
is supplied, along with examples of the contour plots with various parameter values. We
also provide plots of the posterior distributions of the parameters, as well as histograms for
the marginal posterior density estimates for three datasets.

Dataset I: The trade share dataset takes into account the values of the trade share
variable used in the renowned “Determinants of Economic Growth Data”. Along with
factors that may be associated with growth, the growth rates of up to 61 different countries
were taken into consideration. The information is publicly accessible online as an addition
to Stock and Watson [35]. The trade share dataset consists of the following numbers: 0.1405,
0.1566, 0.1577, 0.1604, 0.1608, 0.2215, 0.2994, 0.3131, 0.3246, 0.3247, 0.3295, 0.3300, 0.3379,
0.3397, 0.3523, 0.3589, 0.3933, 0.4176, 0.4258, 0.4356, 0.4421, 0.4444, 0.4505, 0.4558, 0.4683,
0.4733, 0.4846, 0.4889, 0.5096, 0.5177, 0.5278, 0.5347, 0.5433, 0.5442, 0.5508, 0.5527, 0.5606,
0.5607, 0.5671, 0.5753, 0.5828, 0.6030, 0.6050, 0.6136, 0.6261, 0.6395, 0.6469, 0.6512, 0.6816,
0.6994, 0.7048, 0.7292, 0.7430, 0.7455, 0.7798, 0.7984, 0.8147, 0.8230, 0.8302, 0.8342, 0.9794.
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Dataset I

Dataset II: This dataset includes 30 measurements of polyester fibers’ tensile strength
made by Quesenberry and Hales [36]. The data are 0.023, 0.032, 0.054, 0.069, 0.081, 0.094,
0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463,
0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926.

Dataset III: COVID-19 of Britain: This dataset covered a period of 82 days, from 1 May
2021 to 16 July 2021 (see Abu El Azm et al. [37]). The following information is created using
daily new deaths (DNDs), daily cumulative cases (DCCs), and daily cumulative deaths
(DCDs): 0.0023, 0.0023, 0.0023, 0.0046, 0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 0.0093, 0.0093,
0.0093, 0.0111, 0.0115, 0.0116, 0.0116, 0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161,
0.0162, 0.0162, 0.0162, 0.0163, 0.0180, 0.0187, 0.0202, 0.0207, 0.0208, 0.0225, 0.0230, 0.0230,
0.0239, 0.0245, 0.0251, 0.0255, 0.0255, 0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 0.0302, 0.0312,
0.0314, 0.0326, 0.0346, 0.0349, 0.0350, 0.0355, 0.0379, 0.0384, 0.0394, 0.0394, 0.0412, 0.0419,
0.0425, 0.0461, 0.0464, 0.0468, 0.0471, 0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 0.0597, 0.0628,
0.0679, 0.0685, 0.0715, 0.0766, 0.0780, 0.0942, 0.0960, 0.0988, 0.1223, 0.1343, and 0.1781.

. DND;
' \DCC; — DCD;_;

> % 1000.

Some descriptive statistics for the proposed datasets are displayed in Table 5 and
represented in Figure 4.

Table 5. Descriptive summary datasets.

Dataset Min Q(0.25) Q(0.5) Mean Q(0.75) Max
I 0.0110 0.1410 0.1510 0.2434 0.326 0.9490
1I 0.0230 0.1323 0.3360 0.3659 0.5265 0.9260
1 0.0023 0.01432 0.0273 0.03571 0.04632 0.1781
Dataset II Dataset III
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Figure 4. Data description.

The analysis of the three real datasets is discussed in more detail in the following
subsections.

7.1. Analysis of First Dataset

First, in order to compare the fit models, we employed the aforementioned criterion
measurements included in Table 6. Figure 5 displays the dataset’s P-P plots, the fit UEHLD
PDF plots with their empirical CDF, and the relative histogram with the fit UEHLD. These
graphical goodness-of-fit methods in Figure 5 also corroborate the results in Table 6.
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Table 6. MLE, SE, and measures of models for trade share data.

Estimates SE KSD PVK  AIVC BIVC CAIVC HQIVC CMV  ADV
¢ 26743 0.3089

UEHLD 00519 09937 —25.0405 —20.8187 —24.8336 —233859 0.0391  0.3333
5 20209 03791
« 13395  0.1725

Uw 0.0682 09208  —244872 —202654 —24.2803 —22.8326 0.0630  0.5097
B 17346 0.1695
a 23297 03055

K 0.0690 09141 —232503 —19.0285 —23.0434 —21.5957 0.0527  0.4005
b 27629 05550
« 27944  0.4881

Beta 0.0618 09629 —239121 —19.6903 —23.7052 —22.2576 0.0491  0.3864
B 26041 04519
a 46765  11.1153
b 0.8085  1.6378

KK 0.0561 09850  —20.7855 —12.3420 —20.0712 —17.4764 0.0484 0.4016

® 24986  3.7154
B 0.8259  1.2331
® 0.3008  0.3023

MOK B 3.0589  0.6447  0.0582 09783 —22.6367 —16.3040 —22.2156 —20.1549 0.0490  0.4139
0 1.9501  0.9516
B 0.6161  0.2661

UG : L0022 onaps | 01098 04234 —17.7518 —13.5300 —17.5449 —16.0972 0.1585  1.1540
® 51555  8.0816

UGLBXII B 09724  0.1862  0.0548  0.9884 —229406 —16.6080 —225196 —20.4588 0.0411  0.3522
A 1.8164  1.9159
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Figure 5. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of trade share data.

Second, from Table 5 and Figure 4, we cannot use the MPS method to estimate the pa-
rameters of Dataset I because this dataset has more equal values, then
F(tj, ¢,0) — F(ti_1,¢,0) is equal to zero at most observations. Consequently, Table 7
only contains the ML and Bayesian estimates with the SELF of the UEHLD’s parameters.
10,000 MCMC samples were generated using the MCMC method. To apply the MCMC
sampler process, the starting values of the unknown parameters were assumed to represent
their MLEs.
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Table 7. Estimates with SE and Cls for UEHLD parameters for trade share data.

ML Bayesian
Estimates SE Lower Upper Estimates SE Lower Upper
2.6743 0.3089 1.4237 1.6860 1.5571 0.0587 1.4469 1.6742
6 2.0209 0.3791 3.0081 4.2673 3.6527 0.2886 3.0643 41787

Figure 6 sketches the profile log-likelihood of the UEHLD for each parameter by
fixing one parameter and varying the other. The figures show that the trade share dataset
behaves very well, as we can see that the two roots of the parameters are global maxima.
Figure 7 gives the contour plot with varying parameters and log-likelihoods of the UEHLD
to confirm the estimates have unique points.
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Figure 7. Contour plot of log-likelihood function with different UEHLD parameter values by trade
share data.

Figure 8 shows the trace plots of the posterior distributions of the parameters to track
the convergence of the MCMC outputs. This figure shows how well the MCMC process
converges. Furthermore, this shows the histograms for the marginal posterior density
estimates of the parameters based on 10,000 chain values and the Gaussian kernel. The
estimations clearly show that all of the generated posteriors are symmetric with respect to
the theoretical posterior density functions.
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Figure 8. MCMC trace and posterior distribution for the UEHLD parameters by trade share data.

7.2. Analysis of Second Dataset

it offers a superior fit.

First, we compared the fit of the proposed UEHLD with that of the beta, K, KK,
MOK, UB, UBXII, and UGLBXII distributions. We used the aforementioned criterion
measurements found in Table 8 to compare the fit models. Table 8 reveals that the
UEHLD has smaller measures than the other competing distributions, indicating that

Table 8. MLE, SE, and measures of models for polyester fibers’ tensile strength data.

Estimates SE KSD PKS AIVC BIVC CAIVC HQIVC CMV ADV
@ 1.1281 0.2051

UEHLD 0.0565 0.9999  —3.1043 —0.3019 —2.6599 —22078  0.0150 0.1158
b} 1.2346 0.2951
a 0.9627 0.2017

K 0.0650 0.9987 —2.6221 0.1803 —2.1776 —1.7256  0.0183 0.1551
b 1.6084 0.4137
« 0.9666 0.2238

Beta 0.0669 0.9979  —2.6101 0.1923 —2.1657 —1.7136  0.0184 0.1559
B 1.6205 0.4107
a 7.9330 1.2565
b 0.4949 0.0478

KK 0.0714 09951 —0.2150  5.3898 1.3850 1.5780 0.0163 0.1289
o 8.7493 0.0614
B 0.1404 0.0287
« 0.4365 0.4732

MOK B 1.1872 0.3472 0.0628 0.9992  —1.2087 29949 —0.2856  0.1361 0.0151 0.1164
6 1.2585 0.6458
B 1.0331 0.2060

UBXII 0.0993 0.9008 1.9220 4.7244 2.3665 2.8185 0.0586 0.4419
0 1.8465 0.3054
o 582.6661 45.8072

UGLBXII B 0.6820 0.1076 0.0570 0.9999 —1.4258 27778 —0.5027 —0.0811 0.0163 0.1166
A 160.0645 25.8435

The estimated PDF, empirical CDF, and P-P plots for Dataset II are shown in Figure 9.
These graphical plots support the outcomes in Table 9.
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Figure 9. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of polyester fibers’ tensile
strength data.

Table 9. Estimates, SE, and CI of the UEHLD parameters for polyester fibers’ tensile strength data.

ML MPS Bayesian
Estimates  SE Lower Upper  Estimates  SE Lower Upper  Estimates  SE Lower Upper
¢ 1.1281 0.2051 0.7262 1.5301 1.0058 0.2074 0.5994 1.4124 1.1354 0.1931 0.7826 1.5369
) 1.2346 0.2951 0.6563 1.8130 1.0606 0.2407 0.5889 1.5325 1.2423 0.2932 0.7414 1.8473

Second, utilizing the information on the tensile strength of the fibers, we determined
the ML, MPS, and Bayesian estimates using the SELF of the UEHLD’s parameters, which
are listed in Table 9. We used the mentioned MCMC algorithm to generate 10,000 MCMC
samples. The initial values of the unknown parameters were taken to be their MLEs in
order to use the MCMC sampling procedure.

For the data on the tensile strength of polyester fibers, Figure 10 draws the profile
log-likelihood of the UEHLD for each parameter by fixing one parameter and changing the
others. This figure demonstrates the excellent behavior of the aforementioned data, since
the two roots of the parameters are global maxima.

OI5 1‘0 1‘5 2‘0 OI8 110 1‘2 1I4 1I6 1I8 2‘0

«® 5

Figure 10. Profile likelihood for parameters of the UEHLD for polyester fibers’ tensile strength data.

Figure 11 shows a contour plots with variable parameters, the log-likelihood function,
and the log-product spacing function of the UEHLD to verify that the estimates have
unique points.
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Figure 11. Contour plots of log functions with different UEHLD parameter values of polyester fibers’
tensile data.

Figure 12 shows trace plots of the posterior distributions of the parameters to track
the convergence of the MCMC outputs. Additionally, they display the histograms for the
marginal posterior density estimates of the parameters based on 10,000 chain values and
the Gaussian kernel, demonstrating how effectively the MCMC process converges. All
of the produced posteriors are symmetric with regard to the theoretical posterior density
functions, as shown by the estimations.
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Figure 12. MCMC trace and posterior distribution for the UEHLD parameters using polyester fibers’
tensile data.

7.3. Analysis of COVID-19 Data

First, we compared the fit of the proposed UEHLD with that of the UW, K, KK,
MOK, and UG distributions. We used the aforementioned criterion measurements found
in Table 10 to compare the fit models. Table 10 reveals that the UEHLD has smaller
measures than other competing distributions, indicating that it offers a superior fit for
COVID-19 data. We should also point out that, in comparison to the models reported by
Abu El Azm et al. [37], the findings of our new model yield superior measure values.
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Table 10. MLE, SE, and measures of models for COVID-19 data.

Estimates  SE KSD PVKS AICVC BICVC CAICVC HQICVC CVMV ADV
@ 1.2515 0.1030

UEHLD 0.0574 09496  —385.0542 —380.2408 —384.9023 —383.1217 0.0555 0.3931
1) 29.3838 9.3197
« 0.0024 0.0003

Uw 0.0734 0.7695  —381.6037 —376.7903 —381.4518 —379.6712 (.0988 0.7075
B 4.3135 0.1105
a 1.2399 0.1055

K 0.0597 0.9322  —384.6698 —379.8564 —384.5179 —382.7373 0.0601 0.4228
b 55.7476  18.3042
a 2.4673 0.8418
b 0.5254 0.1184

KK 0.0798 0.6729  —379.0265 —369.3996 —378.5070 —375.1614 0.0624 0.4916

a 39566 09116
B 3.8605  1.1342
« 0.0119  0.0225

MOK B 1.3908 0.1793 0.1045 0.3324  —372.2227 —365.0025 —371.9150 —369.3239 0.0635 0.5250
0 1.8396  2.6201
B 0.0180  0.0071

UG o 0.1079  0.2953  —363.6987 —358.8852 —363.5468 —361.7661 0.2945  1.9852

0.9767 0.0803

The estimated PDF, empirical CDF, and P-P plots for the COVID-19 data are shown in
Figure 13. These graphical plots support the outcomes in Table 10.
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Figure 13. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of COVID-19 data.

Second, for the COVID-19 data, we determined the ML, MPS, and Bayesian estimates
using the SELF of the UEHLD's parameters for COVID-19 data, which are listed in Table 11.
We used the mentioned MCMC algorithm to generate 10,000 MCMC samples. The initial
values of the unknown parameters were taken to be their MLEs in order to use the MCMC
sampling procedure. For the COVID-19 data, Figure 14 draws the profile log-likelihood of
the UEHLD for each parameter by fixing one parameter and changing the others. Figure 15
demonstrates the excellent behavior of the aforementioned data, since the two roots of the
parameters are global maxima.

Figure 16 shows trace plots of the posterior distributions of the parameters to track
the convergence of the MCMC outputs. Additionally, they display the histograms for the
marginal posterior density estimates of the parameters based on 10,000 chain values and
the Gaussian kernel, demonstrating how effectively the MCMC process converges. All
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of the produced posteriors are symmetric with regard to the theoretical posterior density
functions, as shown by the estimations.

Table 11. Estimates, SE, and CI of the UEHLD parameters for COVID-19 data.

ML Bayesian
Estimates SE Lower Upper Estimates SE Lower Upper
@ 1.2515 0.1030 1.0496 1.4533 1.2511 0.0662 1.1236 1.3829
0 29.3838 9.3197 11.1171 47.6505 29.4399 4.0952 21.2897 37.1251

Frequency

10 11 12 13 14

0123 456

Figure 14. Profile likelihood for parameters of the UEHLD for COVID-19 data.
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Figure 15. Contour plots of log functions with different UEHLD parameter values for COVID-19 data.

— T ’ ‘“‘l. Ilhllllx LU NG R LT
BRI T T [T Ii

| I 1 | I

20 25 30 35 40 45

2000

T T T T T T T T T T
4000 6000 8000 10000 2000 4000 6000 8000 10000

o

Iterations Iterations

Frequency

0.00 0.02 0.04 0.06 0.08

T T T T T T 1
1.5 15 20 25 30 35 40 45

¢ 5

Figure 16. MCMC trace and posterior distribution for the UEHLD parameters using for COVID-19 data.
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8. Summary and Conclusions

The unit-exponentiated half-logistic distribution, which is useful for modelling data
on the unit interval, was proposed in this study as a result of an investigation into a suit-
able transformation. The mathematical properties of this distribution, such as moments,
probability-weighted moments, incomplete moments, different entropy measures, and
stress—strength reliability, were provided. The parameter estimators of the suggested distri-
bution were established using the maximum likelihood, maximum product of spacing, and
Bayesian methods. For the purpose of evaluating how well parameter estimates performed
on finite samples, a thorough simulation study was included. The effectiveness of parame-
ter estimation methodologies on finite samples was examined through a comprehensive
simulation examination. We assessed the performance of point estimates in terms of their
bias and MSE, while the interval estimates were investigated in terms of their length. We
concluded that, in most cases, the smaller accuracy measures of the MPS estimates made
them preferable to the ML estimates. The MSE reduced for each estimate as the sample size
grew, demonstrating the consistency of the estimates. The length of the CI estimates based
on the three techniques reduced as the sample size increased, indicating that the CI was
the shortest. For clarification, the suggested distribution was practically applied to data on
economic growth and tensile strength. Additionally, COVID-19 data analysis using British
medical statistical data was supplied. In comparison to several new unit distributions and
existing unbounded distributions, the experimental data showed that the proposed UEHLD
distribution delivered a better outcome. It is important to note that, when analyzing the
COVID-19 data, the result of our novel model produced superior measure values than
the models shown by Abu El Azm et al. [37], Almetwally et al. [38], Hassan et al. [39],
Liu et al. [40], Nagy et al. [41], Ahmadini et al. [42], and Mahmood et al. [43]. Additionally,
estimates of the new model were taken into account for each dataset using various estima-
tion techniques, with the exception of the first dataset, for which the MPS approach was not
used due to its more equally distributed values. The UEHLD's log-likelihood was shown
graphically together with the representations of the contour plots with varied parameter
values. For the three datasets, histograms of the marginal posterior density estimates were
provided along with plots of the posterior distributions of the parameters.
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