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Abstract: Unit distributions are typically used in probability theory and statistics to illustrate useful 
quantities with values between zero and one. In this paper, we investigated an appropriate trans-
formation to propose the unit-exponentiated half-logistic distribution (UEHLD), which is also 
beneficial for modelling data on the unit interval. This distribution’s mathematical features are 
supplied, including moments, probability-weighted moments, incomplete moments, various en-
tropy measures, and stress–strength reliability. Using well-known estimation techniques such as 
the maximum likelihood, maximum product of spacing, and Bayesian inference, the estimators of 
the parameters relevant to the proposed distribution were determined. A comprehensive simula-
tion analysis is provided to examine the performance of parameter estimation approaches on finite 
samples. The proposed distribution was realistically applied to data on economic growth and data 
on the tensile strength of polyester fibers to provide an explanation. Furthermore, the analysis of 
COVID-19 data from Britain as a medical statistical dataset is provided. The experimental results 
demonstrate that the suggested UEHLD yields a better comparison with some new unit distribu-
tions, as well as other unbounded distributions. 

Keywords: unit distributions; exponentiated half-logistic distribution; moments; entropy 
measures; quantile; Bayesian method; COVID-19 data 
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1. Motivation and Introduction 
In recent times, the construction of bounded distributions has grown tremendously. 

The unit distributions are necessary for modelling proportions, scores, rates, indices, etc. 
The benefit of these bounded distributions is that they allow the basic distribution to be 
more flexible throughout the unit interval without introducing new parameters. The 
well-known beta distribution is perhaps the first model that was employed for data ob-
served in the interval (0, 1). Besides this, Kumaraswamy’s distribution (Kumaraswamy 
[1]) and the Topp–Leone distribution (Topp and Leone [2]) deserve attention. 

Recently, several notable models have been presented as alternatives to the beta 
and Kumaraswamy distributions in order to improve modelling flexibility using appro-
priately transformed methods. The transformation of the well-known continuous dis-
tributions has frequently been used to present the newly suggested unit distributions. 
The transformations of the form 1 (1 ),T X= +  (1 ),T X X= +  and ,XT e −=  are pop-
ularly used when X is a positive-valued random variable. Several probability distribu-
tions have been developed in this area for dealing with restricted datasets in various 
domains using the previous transformation. Among the most notable distributions are: 
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unit gamma (Grassia [3] and Tadikamalla [4]), unit logistic (Tadikamalla and Johnson [5] 
and Menezes et al. [6]), unit Birnbaum–Saunders (Mazucheli et al. [7]), unit Weibull 
(Mazucheli et al. [8,9]), unit inverse Gaussian (Ghitany et al. [10]), unit Gompertz (Ma-
zucheli et al. [11]), unit Lindley (Mazucheli et al. [12]), unit generalized half-normal 
(Korkmaz [13]), unit modified Burr-III (Haq et al. [14]), unit Burr-XII (UBXII) (Korkmaz 
and Chesneau [15]), unit gamma/Gompertz (Bantan et al. [16]), unit log-logistic (Ribei-
ro-Reis [17]), and unit generalized log Burr XII (UGLBXII) (Bhatti et al. [18]). In addition 
to the preceding transformations, Cancho et al. [19] and Rodrigues et al. [20] developed 
a broad strategy based on the cumulative distribution function (CDF)-quantile function 
(QF). 

In a wide range of academic and professional fields, lifetime modeling and analysis 
are essential components of statistical work. A complete explanation of an event that 
only happens once in a lifetime typically follows a thorough data analysis based on a 
carefully chosen statistical model. The development of new probability distributions was 
necessary as a result of several attempts to construct models with different features. 
Lifetime distributions, a crucial statistical technique, can be used to model the numerous 
properties of lifetime datasets. These datasets can be analyzed using rather complicated 
distributions found in the statistical literature. One of the most-significant lifetime mod-
els is the exponentiated half-logistic distribution (EHLD). It has a number of characteris-
tics that make it a viable alternative to well-known distributions, and at the same time, it 
has the ability to model various real datasets. It has been used in a variety of fields, in-
cluding insurance, engineering, medical, and education. The probability density function 
(PDF) and CDF of the EHLD are represented by: 
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where ,δ  and ϕ  are the scale and shape parameters, respectively. PDF (1) gives the 
half-logistic distribution (HLD) for 1.ϕ =  The EHLD has recently caught the interest of 
a large number of academics. The parameters and reliability estimators of the EHLD uti-
lizing the maximum likelihood (ML) and Bayesian techniques were examined using a 
progressive censoring scheme [21–23]. Cordeiro et al. [24] enhanced the EHLD by pro-
posing the notion of the EHLD as a generator to produce the family of continuous dis-
tributions with the goal of making the distributions more practical. Seo and Kang [25] 
examined the moment and ML estimators of the EHLD parameters. EHLD’s ML, inverse 
moment, and modified inverse moment estimators, as well as the joint confidence regions 
were investigated by Gui [26]. Naidu et al. [27] created a reliability test strategy for the 
EHLD. Jeon and Kang [28] used multiple Type-I hybrid censoring to look at estimators of 
the EHLD parameters. Adaptive progressive censoring was used by Xiong and Gui [29] 
to investigate the parameter estimators of the EHLD. 

The goal of this essay is to construct a new probability, called the unit-EHLD 
(UEHLD) by using transformation T = e−Y, where Y is the EHLD. We were motivated to 
propose the UEHLD due to the following: 

(i) To create various forms for the hazard rate function (HRF) and PDF. 
(ii) With a range of 0 to 1, the UEHLD is versatile and may be used to describe a 

variety of datasets. It can be seen as a useful model for fitting skewed data that 
might not be effectively fit by other popular distributions. 

(iii) To give a comprehensive comparison of three approaches for estimating the 
UEHLD parameters, as well as an examination of the performance of such esti-
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mators for various parameter values and sample sizes. Our investigations were 
limited to the ML, maximum product of spacing (MPS), and Bayesian methods. 
It is difficult to theoretically examine the behaviors of different estimating ap-
proaches; thus, we carried out extensive simulation studies to evaluate the be-
haviors of different estimators with the bias, mean-squared error (MSE), and 
length of the confidence interval (CI) criteria. 

(iv) To describe some practical uses in many disciplines, such as economic growth 
data, tensile strength data, and COVID-19 data. 

This article’s structure is as follows: In Section 2, we develop a brand-new model 
known as the UEHLD. Some moments’ measures are deduced in Section 3. The stress–
strength model and some information measures are described in Section 4. Section 5 
discusses a few of the various techniques for estimating the model parameters. Section 6 
carries out a numerical investigation using Monte Carlo simulations. Section 7 conducts a 
numerical examination of real datasets, and Section 8 gives the findings. 

2. Unit-Exponentiated Half-Logistic Distribution 
In this section, the CDF and PDF of the UEHLD are proposed. The HRF and QF of 

the UEHLD are provided. 

Definition 1: Let Y be a random variable having the EHLD, with parameters ,δ  and ϕ  and T 
= e−Y, then the CDF of the bounded UEHLD with support on (0, 1) is formed as: 

( ) ( ) ( )( ) ( ) 1 ln 1 ln ,Y
YG t P T t P e t P Y t F t−= ≤ = ≤ = − ≤ − = − −  

which eventually leads to 

𝐺𝐺(𝑡𝑡) = 1 − �
1 − 𝑡𝑡𝛿𝛿

1 + 𝑡𝑡𝛿𝛿
�
𝜑𝜑

; 𝛿𝛿,𝜑𝜑 > 0, 0 < 𝑡𝑡 < 1. (2) 

From (2), we have ( ) 0,G t =  for t ≤ 0, and ( ) 1,G t =  for t ≤ 1. The PDF of the UEHLD 
is represented by: 

( )

11

2
2 1( ) ; , 0, 0 1.

11

t tg t t
tt

ϕδ δ

δδ

ϕδ δ ϕ
−−  −

= > < <  + +
 (3) 

For 1,ϕ =  PDF (3) provides a UHLD. The UEHLD density is shown in Figure 1 in a 
variety of forms, including right-skewed, left-skewed, revers-J, U-shaped, and asymmet-
ric. 
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Figure 1. Different shapes of the PDF for the unit-exponentiated half-logistic (UEHL) distribution. 

The HRF and reverse HRF are as below: 

( ) 11 2( ) 2 1 ,h t t tδ δϕδ
−−= −  

( ) ( )
1

1 11 1( ) 2 1 1 1 .
1

trh t t t t
t

ϕδϕ ϕδ δ δ
δϕδ

−
− +−

  − = − + −    +  
 

The HRF and its reverse plots of the UEHLD are given in Figure 2 for specific values 
of the parameters, which can be increasing, decreasing, J-shaped, and bathtub-shaped. 

  
Figure 2. Different shapes of the HRF and reverse HRF for the UEHLD. 

The QF of the UEHLD is yielded by inverting CDF (2) as follows: 
1

1
1

1
1 (1 )( ) ( ) ,
1 (1 )

uQ u G t
u

δ
φ

φ

−
 

− − = =   + − 

 (4) 

where u is a uniform distribution on (0, 1). We can find the median, upper, and lower 
quantiles, represented by Q(0.75), Q(0.25), and Q(0.5), by setting u = 0.75, 0.5, and 0.25 in 
(4). 
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3. Moments and Related Measures 
In this section, the moments and other associated measures of the UEHLD such as 

incomplete moments, mean residual life (MRL), mean inactivity time, and probabil-
ity-weighted moments (PWMs), are computed. 

3.1. Moments and Incomplete Moments 
If T has PDF (3), then the kth moment of the UEHLD is derived as: 

( ) ( )
1

1 11

0

2 1 1 .k
k t t t dt

ϕ ϕδ δ δµ ϕδ
− − −+ −′ = − +∫  (5) 

Using the binomial expansion in (5), then we have 
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11
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( 1) 2 1 .q k q
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ϕδ δ δϕ
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After some simplification, then (6) obtains the form 
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where B(.,.) is the beta function. Furthermore, the kth central moment of a given random 
variable T is defined by 
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Table 1 shows numerical values for the first four moments, variance ( 2σ ), skew-
ness ( 3α ), and kurtosis ( 4α ) of the UEHLD. 

Table 1. Moment measures of the UEHLD. 

𝝁𝝁𝒌𝒌′  0.5,
0.5

ϕ
δ
=
=  0.5,

1
ϕ
δ
=
=  0.5,

1.5
ϕ
δ
=
=  1,

0.5
ϕ
δ
=
=  1.5,

0.5
ϕ
δ
=
=  1,

1
ϕ
δ
=
=

 1.5,
1.5

ϕ
δ
=
=  

𝜇𝜇1′  0.429 0.227 0.137 0.571 0.655 0.386 0.401 
𝜇𝜇2′  0.31 0.121 0.055 0.429 0.51 0.227 0.217 
𝜇𝜇3′  0.255 0.082 0.031 0.356 0.429 0.159 0.137 
𝜇𝜇4′  0.221 0.062 0.02 0.31 0.376 0.121 0.096 
𝜎𝜎2 0.126 0.07 0.036 0.103 0.081 0.078 0.056 
𝛼𝛼3 0.292 1.241 1.934 −0.205 −0.494 0.486 0.41 
𝛼𝛼4 1.569 3.471 6.429 1.664 2.017 2.093 2.287 

Table 1 demonstrates that, when the value of 𝛿𝛿 increases for a fixed value of 𝜑𝜑, we 
observe that the first four moments and the 𝜎𝜎2 and 𝛼𝛼3 measures decrease, while the 𝛼𝛼4 
measure increases. When the value of 𝜑𝜑 increases for a fixed value of 𝛿𝛿, we conclude 
that the first four moments and the 𝛼𝛼4 measure decrease, while 𝜎𝜎2 and 𝛼𝛼3 increase. 
The distribution is positive-skewed and negative-skewed. Consequently, the UEHLD can 
be used for modeling both positively and negatively skewed datasets. Furthermore, it is 
leptokurtic and platykurtic. Figure 3 provides the 3D plots of the mean (𝜇𝜇1′ ), 𝜎𝜎2,𝛼𝛼3, 𝛼𝛼4, 
coefficient of variation (CV), and index of dispersion (ID). 
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Figure 3. The 3D shapes of the mean, 𝜎𝜎2, 𝛼𝛼3, 𝛼𝛼4, CV, and ID for the UEHLD. 

The kth incomplete moment, say ( ),k xξ  of the UEHLD is given by: 

( ) ( )1 11
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( ) 2 1 1 .
x

k
k x t t t dt

ϕ ϕδ δ δξ ϕδ
− − −+ −= − +∫  

Using binomial expansion and letting 𝑦𝑦 = 𝑡𝑡𝛿𝛿 ⇒ 𝑑𝑑𝑦𝑦 = 𝛿𝛿𝑡𝑡𝛿𝛿−1𝑑𝑑𝑡𝑡, then 𝜉𝜉𝑘𝑘(𝑥𝑥) can be 
written as: 

0
( ) ( 1) 2 1, , ,q
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q kx q x
q

δϕ
ξ ϕ ϕ

δ

∞

=

+   = − Β + +   
  

∑  (7) 

where B(.,.,x) stands for the incomplete beta function. The first incomplete moment, for k 
= 1, in (7), is used in a variety of ways, including the Bonferroni and Lorenz curves. These 
curves are commonly utilized in a variety of disciplines. 

3.2. Residual and Reversed Residual Life Functions 
The mth moment of the residual life (RL), say 𝛬𝛬𝑚𝑚(𝑥𝑥),  denoted by 𝛬𝛬𝑚𝑚(𝑥𝑥) =

𝐸𝐸[(𝑇𝑇 − 𝑥𝑥)𝑚𝑚|𝑇𝑇 > 𝑥𝑥],𝑚𝑚 = 1,2, . . ., uniquely determines the CDF G(t). The mth moment of 
the RL of T is defined by: 

11( ) ( ) ( ).
( )

m
m

x

x T x dG t
G x

Λ = −∫  (8) 

Using the binomial expansion, more than one time in (8), then 𝛬𝛬𝑚𝑚(𝑥𝑥) of the UEHLD 
can be expressed as follows: 
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The MRL of the UEHLD is the expected value of the remaining lifetimes after dura-
tion t, which is obtained by putting m = 1 in (9). The mth moment of the reversed RL, 
denoted by ( ) ( ) ,m

m x E x T T x ϒ = − ≤   0, 1,2,...,x m> =  is defined by: 

0

1( ) ( ) ( ).
( )

x
m

m x x t dG t
G x

ϒ = −∫  (10) 

Using the binomial expansion, more than one time in (10), then ( )m xϒ  of the 
UEHLD can be formed as follows: 

0 0
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m q mx x q x
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The MIT, also known as the mean reverse RL function, is defined as 
1( ) ( ) ,x E x T T x ϒ = − ≤   and reflects the amount of time that has passed after an item 

has failed (0, x). By setting m = 1, we obtain the MIT of the UEHLD. 

3.3. Probability-Weighted Moments 
The PWM approach is seen as a generalization of the classical probability distribu-

tion moments. The estimators of the parameters and quantiles of generalized distribu-
tions may be derived using PWMs. These moments have low variances and no significant 
biases, and they outperform estimators derived using the ML technique. The PWMs, 
denoted by 𝔐𝔐𝑎𝑎,𝑏𝑏, for 𝑎𝑎 ≥ 1, 𝑏𝑏 ≥ 0, of a random variable T, can be designed as: 
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The PWMs (11), based on binomial expansion, can be written as: 
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where ,
0 0

( 1)
( 1) 2 ,

b
u d

u d
u d

b u d
u d

ϕ
ϕ

∞
+

= =

+ +  
Κ = −   

  
∑∑  and B(.,.) is the beta function. 

4. Stress Strength Reliability and Information Measures 
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In this section, the stress–strength (S-S) reliability of the UEHLD is provided and 
some information measures such as the Rényi (Ré), Havrda and Charvat (H-C), and ο −
entropies are examined. 

4.1. S-S Parameter 
The notion “S-S reliability”, denoted by ℜ = 𝑃𝑃[𝑇𝑇2 < 𝑇𝑇1], is illustrated by T1 repre-

senting component strength and T2 representing stress. If T2 > T1 in S-S modeling, the 
system is a mail function. Let T1 ~ UEHLD(𝛿𝛿,𝜑𝜑1) and T2 ~ UEHLD(𝛿𝛿,𝜑𝜑2), then ℜ  is 
determined as follows: 

( )
( )( ) ( )

1 2 11 1
1 1 2 2

2
1 20 1 2

2 11 .
11

t t dt
tt

ϕ ϕδ δ

δδ

ϕ ϕ ϕ δ ϕ
ϕ ϕϕ ϕ

+ −−+  −
ℜ − = 

++ + +
∫=  (12) 

The S-S reliability in (12) depends on 1,ϕ  and 2.ϕ  

4.2. Information Measures 
Entropy measures the presence of uncertainty or variability in a random variable. 

The higher the entropy number, the more uncertain the data are. This section focuses on 
determining the UEHLD expression for various entropy measurements. The Ré entropy 
of a random variable T is mathematically specified by: 

( )1

0

( ) (1 ) log ( ) ., 1, 0g t dtζ ζζ ζ ζ
∞

−  
= −  


≠


>∫

 (13) 

Substituting PDF (3) in (13) and using binomial expansion, then the Ré entropy of 
the UEHLD is 

1
1 ( 1) ( 1)

0 0

( 1)
( ) (1 ) log ( 1) (2 ) (1 ) .q q

q

q
t t dt

q
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∑ ∫

 

Suppose that 1y t dy t dtδ δδ −= ⇒ = , then ( )ζ obtains the form: 
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The Havrda and Charvat entropy measure of the UEHLD is given by: 

( ) ( )( )
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1 0
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The Tsallis entropy of the UEHLD is calculated as follows: 
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Table 2 gives some numerical values of ( )( ),ζ ζ  , and ( )ζℵ  for some selected 
parameter values. 

Table 2. Entropy measures of the UEHLD. 

ζ  Measures 0.5,
0.5

ϕ
δ
=
=  0.5,

1
ϕ
δ
=
=  0.5,

1.5
ϕ
δ
=
=  1,

0.5
ϕ
δ
=
=  1.5,

0.5
ϕ
δ
=
=  1,

1
ϕ
δ
=
=

 1.5,
1.5

ϕ
δ
=
=  

0.8 
( )ζ  −0.229 −0.098 −0.185 −0.56 −1.022 −0.064 −0.099 
( )ζ  −0.374 −0.162 −0.303 −0.878 −1.516 −0.106 −0.165 
ℵ(𝜁𝜁) −0.224 −0.097 −0.181 −0.53 −0.924 −0.063 −0.098 

1.5 

( )ζ  −0.682 −0.365 −0.565 −1.557 −2.295 −0.118 −0.154 
( )ζ  −0.872 −0.441 −0.708 −2.323 −3.924 −0.137 −0.18 
( )ζℵ  −0.813 −0.4 −0.653 −2.356 −4.302 −0.121 −0.161 

We conclude from Table 2 that, when the value of ζ  increases, all entropy 

measures decrease, resulting in greater information. When the value of δ  rises, for the 
same value of ,ϕ  we conclude that the ( ),ζ ( ) ,ζ  and ( )ζℵ  measures decrease, 

implying that there is less variability. Furthermore, we infer that the ( ),ζ ( ) ,ζ  and 

( )ζℵ  measurements decrease as the value of ϕ  rises, for the same value of ,δ  im-
plying decreased variability. 

5. Estimation of the UEHLD’s Parameters 
The parameter estimators of the UEHLD, using the ML, MPS and Bayesian meth-

ods, are discussed in this section. The approximate CI and credible Bayesian intervals 
are given. 

5.1. ML Estimators 
Assume 1,..., nt t  are the observed values from the UEHLD with parameters ,ϕ  

and .δ  The likelihood function, say ( )| ,L t ϕ δ , of the UEHLD is expressed as: 

( ) ( )
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Then, the log likelihood function, say 1, of the UEHLD is given as 
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Therefore, the ML equations are given by: 
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Solving the non-linear equations 1 0,ϕ∂ ∂ =  and 1 δ∂ ∂  numerically by using 
optimization algorithms such as the Newton–Raphson (NR) algorithm, we determine the 
ML estimators of ,ϕ  and .δ  

( ) ( )1

1
ln 1 ln 1 ,

n

i i
i

n t tδ δ

ϕ ϕ =

∂  = + − − + ∂ ∑



Appl. Sci. 2022, 12, 11253 10 of 25 
 

Furthermore, it is known that, under regularity conditions, the asymptotic distribu-
tion of the ML estimators of the UEHLD parameters is given by: 

1ˆˆ( ), ( ) (0, ( , )),N Iϕ ϕ δ δ ϕ δ−− −   

where 1( , )I ϕ δ−  is the variance–covariance matrix of the UEHLD parameters. There-
fore, the two-sided approximate ( )1 %α−  CIs for the ML estimates of ,ϕ δ  can be ob-
tained as follows: 

2 2

2 2

ˆ ˆ ˆ ˆvar( )  ,     var( ),

and
ˆ ˆ ˆ ˆvar( )  ,     var( ).

L z U z

L z U z

ϕ α ϕ α

δ α δ α

ϕ ϕ ϕ ϕ

δ δ δ δ

= − = +

= − = +

 

where 2zα  is the ( )100 1 %α− th standard normal percentile and var(.) denotes the 
diagonal elements of the variance–covariance matrix corresponding to the model pa-
rameters. 

5.2. MPS Estimator 
A strong alternative method known as MPS was introduced by Cheng and Amin 

[30] for determining the population parameters of continuous distributions. Take a look 
at the ordered products (1) (2) ( ), ,..., nT T T , which constitute a random sample of size n 

drawn from CDF (2). Hence, the geometric mean D•  of the product spacing function is 
defined by: 

1 ( 1)1

1

,
nn

i
i

D P
++
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  =  
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such that ∑𝑃𝑃𝑖𝑖 = 1; for simplicity, we write ti instead of t(i). Then, the product spacing 
function is 
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The natural logarithm of the product spacing function is 

11

1 12

1 1 111ln ln 1 ln ln .
1 1 1 1 1

n i i

n i i

n

i

t t tt
D

n t t t t

ϕ ϕϕ δ δ δδ

δ δ δ δϕ −

−

•

=

           − − −−          = − + + −          + + + + +            
∑  (15) 

Partially differentiate (15) from ,ϕ and δ , then equal them to zero. By using nu-

merical analysis, it is possible to find the estimators ˆˆ,ϕ δ  of ,ϕ δ  as the non-linear 
equations’ solutions. 

5.3. Bayesian Estimators 
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Here, we obtain the Bayesian estimator of the UEHLD parameters. The Bayesian es-
timators of ,ϕ  and δ  are regarded under the squared error loss function (SELF), 
which are, respectively, defined by: 

( ) ( )22( , ) , ( , ) .L Lϕ ϕ ϕ ϕ δ δ δ δ= − = − 

   

Assume that the prior distribution of ,ϕ δ  denoted by ( ), ( )π ϕ π δ  has an inde-
pendent gamma distribution. The joint gamma prior density of ,ϕ δ  can be written as 

( ) 1 1 2 21 1, ; , 0, 1,2.q w q w
j je e q w jϕ δπ ϕ δ ϕ δ− − − −∝ > =  (16) 

The ML estimator for ϕ  and δ  is obtained by equating the estimates and their 
variances with the inverse of the Fisher information matrix of ϕ  and δ  in order to 
extract the hyper-parameters of the informative priors (see Dey et al. [31] for more in-
formation). The joint posterior of the UEHLD with parameters ϕ  and δ  is obtained 
using (14) and (16) as: 

( ) ( ) ( ), , | , .t L tπ ϕ δ π ϕ δ ϕ δ∝  

Then, the joint posterior can be written as: 

( )
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We can employ the Markov Chain Monte Carlo (MCMC) method to acquire the 
Bayesian estimators. Gibbs sampling and the more general Metropolis within Gibbs 
samplers are useful subclasses of the MCMC techniques. The two most-well-known 
MCMC methods are the Gibbs sampling and Metropolis–Hastings (MH) algorithms. We 
created random samples from conditional posterior densities of ,ϕ δ  using the MH in-
side the Gibbs sampling steps as follows: 
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The Bayesian estimators were obtained via SELF. The 95% two-sided highest den-
sity credible region interval for the unknown parameters or any function of them is giv-
en as [𝜑𝜑0.025𝑁𝑁:𝑁𝑁,𝜑𝜑0.975𝑁𝑁:𝑁𝑁] and [𝛿𝛿0.025𝑁𝑁:𝑁𝑁,𝛿𝛿0.975𝑁𝑁:𝑁𝑁] by using the method proposed by 
Chen and Shao [32]. 

6. Performance Analysis by Monte Carlo Simulation 
In this section, a Monte Carlo simulation experiment is carried out to analyze the 

performance of point estimates in terms of the bias and MSE, as well as the performance 
of the interval estimates in terms of the CI length (L.CI). With various parameter values 
and sample sizes in mind, the simulation study was carried out. This section is broken 
into two sections, the first of which is a simulation study and the second of which out-
lines findings of the simulation. 

6.1. Simulation Study 
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First, we set the true value with various parameter values of the UEHLD as: 4ϕ =  
and 0.5,2,4δ =  in Table 3, while 0.5,2ϕ =  and 0.5,2,4δ =  in Table 4. Altogether, 
nine sets of simulations of the UEHLD data with different sample sizes as n = 30, 75, and 
150 were generated. To avoid the starting bias, MSE, and length of CIs, 10,000 points 
were generated for each sample simulation. The generated data of the UEHLD were ob-
tained by using QF (4). The estimates of the ML, MPS, and Bayesian techniques were 
obtained, and we used the NR algorithm for the numerical analysis to obtain the ML es-
timates (MLEs) and MPS estimates, as well as the MH algorithm to obtain the Bayesian 
estimates. The iterative algorithms were used to obtain 10,000 estimates for each param-
eter of the UEHLD when the first initial one was the actual parameter. In CI, we used the 
5% level of significance. This simulation study was implemented via R packages. 

Table 3. Different estimates for the UEHLD parameters at 4ϕ = . 

  ML MPS Bayesian 
ϕ  δ  n  Bias MSE LACI Bias MSE LACI Bias MSE LCCI 

4 

0.5 

30 
ϕ  2.0073 5.2698 4.3686 1.1855 2.0800 3.2213 0.0099 0.0206 0.5464 
δ  0.2168 0.0690 0.5818 0.1290 0.0308 0.4674 0.0349 0.0074 0.2975 

75 
ϕ  1.7336 3.3980 2.4577 1.4091 2.2988 2.1950 0.0082 0.0793 0.3429 
δ  0.1835 0.0402 0.3161 0.1474 0.0270 0.2856 0.0310 0.0342 0.1868 

150 
ϕ  1.7281 3.2058 1.8377 1.0685 1.9471 1.6054 0.0078 0.0298 0.2079 
δ  0.1817 0.0358 0.2078 0.1180 0.0312 0.1958 0.0235 0.0169 0.1289 

2 

30 
ϕ  1.3661 2.3880 2.8328 0.8318 1.0361 2.3012 0.0060 0.0204 0.5552 
δ  1.7326 4.2751 4.4255 0.9446 1.3462 2.6423 0.0116 0.0187 0.5409 

75 
ϕ  1.2307 1.7054 1.7132 0.9823 1.1135 1.5118 0.0042 0.0740 0.3301 
δ  1.3928 2.2318 2.1193 1.0534 1.2833 1.6344 0.0124 0.0796 0.3451 

150 
ϕ  1.2105 1.5649 1.2379 0.7713 1.0360 1.1219 0.0044 0.0290 0.2062 
δ  1.3343 1.9335 1.5348 0.8278 1.2356 1.2745 0.0075 0.0314 0.2189 

4 

30 
ϕ  1.2142 1.8066 2.2608 0.5266 0.4207 1.4846 0.0025 0.0191 0.5404 
δ  2.3127 8.8163 8.9583 1.4443 2.6906 3.0498 0.0076 0.0211 0.5526 

75 
ϕ  1.1564 1.4955 1.5608 0.6366 0.4640 0.9504 0.0051 0.0770 0.3365 
δ  2.0123 7.7098 6.3376 1.8318 3.6308 2.0584 0.0075 0.0837 0.3514 

150 
ϕ  1.1326 1.3535 1.0424 0.4978 0.4368 0.6574 0.0012 0.0283 0.2052 
δ  1.7292 6.9873 3.8550 1.3834 2.7085 1.3902 0.0032 0.0321 0.2203 

Table 4. Different estimates for the UEHLD parameters at 0.5,2ϕ = . 

  ML MPS Bayesian 
ϕ  δ  n  Bias MSE LACI Bias MSE LACI Bias MSE LCCI 

0.5 

0.5 

30 
ϕ  0.2473 0.0782 0.5112 0.1569 0.0369 0.4355 0.0449 0.0089 0.3123 
δ  0.2129 0.0659 0.5623 0.1312 0.0313 0.4656 0.0353 0.0074 0.2889 

75 
ϕ  0.2269 0.0587 0.3327 0.1894 0.0421 0.3087 0.0418 0.0433 0.1996 
δ  0.1886 0.0417 0.3070 0.1549 0.0292 0.2823 0.0328 0.0396 0.2008 

150 
ϕ  0.2153 0.0498 0.2317 0.1551 0.0411 0.2216 0.0310 0.0237 0.1468 
δ  0.1793 0.0352 0.2164 0.1277 0.0286 0.2063 0.0265 0.0189 0.1348 

2 

30 
ϕ  0.1395 0.0289 0.2991 0.0921 0.0128 0.2565 0.0242 0.0030 0.1868 
δ  1.2332 2.1865 2.5161 0.7204 0.7119 1.7227 0.0080 0.0198 0.5589 

75 
ϕ  0.1380 0.0222 0.2216 0.1098 0.0139 0.1700 0.0198 0.0130 0.1174 
δ  1.1628 1.5706 1.8335 0.8738 0.8563 1.1949 0.0148 0.0739 0.3342 

150 
ϕ  0.1397 0.0207 0.1352 0.0883 0.0129 0.1222 0.0147 0.0068 0.0847 
δ  1.2083 1.5556 1.2131 0.6919 0.7262 0.8620 0.0121 0.0302 0.2152 
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  ML MPS Bayesian 
ϕ  δ  n  Bias MSE LACI Bias MSE LACI Bias MSE LCCI 

4 

30 
ϕ  0.0646 0.0062 0.1777 0.0404 0.0031 0.1507 0.0140 0.0013 0.1283 
δ  1.2262 1.1192 3.0775 0.6686 0.5838 1.4502 0.0025 0.0221 0.5722 

75 
ϕ  0.0459 0.0044 0.1174 0.0462 0.0027 0.0933 0.0104 0.0026 0.0828 
δ  0.8027 0.9243 2.0755 0.8254 0.7335 0.8957 0.0077 0.0777 0.3443 

150 
ϕ  0.0606 0.0042 0.0918 0.0324 0.0026 0.0672 0.0072 0.0029 0.0607 
δ  1.2160 0.8693 1.8136 0.6087 0.5203 0.6822 0.0068 0.0282 0.2026 

2 

0.5 

30 
ϕ  0.9910 1.3135 2.2578 0.6300 0.6371 1.9222 0.0105 0.0185 0.5236 
δ  0.2071 0.0607 0.5225 0.1267 0.0283 0.4343 0.0350 0.0075 0.3021 

75 
ϕ  0.8987 0.9215 1.3228 0.7403 0.6448 1.2201 0.0152 0.0775 0.3304 
δ  0.1932 0.0445 0.3330 0.1571 0.0307 0.3042 0.0309 0.0333 0.1887 

150 
ϕ  0.8709 0.8106 0.8952 0.7882 0.6690 0.8565 0.0119 0.0270 0.1943 
δ  0.1820 0.0361 0.2144 0.1634 0.0294 0.2042 0.0235 0.0168 0.1243 

2 

30 
ϕ  0.6791 0.6031 1.4772 0.4232 0.2815 1.2551 0.0085 0.0166 0.4915 
δ  1.6394 3.7521 4.0461 0.9140 1.2861 2.6331 0.0112 0.0197 0.5318 

75 
ϕ  0.6189 0.4290 0.8414 0.5037 0.2921 0.7682 0.0155 0.0619 0.2932 
δ  1.3982 2.2541 2.1450 1.0811 1.3608 1.7192 0.0132 0.0788 0.3385 

150 
ϕ  0.5957 0.3789 0.6091 0.4000 0.2689 0.5739 0.0096 0.0246 0.1892 
δ  1.3239 1.8850 1.4259 0.8927 1.3390 1.2459 0.0066 0.0301 0.2133 

4 

30 
ϕ  0.5359 0.3686 1.1194 0.2775 0.1194 0.8075 0.0141 0.0148 0.4686 
δ  1.5037 15.2652 6.7812 1.5006 2.9003 3.1584 0.0082 0.0201 0.5378 

75 
ϕ  0.5223 0.2997 0.6432 0.3178 0.1165 0.4886 0.0112 0.0556 0.2958 
δ  1.4833 6.3802 4.3790 1.8346 3.6374 2.0437 0.0117 0.0842 0.3511 

150 
ϕ  0.4947 0.2627 0.5260 0.2535 0.1141 0.3576 0.0062 0.0220 0.1774 
δ  0.9451 2.2699 3.2671 1.3503 2.6338 1.4620 0.0064 0.0312 0.2140 

Simulation algorithm: By creating all simulation controls, we may develop our 
model. The steps below must be completed in this stage in the following order: 
Step 1: Assume various values for the sample size, as well as the UEHLD parameter 
vector. 
Step 2: Using the QF, create the sample random values for the UEHLD. 
Step 3: To acquire the estimators of the parameters for the UEHLD, we computed by 
solving non-linear equations for each estimate technique. 
Step 4: Perform this experiment (L-1) times. 

6.2. Simulation Results 
The outcomes of the proposed methods for estimating the point and interval pa-

rameters are displayed in Tables 3 and 4. They provide the results and some interesting 
information. The following comments can be made: 
 As the sample size increases, the estimates become increasingly precise, indicating 

that they are asymptotically unbiased. 
 When the MSE value is close to zero, the parameter estimates are from the best un-

biased estimator. 
 The MSE decreases in each estimate as the sample size increases, indicating con-

sistency among the different estimates. 
 At true value 0.5ϕ =  and as the value of δ  increases from 2 to 4, the MSE of both 

estimates, based on three different techniques, decreases. 
 As the true value of ϕ  increases, the MSE of both estimates, based on three differ-

ent techniques, increases at the same true value of .δ  
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 The MSE and length of the CI for the MPS estimates is smaller than the ML estimates 
for all true parameter values. 

 Both parameter estimates have the largest MSE for the three proposed methods at 
the true value of 4,ϕ δ= =  except a few cases. 

 In the majority of situations, we conclude that the MPS estimates are preferable 
compared to the ML estimates due to their precision measures being the smallest. 

 As n grows larger, the length of the CI (ML: LACI; MPS: LACI; Bayesian: LCCI) for 
the estimates decreases, suggesting that the CI is the shortest. 

 For all true parameter values, the LACI of the MPS estimate is lower than the LACI 
of the ML estimates. 

 The length of the CI for both estimates obtains its largest value, based on the three 
suggested methods, as the true values of the parameters increase. 

7. Real Data Applications 
We used the traditional value of criteria (VC) to compare the fit models, such as the 

Akaike information criterion (AIVC), consistent AIVC (CAIVC), Bayesian information 
criterion (BIVC), Hannan–Quinn information criterion (HQIVC), Anderson–Darling 
value (ADV), Cramer–von Mises value (CMV), Kolmogorov–Smirnov distance (KSD), 
p-value of Kolmogorov–Smirnov (PKS), and standard error (SE). Our primary statistical 
goal was to use a fitting approach model to examine three real datasets that are signifi-
cant in different fields. In this respect, we compared the fit of the proposed UEHLD with 
that of the unit Weibull (UW), the Kumaraswamy (K), beta (Beta), Kumaraswamy–
Kumaraswamy (KK) (El-Sherpieny and Ahmed [33]), Marshall–Olkin–Kumaraswamy 
(MOK) (George and Thobias [34]), UBXII, and UGLBXII distributions. 

The effectiveness of the parameter estimator for the UEHLD for the three datasets 
under consideration was also assessed using the ML, MPS, and Bayesian techniques via 
the standard error and confidence interval length criteria measures. We obtained the es-
timators of the new model for three techniques for the datasets under consideration, with 
the exception of the first dataset, for which the MPS approach was not employed because 
it has more equal values. For further clarification, the log-likelihood of the suggested 
model is supplied, along with examples of the contour plots with various parameter 
values. We also provide plots of the posterior distributions of the parameters, as well as 
histograms for the marginal posterior density estimates for three datasets. 

Dataset I: The trade share dataset takes into account the values of the trade share 
variable used in the renowned “Determinants of Economic Growth Data”. Along with 
factors that may be associated with growth, the growth rates of up to 61 different coun-
tries were taken into consideration. The information is publicly accessible online as an 
addition to Stock and Watson [35]. The trade share dataset consists of the following 
numbers:  0.1405, 0.1566, 0.1577, 0.1604, 0.1608, 0.2215, 0.2994, 0.3131, 0.3246, 0.3247, 
0.3295, 0.3300, 0.3379, 0.3397, 0.3523, 0.3589, 0.3933, 0.4176, 0.4258, 0.4356, 0.4421, 0.4444, 
0.4505, 0.4558, 0.4683, 0.4733, 0.4846, 0.4889, 0.5096, 0.5177, 0.5278, 0.5347, 0.5433, 0.5442, 
0.5508, 0.5527, 0.5606, 0.5607, 0.5671, 0.5753, 0.5828, 0.6030, 0.6050, 0.6136, 0.6261, 0.6395, 
0.6469, 0.6512, 0.6816, 0.6994, 0.7048, 0.7292, 0.7430, 0.7455, 0.7798, 0.7984, 0.8147, 0.8230, 
0.8302, 0.8342, 0.9794. 

Dataset II: This dataset includes 30 measurements of polyester fibers’ tensile 
strength made by Quesenberry and Hales [36]. The data are 0.023, 0.032, 0.054, 0.069, 
0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 
0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926. 

Dataset III: COVID-19 of Britain: This dataset covered a period of 82 days, from 1 
May 2021 to 16 July 2021 (see Abu El Azm et al. [37]). The following information is cre-
ated using daily new deaths (DNDs), daily cumulative cases (DCCs), and daily cumula-
tive deaths (DCDs): 0.0023, 0.0023, 0.0023, 0.0046, 0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 
0.0093, 0.0093, 0.0093, 0.0111, 0.0115, 0.0116, 0.0116, 0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 
0.0159, 0.0161, 0.0162, 0.0162, 0.0162, 0.0163, 0.0180, 0.0187, 0.0202, 0.0207, 0.0208, 0.0225, 
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0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255, 0.0255, 0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 
0.0302, 0.0312, 0.0314, 0.0326, 0.0346, 0.0349, 0.0350, 0.0355, 0.0379, 0.0384, 0.0394, 0.0394, 
0.0412, 0.0419, 0.0425, 0.0461, 0.0464, 0.0468, 0.0471, 0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 
0.0597, 0.0628, 0.0679, 0.0685, 0.0715, 0.0766, 0.0780, 0.0942, 0.0960, 0.0988, 0.1223, 0.1343, 
and 0.1781. 

𝑥𝑥𝑖𝑖 = �
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖−1
� × 1000. 

Some descriptive statistics for the proposed datasets are displayed in Table 5 and 
represented in Figure 4. 

Table 5. Descriptive summary datasets. 

Dataset Min Q(0.25) Q(0.5) Mean Q(0.75) Max 
I 0.0110 0.1410 0.1510 0.2434 0.326 0.9490 
II 0.0230 0.1323 0.3360 0.3659 0.5265 0.9260 
III 0.0023 0.01432 0.0273 0.03571 0.04632 0.1781 

 
Dataset I Dataset II Dataset III 

   
Figure 4. Data description. 

The analysis of the three real datasets is discussed in more detail in the following 
subsections. 

7.1. Analysis of First Dataset 
First, in order to compare the fit models, we employed the aforementioned criterion 

measurements included in Table 6. Figure 5 displays the dataset’s P-P plots, the fit 
UEHLD PDF plots with their empirical CDF, and the relative histogram with the fit 
UEHLD. These graphical goodness-of-fit methods in Figure 5 also corroborate the re-
sults in Table 6. 

Table 6. MLE, SE, and measures of models for trade share data. 

  Estimates SE KSD PVK AIVC BIVC CAIVC HQIVC CMV ADV 

UEHLD 
ϕ  2.6743 0.3089 

0.0519 0.9937 −25.0405 −20.8187 −24.8336 −23.3859 0.0391 0.3333 
δ  2.0209 0.3791 

UW 
α  1.3395 0.1725 

0.0682 0.9208 −24.4872 −20.2654 −24.2803 −22.8326 0.0630 0.5097 β  1.7346 0.1695 

K 
a 2.3297 0.3055 

0.0690 0.9141 −23.2503 −19.0285 −23.0434 −21.5957 0.0527 0.4005 
b 2.7629 0.5550 

Beta 
α  2.7944 0.4881 

0.0618 0.9629 −23.9121 −19.6903 −23.7052 −22.2576 0.0491 0.3864 β  2.6041 0.4519 
KK a 4.6765 11.1153 0.0561 0.9850 −20.7855 −12.3420 −20.0712 −17.4764 0.0484 0.4016 
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  Estimates SE KSD PVK AIVC BIVC CAIVC HQIVC CMV ADV 
b 0.8085 1.6378 
α  2.4986 3.7154 
β  0.8259 1.2331 

MOK 
α  0.3008 0.3023 

0.0582 0.9783 −22.6367 −16.3040 −22.2156 −20.1549 0.0490 0.4139 β  3.0589 0.6447 
θ  1.9501 0.9516 

UG 
β  0.6161 0.2661 

0.1098 0.4234 −17.7518 −13.5300 −17.5449 −16.0972 0.1585 1.1540 
θ  1.0922 0.2472 

UGLBXII 
α  5.1555 8.0816 

0.0548 0.9884 −22.9406 −16.6080 −22.5196 −20.4588 0.0411 0.3522 β  0.9724 0.1862 
λ  1.8164 1.9159 

 
Figure 5. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of trade share data. 

Second, from Table 5 and Figure 4, we cannot use the MPS method to estimate the 
parameters of Dataset I because this dataset has more equal values, then 

1( , , ) ( , , )i iF t F tϕ δ ϕ δ−−  is equal to zero at most observations. Consequently, Table 7 
only contains the ML and Bayesian estimates with the SELF of the UEHLD’s parameters. 
10,000 MCMC samples were generated using the MCMC method. To apply the MCMC 
sampler process, the starting values of the unknown parameters were assumed to rep-
resent their MLEs. 

Table 7. Estimates with SE and CIs for UEHLD parameters for trade share data. 

 ML Bayesian 
 Estimates SE Lower Upper Estimates SE Lower Upper 
ϕ  2.6743 0.3089 1.4237 1.6860 1.5571 0.0587 1.4469 1.6742 
δ  2.0209 0.3791 3.0081 4.2673 3.6527 0.2886 3.0643 4.1787 

Figure 6 sketches the profile log-likelihood of the UEHLD for each parameter by 
fixing one parameter and varying the other. The figures show that the trade share da-
taset behaves very well, as we can see that the two roots of the parameters are global 
maxima. Figure 7 gives the contour plot with varying parameters and log-likelihoods of 
the UEHLD to confirm the estimates have unique points. 
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Figure 6. Profile likelihood for parameters of the UEHLD by trade share data. 

 
Figure 7. Contour plot of log-likelihood function with different UEHLD parameter values by trade 
share data. 

Figure 8 shows the trace plots of the posterior distributions of the parameters to 
track the convergence of the MCMC outputs. This figure shows how well the MCMC 
process converges. Furthermore, this shows the histograms for the marginal posterior 
density estimates of the parameters based on 10,000 chain values and the Gaussian ker-
nel. The estimations clearly show that all of the generated posteriors are symmetric with 
respect to the theoretical posterior density functions. 
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Figure 8. MCMC trace and posterior distribution for the UEHLD parameters by trade share data. 

7.2. Analysis of Second Dataset 
First, we compared the fit of the proposed UEHLD with that of the beta, K, KK, 

MOK, UB, UBXII, and UGLBXII distributions. We used the aforementioned criterion 
measurements found in Table 8 to compare the fit models. Table 8 reveals that the 
UEHLD has smaller measures than the other competing distributions, indicating that it 
offers a superior fit. 

Table 8. MLE, SE, and measures of models for polyester fibers’ tensile strength data. 

  Estimates SE KSD PKS AIVC BIVC CAIVC HQIVC CMV ADV 

UEHLD 
ϕ  1.1281 0.2051 

0.0565 0.9999 −3.1043 −0.3019 −2.6599 −2.2078 0.0150 0.1158 
δ  1.2346 0.2951 

K 
a 0.9627 0.2017 

0.0650 0.9987 −2.6221 0.1803 −2.1776 −1.7256 0.0183 0.1551 
b 1.6084 0.4137 

Beta 
α  0.9666 0.2238 

0.0669 0.9979 −2.6101 0.1923 −2.1657 −1.7136 0.0184 0.1559 β  1.6205 0.4107 

KK 

a 7.9330 1.2565 

0.0714 0.9951 −0.2150 5.3898 1.3850 1.5780 0.0163 0.1289 
b 0.4949 0.0478 
α  8.7493 0.0614 
β  0.1404 0.0287 

MOK 
α  0.4365 0.4732 

0.0628 0.9992 −1.2087 2.9949 −0.2856 0.1361 0.0151 0.1164 β  1.1872 0.3472 
θ  1.2585 0.6458 

UBXII 
β  1.0331 0.2060 

0.0993 0.9008 1.9220 4.7244 2.3665 2.8185 0.0586 0.4419 
θ  1.8465 0.3054 

UGLBXII 
α  582.6661 45.8072 

0.0570 0.9999 −1.4258 2.7778 −0.5027 −0.0811 0.0163 0.1166 β  0.6820 0.1076 
λ  160.0645 25.8435 

The estimated PDF, empirical CDF, and P-P plots for Dataset II are shown in Figure 
9. These graphical plots support the outcomes in Table 9. 
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Figure 9. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of polyester fibers’ tensile 
strength data. 

Second, utilizing the information on the tensile strength of the fibers, we deter-
mined the ML, MPS, and Bayesian estimates using the SELF of the UEHLD’s parame-
ters, which are listed in Table 9. We used the mentioned MCMC algorithm to generate 
10,000 MCMC samples. The initial values of the unknown parameters were taken to be 
their MLEs in order to use the MCMC sampling procedure. 

Table 9. Estimates, SE, and CI of the UEHLD parameters for polyester fibers’ tensile strength data. 

 ML MPS Bayesian 
 Estimates SE Lower Upper Estimates SE Lower Upper Estimates SE Lower Upper 
ϕ  1.1281 0.2051 0.7262 1.5301 1.0058 0.2074 0.5994 1.4124 1.1354 0.1931 0.7826 1.5369 
δ  1.2346 0.2951 0.6563 1.8130 1.0606 0.2407 0.5889 1.5325 1.2423 0.2932 0.7414 1.8473 

For the data on the tensile strength of polyester fibers, Figure 10 draws the profile 
log-likelihood of the UEHLD for each parameter by fixing one parameter and changing 
the others. This figure demonstrates the excellent behavior of the aforementioned data, 
since the two roots of the parameters are global maxima. 

 
Figure 10. Profile likelihood for parameters of the UEHLD for polyester fibers’ tensile strength 
data. 

Figure 11 shows a contour plots with variable parameters, the log-likelihood func-
tion, and the log-product spacing function of the UEHLD to verify that the estimates 
have unique points. 
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MLE MPS 

  

Figure 11. Contour plots of log functions with different UEHLD parameter values of polyester fi-
bers’ tensile data. 

Figure 12 shows trace plots of the posterior distributions of the parameters to track 
the convergence of the MCMC outputs. Additionally, they display the histograms for 
the marginal posterior density estimates of the parameters based on 10,000 chain values 
and the Gaussian kernel, demonstrating how effectively the MCMC process converges. 
All of the produced posteriors are symmetric with regard to the theoretical posterior 
density functions, as shown by the estimations. 

 
Figure 12. MCMC trace and posterior distribution for the UEHLD parameters using polyester fi-
bers’ tensile data. 

7.3. Analysis of COVID-19 Data 
First, we compared the fit of the proposed UEHLD with that of the UW, K, KK, 

MOK, and UG distributions. We used the aforementioned criterion measurements found 
in Table 10 to compare the fit models. Table 10 reveals that the UEHLD has smaller 
measures than other competing distributions, indicating that it offers a superior fit for 
COVID-19 data. We should also point out that, in comparison to the models reported by 
Abu El Azm et al. [37], the findings of our new model yield superior measure values. 
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The estimated PDF, empirical CDF, and P-P plots for the COVID-19 data are shown 
in Figure 13. These graphical plots support the outcomes in Table 10. 

Table 10. MLE, SE, and measures of models for COVID-19 data. 

  Estimates SE KSD PVKS AICVC BICVC CAICVC HQICVC CVMV ADV 

UEHLD 
ϕ  1.2515 0.1030 

0.0574 0.9496 −385.0542 −380.2408 −384.9023 −383.1217 0.0555 0.3931 
δ  29.3838 9.3197 

UW 
α  0.0024 0.0003 

0.0734 0.7695 −381.6037 −376.7903 −381.4518 −379.6712 0.0988 0.7075 β  4.3135 0.1105 

K 
a 1.2399 0.1055 

0.0597 0.9322 −384.6698 −379.8564 −384.5179 −382.7373 0.0601 0.4228 
b 55.7476 18.3042 

KK 

a 2.4673 0.8418 

0.0798 0.6729 −379.0265 −369.3996 −378.5070 −375.1614 0.0624 0.4916 
b 0.5254 0.1184 
α  3.9566 0.9116 
β  3.8605 1.1342 

MOK 
α  0.0119 0.0225 

0.1045 0.3324 −372.2227 −365.0025 −371.9150 −369.3239 0.0635 0.5250 β  1.3908 0.1793 
θ  1.8396 2.6201 

UG 
β  0.0180 0.0071 

0.1079 0.2953 −363.6987 −358.8852 −363.5468 −361.7661 0.2945 1.9852 
θ  0.9767 0.0803 

 

Figure 13. Plots of the estimated PDFs, CDFs, and P-P of the UEHLD of COVID-19 data. 

Second, for the COVID-19 data, we determined the ML, MPS, and Bayesian esti-
mates using the SELF of the UEHLD’s parameters for COVID-19 data, which are listed 
in Table 11. We used the mentioned MCMC algorithm to generate 10,000 MCMC sam-
ples. The initial values of the unknown parameters were taken to be their MLEs in order 
to use the MCMC sampling procedure. For the COVID-19 data, Figure 14 draws the pro-
file log-likelihood of the UEHLD for each parameter by fixing one parameter and 
changing the others. Figure 15 demonstrates the excellent behavior of the aforemen-
tioned data, since the two roots of the parameters are global maxima. 
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Figure 14. Profile likelihood for parameters of the UEHLD for COVID-19 data. 

 
Figure 15. Contour plots of log functions with different UEHLD parameter values for COVID-19 
data. 

Table 11. Estimates, SE, and CI of the UEHLD parameters for COVID-19 data. 

 ML Bayesian 
 Estimates SE Lower Upper Estimates SE Lower Upper 
ϕ  1.2515 0.1030 1.0496 1.4533 1.2511 0.0662 1.1236 1.3829 
δ  29.3838 9.3197 11.1171 47.6505 29.4399 4.0952 21.2897 37.1251 

Figure 16 shows trace plots of the posterior distributions of the parameters to track 
the convergence of the MCMC outputs. Additionally, they display the histograms for 
the marginal posterior density estimates of the parameters based on 10,000 chain values 
and the Gaussian kernel, demonstrating how effectively the MCMC process converges. 
All of the produced posteriors are symmetric with regard to the theoretical posterior 
density functions, as shown by the estimations. 
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Figure 16. MCMC trace and posterior distribution for the UEHLD parameters using for COVID-19 
data. 

8. Summary and Conclusions 
The unit-exponentiated half-logistic distribution, which is useful for modelling data 

on the unit interval, was proposed in this study as a result of an investigation into a 
suitable transformation. The mathematical properties of this distribution, such as mo-
ments, probability-weighted moments, incomplete moments, different entropy 
measures, and stress–strength reliability, were provided. The parameter estimators of 
the suggested distribution were established using the maximum likelihood, maximum 
product of spacing, and Bayesian methods. For the purpose of evaluating how well pa-
rameter estimates performed on finite samples, a thorough simulation study was in-
cluded. The effectiveness of parameter estimation methodologies on finite samples was 
examined through a comprehensive simulation examination. We assessed the perfor-
mance of point estimates in terms of their bias and MSE, while the interval estimates 
were investigated in terms of their length. We concluded that, in most cases, the smaller 
accuracy measures of the MPS estimates made them preferable to the ML estimates. The 
MSE reduced for each estimate as the sample size grew, demonstrating the consistency 
of the estimates. The length of the CI estimates based on the three techniques reduced as 
the sample size increased, indicating that the CI was the shortest. For clarification, the 
suggested distribution was practically applied to data on economic growth and tensile 
strength. Additionally, COVID-19 data analysis using British medical statistical data was 
supplied. In comparison to several new unit distributions and existing unbounded dis-
tributions, the experimental data showed that the proposed UEHLD distribution deliv-
ered a better outcome. It is important to note that, when analyzing the COVID-19 data, 
the result of our novel model produced superior measure values than the models shown 
by Abu El Azm et al. [37], Almetwally et al. [38], Hassan et al. [39], Liu et al. [40], Nagy et 
al. [41], Ahmadini et al. [42], and Mahmood et al. [43]. Additionally, estimates of the new 
model were taken into account for each dataset using various estimation techniques, 
with the exception of the first dataset, for which the MPS approach was not used due to 
its more equally distributed values. The UEHLD’s log-likelihood was shown graphically 
together with the representations of the contour plots with varied parameter values. For 
the three datasets, histograms of the marginal posterior density estimates were provided 
along with plots of the posterior distributions of the parameters. 
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