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Abstract: Video surveillance in smart cities provides efficient city operations, safer communities,
and improved municipal services. Object detection is a computer vision-based technology, which is
utilized for detecting instances of semantic objects of a specific class in digital videos and images.
Crowd density analysis is a widely used application of object detection, while crowd density classifi-
cation techniques face complications such as inter-scene deviations, non-uniform density, intra-scene
deviations and occlusion. The convolution neural network (CNN) model is advantageous. This study
presents Aquila Optimization with Transfer Learning based Crowd Density Analysis for Sustainable
Smart Cities (AOTL-CDA3S). The presented AOTL-CDA3S technique aims to identify different kinds
of crowd densities in the smart cities. For accomplishing this, the proposed AOTL-CDA3S model
initially applies a weighted average filter (WAF) technique for improving the quality of the input
frames. Next, the AOTL-CDA3S technique employs an AO algorithm with the SqueezeNet model
for feature extraction. Finally, to classify crowd densities, an extreme gradient boosting (XGBoost)
classification model is used. The experimental validation of the AOTL-CDA3S approach is tested by
means of benchmark crowd datasets and the results are examined under distinct metrics. This study
reports the improvements of the AOTL-CDA3S model over recent state of the art methods.

Keywords: sustainability; smart cities; deep learning; crowd density; video surveillance

1. Introduction

The proliferation of smart cities (SC), smart security, and smart community have made
anomalous behavior analysis a hot topic in crowd event research. Security is a highly
significant component in city; it becomes vital to ensure a safe ecosystem for the data that is
produced and for the people [1]. Cities should enforce security measures for guaranteeing
complete security of the individuals’ information, and the information produced by the
sensors and urban infrastructure, among others. In the present era, it is very significant
to enable compliance with precautionary measures that safeguard people; for instance,
if they have adequate social distancing measures in public places [2]. In this context,
imaginative systems that enable us to find those places where there are less pedestrians
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is of considerable significance, in order to simplify the leisure of the family who need to
go out [3]. The SC construction is a dynamic procedure, and the management platform
should always be ready not only for ingesting the real-time dataset, but for incorporating
the information from various sources and bringing about these data for analysis, along
with creating various visualization approaches and integrating several data [4].

Currently, intelligent monitoring is increasingly implemented in common places
(shopping malls, hospitals, and campuses) [5]. Of these, the crowding degree is the main
problem that influences the study of the abnormal performance of crowds. It can be realized
by crowd counting and crowd density (CD) estimation. CD prediction allures the interest
of researchers abroad and at home in increasing numbers [5]. Currently, researchers abroad
and at home have performed research relating to crowd abnormality with the focus on
track path abnormality, crowd violence, crowd crowding, and crowd panic. The density
and count of the crowd were frequently employed to reflect the degree of crowd crowding.
There are two types of crowd analysis which rely upon crowd density prediction and crowd
count. Crowd density prediction is assessing the crowd dispersion and specific groups of
people [6].

Crowd analysis is gaining considerable attention among scholars in recent times due
to several factors. The massive growth in urbanization and the global population has led
to a rise in events such as political rallies, public demonstrations, and sporting events,
among others. Similar to other computer vision (CV) problems, crowd analysis will face
several complexities such as an uneven distribution of people, inter-scene variations in
appearance, high clutter, non-uniform illumination, an unclear viewpoint, intra-scene
and scale issues, and occlusions; such issues are very tough to solve. The uncertainty of
the problem in addition to the wide array of applications for analyzing crowds resulted
in an augmented focus among researchers in recent times. Convolution neural network
(CNN) achieved fruitful results in image processing and in CD estimation. On the other
hand, the hyperparameters of the DL models play a vital role in attaining enhanced
performance. Owing to continual deepening of the model, the number of parameters
of DL models also increases quickly which results in model overfitting [7]. At the same
time, different hyperparameters have a significant impact on the efficiency of the CNN
model. Particularly, the hyperparameters such as epoch count, batch size, and learning
rate selection are essential to attain an effectual outcome. The trial-and-error method
for hyperparameter tuning is a tedious and erroneous process; metaheuristic algorithms
can be applied. The hyperparameter tuning can be considered an NP hard problem
which can be solved using metaheuristic algorithms such as genetic algorithm, hunger
games search, and memetic algorithm, among others [8]. The metaheuristic is a high-level
problem-independent algorithmic model which offers a collection of strategies to design
heuristic optimization algorithms [9,10]. Metaheuristics can be utilized for combinatorial
optimization where an optimal solution is required over a discrete search-space.

This study presents an Aquila Optimization with Transfer Learning based Crowd
Density Analysis for Sustainable Smart Cities (AOTL-CDA3S). This AOTL-CDA3S tech-
nique aims to identify different kinds of crowd densities in the SC environment. In order
to accomplish this, the proposed AOTL-CDA3S technique initially applies the weighted
average filter (WAF) technique for improving the quality of the input frames. Next, the
AOTL-CDA3S technique employs an AO algorithm with the SqueezeNet model for feature
extraction. In this work, we have used the Aquila optimization algorithm for hyperpa-
rameter tuning due to its faster optimization speed, global exploration ability, high search
efficiency, and fast convergence speed. Finally, to classify crowd densities, an extreme
gradient boosting (XGBoost) classification mechanism is used. The experimental validation
of the AOTL-CDA3S technique is tested by means of benchmark crowd datasets and the
results are examined under distinct metrics.
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2. Literature Survey

Ding et al. [11] introduced new encoder-decoder CNNs that merge the feature maps in
both decoding and encoding sub-networks for generating a more reasonable density map
and predicting the people count very precisely. Moreover, the authors present an innovative
evaluation technique termed the Patch Absolute Error (PAE) which is a suitable method to
measure the accurateness of density maps. Alrowais et al. [12] modelled an MDTL-ICDDC
method to detect objects. This MDTL-ICDDC method focused on the effectual classification
and identification of CD on video surveillance systems. The MDTL-ICDDC method mainly
uses an SSA in addition to the NASNetLarge method as a feature extractor where the
hyper-parameter tuning will be executed by the SSA. In addition, for CD and classification
process, a weighted ELM (WELM) technique was used.

Wang et al. [13] modelled a trivial CNN related CD estimation method through the
merging of the dilated convolution modified and MobileNetv2. In [14], a novel testing
process that depends on features from accelerated segment test (FAST) techniques was
presented for detecting the crowd features from drone imageries captured through different
camera positions and orientations. In [15], utilizing the Hough circle transformation, a CD
estimation technique was modelled. In the technical background and foreground, data was
divided by leveraging the ViBe technique along with the segmentation of foreground data.
Such segmented foreground data can be employed in the Hough circle transformation for
CD estimation.

In [16], the authors were interested in implementing ML for crowd management for
monitoring populated areas and to thwart congestion circumstances. The authors devised
a Single-CNN including the Three Layers (S-CNN3) method for counting people in a scene
and make a conclusion of crowd estimation. Afterward, a comparative analysis for density
counting accomplishes the efficiency of this presented technique towards the CNNs with
Switched CNN (SCNN) and four layers (single-CNN4). Zhou et al. [17] present a multi-
linear rank support tensor machine (MRSTM) considering a tensor collection as input to
the issue of predicting the CD level. Moreover, an alternative SVM technique was modelled
for training an MRSTM method.

Zhao et al. [18] present a new approach utilized for correctly analyzing the crowd
stability dependent upon images achieved in a real-time video surveillance system (VSS)
from dense crowd conditions. For enhancing the accuracy of human head detection to
the crowd count and CD estimate, the authors enhance the CNN approach with further
columns and merged features, achieving a four-column CNN (4C-CNN). Liu et al. [19]
project a model which is integrated dual-modal data; the video surveillance streams
and transportation scheduling data for predicting the future CD in the transportation
buildings. This technique employs the temporal convolutional layer for extracting the time
dependence of video streams and transportation schedules. The predictions fuse the data
or utilize the GRU layers for predicting the CD.

In [20], a Multi-Step CD Predictor (MSCDP) for fusing video frame structures and
equivalent density heatmaps is presented for correctly forecasting future CD heatmaps.
For capturing long-term periodic movement features, the long-term optical flow context
memory (LOFCM) element was planned for storing learnable patterns. In [21], the au-
thors initially established a WiFi monitor recognition which captures smartphone passive
Wi-Fi signal data comprising MAC address and RSSI. Afterward, the authors present a
positioning technique dependent upon the smartphone passive WiFi probe and a dynamic
fingerprint management approach. Therefore, the authors designed a computing model
for the probability of a user creating one WiFi signal for identifying people populations.
Lastly, the author presents a CD estimate solution dependent upon a WiFi probe packet
positioning technique.

3. The Proposed Model

For accurate crowd density classification, we have developed a new AOTL-CDA3S
technique for sustainable smart cities. The presented AOTL-CDA3S technique aims to
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identify different kinds of crowd densities in the SC environment, and encompasses WAF
noise removal, SqueezeNet feature extraction, AO based hyperparameter tuning, and
XGBoost classification. Figure 1 defines the block diagram of AOTL-CDA3S system.
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Figure 1. Block diagram of the AOTL-CDA3S system.

3.1. Image Pre-Processing

In the first phase, the presented AOTL-CDA3S technique eliminates the existing noise.
The WAF was intended to pre-process to suppress noise and enhance spatial domain
features effectively [22]. The filter Wη was defined by the matrix, whereby η represents
the odd number. Each component value of matrix is determined by the distance between
the center of matrix and the present place, as illustrated below. The center of matrix was
defined by w(η+1)/2,(η+1)/2 = 2/η2. The proposed filter continues to the edges; however,
the filter suppresses the speckle noise associated with other filters, such as the mean filter,
and maintain the continuity of an image.

wi j =
1

η2
√
( η+1

2 − i)
2
+ ( η+1

2 − j)
2

; i = 1, 2, η; j = 1, 2 η; (1)

In Equation (1), I1, I2 ∈ RNr×NC , the convolution? of each image using Wη is accom-
plished to acquire 2 images, Iw

1 (η) = I1 ∗Wη and Iw
2 (η) = I2 ∗Wη , while the ∗ indicates

the 2D convolution function.

3.2. Feature Extraction

To derive features, the presented AOTL-CDA3S technique utilized the SqueezeNet
model to produce feature vectors. In general, CNN includes convolutional, pooling, and
full connected (FC) layers [23]. Initially, the feature was extracted by employing several
pooling and convolutional layers. Afterward, the mapping feature in the last convolution
layers is changed to a 1D vector followed by the resultant layer classifying the input image.
The network decreases the square variance between the predictive and classifier results and
alters the weighted variable by BP. The neuron in every layer is orderly in three dimensions
(width, depth, and height) so that depth defines the count of input feature mapping or
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channel count of input images, and height and width signify the size of neurons. The
convolutional layer comprises many convolutional filters and extracting features in the
image with convolution approach. The convolution filters of the current layer convoluted
the input feature mapping for removing local features and realizing the resultant feature
mapping. Then, the non-linear feature mapping was realized by the activation function.
The pooling or subsampling layers are the last convolutional layers. This applies a down
sampling approach that is a specific value as an outcome in particular region.

As the variable count for AlexNet and VGGNet enhances, the SqueezeNet network
infrastructure is established that is minimally variable but maintains accuracy. The fire ele-
ments develop an important element in SqueezeNet. This element was separated to expand
and squeeze infrastructure. The 1 × 1 convolutional layer obtained considerable attention
from the network infrastructure, thereby attaining data integration on the channel and a
linear combination of many features mapping. If the count of input and output channels is
superior, the convolution kernels develop well. Next, adding 1 × 1 convolutional to all the
single inception systems decreases the count of input channels, and the complex function
and convolution kernel variable were reduced. Lastly, 1 × 1 convolutional was added for
increasing the extracting feature and the count of channels. When the sampling reduction
approach can be delayed, a superior activation graph was offered to convolutional layer, so
the higher activation graph reserves more data and offers superior classifier efficacy.

For the hyperparameter optimization process, the AO algorithm is utilized. The
AO approach mimics Aquila’s social activity to catch the prey [24]. AO is a population-
based optimized method which is based on other metaheuristic algorithms and begins by
establishing an initial population X with N agent. The succeeding equation is exploited to
implement these processes as explained in Algorithm 1.

Xij = r1 ×
(
UBj − LBj

)
+ LBj, i = 1, 2, Nj = 1, 2, . . . , Dim (2)

Here, UBj and LBj illustrate the restriction of search space. r1 ∈ [0, 1] indicates the
arbitrary number and Dim shows the dimension of agents. In this study, the subsequent
stage is to implement exploitation and exploration until the optimum solution is determined.
There are 2 phases in exploration and exploitation. The Xb optimum agent and (X) the
average agent is employed in the exploration, and the mathematical expressions are given
below:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (3)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (4)

The exploration phase can be controlled by means of using
(

1−t
T

)
. The maximal

quantity of generations is demonstrated by T. The exploration process makes use of the
Levy flight (Levy (D)) distribution and Xb for upgrading the solution in the following:

Xi(t + 1) = Xb(t)× Levy(D) + XR(t) + (y− x) ∗ rand, (5)

Levy (D) = s× u× σ

|v|
1
β

, σ =

Γ(1 + β)× sine
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

 (6)

where, s = 0.01 and β = 1.5. u and v specify the arbitrary values. XR denotes arbitrarily
selected agents. In addition, y and x represent two parameters employed to stimulate the
spiral shape:

y = r× cos(θ), x = r× sin(θ) (7)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(8)
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where, ω = 0.005 and U = 0.00565. r1 ∈ [0, 20] refers to the arbitrary number. The initial
approach employed for improving the agent in the exploitation phase depends on Xb
and XM:

Algorithm 1: Pseudocode of AO algorithm

Parameter initialization
WHILE (Termination criteria is unsatisfied) do

Determine value of fitness function
Xbest(t) = Compute optimal attained solution based on fitness value
for (i = 1, 2 . . . , N) do
Upgrade mean value of present solution XM(t).
Upgrade the x, y,G1,G2, Levy(D), etc.

if τ ≤
(

2
3

)
∗ T then

if rand ≤ 0.5 then
Expanded exploration (X1)
Upgrade present solution
if Fitness (X1(t + 1)) < Fitness(X(t)) then

X(t) = (X1(t + 1))
if Fitness (X1(t + 1)) < Fitness(Xbest(t)) then

Xbest(T) = X1(T + 1)
end if
end if

else
Narrowed exploration (X2) }
Upgrade current solution.
if Fitness (X2(t + 1)) < Fitness(X(t)) then

X(T) = (X2(T + 1))
if Fitness (X2(t + 1)) < Fitness(Xbest(t)) then

Xbest(t) = X2(t + 1)
end if

end if
end if

else
if rand ≤ 0.5 then
{ Expanded exploitation (X3) }
Upgrade present solution

if Fitness (X3(t + 1)) < Fitness(X(t)) then
X(t) = (X3(t + 1))

if Fitness (X3(t + 1)) < Fitness(Xbest(t)) then
Xbest(T) = X3(T + 1)

end if
end if

else
Narrowed exploitation (X4)
Upgrade present solution

if Fitness (X4(t + 1)) < Fitness(X(t)) then
X(T) = (X4(T + 1))

If fitness (X4(t + 1)) < Fitness
(

Xbes f (t)
)

then

Xbest(t) = X4(t + 1)
end if

end if
end if
end if
end for

end while
return optimal solution (Xbest).
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Xi(t + 1) = (Xb(t)− XM(t))× α− rnd + (UB× rnd + LB)× δ (9)

Now UB = (UB− LB), α, and δ indicate the exploitation adjustment variable. rnd ∈
[0, 1] represents a random value as follows:

Xi(t + 1) = QP× Xb(t)− GX− G2 × Levy(D) + rnd× G1 (10)

GX = (G1 × X(t)× rnd)

QP(t) = t
2×rnd( )−1
(1−T)2 (11)

Furthermore, G1 represents the motion employed for tracking the optimal individual
solution in the following:

G1 = 2× rnd()− 1, G2 = 2×
(

1− t
T

)
(12)

Here, rnd denotes a random value. Moreover, G2 denotes a parameter that minimized
from two to zero:

G2 = 2×
(

1− t
T

)
(13)

3.3. Crowd Density Classification

To classify crowd densities, the XGBoost model was utilized in this study. XGBoost [25]
is an enhanced model stimulated from the XGBoost decision tree and could build boosted
tree effectively and operate simultaneously. The boosted tree in XGBoost is classified
into regression and classification trees. The aim is to enhance the values of objective
function. Frequency is a simplified version of gain, which is the amount of features in each
constructed tree. Gain is the major reference factor of the importance of a feature in the tree
branch.

w2
`(T) =

J−1

∑
t=1

τ̂ (14)

For a single decision tree T, Breiman developed a score of importance for every
predictor feature X`. The DT is comprised of J—l internal node, and partitions the region
into two sub-regions at t nodes by the prediction feature X` as follows:

w2
`(T) =

1
M

M

∑
m=1

τ̂2
1 (Tm) (15)

The significant feature is based on the predictive performance variations when the
feature is replaced with random noise, and hen attain how every feature contributed toward
the predictive performance during training. The electricity load is sensitive to temperature
variables. Furthermore, the supplement features are significant features for forecasting
loads.

4. Performance Evaluation

The proposed model is simulated using the Python 3.6.5 tool. The proposed model is
tested on the PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1TB HDD.
The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50, and activation: ReLU. The experimental validation of the AOTL-CDA3S
model is carried out using a crowd dataset with 1000 samples as represented in Table 1. The
dataset holds 250 samples under every class. Figure 2 demonstrates some sample images.
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Table 1. Dataset details.

Labels Class Sample count

C1 Dense Crowd 250

C2 Medium Dense Crowd 250

C3 Sparse Crowd 250

C4 No Crowd 250

Total Number of Samples 1000Appl. Sci. 2022, 12, 11187 9 of 18 
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Figure 2. Sample images.

The crowd density analysis of the AOTL-CDA3S model in the form of confusion
matrix is portrayed in Figure 3. With the entire dataset, the AOTL-CDA3S model has
recognized 240 samples to C1, 220 samples to C2, 240 samples to C3, and 228 samples to
C4. Additionally, with 70% of the TR database, the AOTL-CDA3S method has recognized
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167 samples to C1, 156 samples to C2, 161 samples to C3, and 156 samples to C4. Further-
more, with 30% of the TS database, the AOTL-CDA3S technique has recognized 73 samples
to C1, 64 samples to C2, 79 samples to C3, and 72 samples to C4.
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and (c) 30% of TS database.

Table 2 and Figure 4 illustrate brief crowd classification results of the AOTL-CDA3S
model on the entire data. The AOTL-CDA3S model has shown enhanced results under
each class. For instance, in class-1, the AOTL-CDA3S model has obtained accuy of 97%,
precn of 92.31%, sensy of 96%, specy of 97.33%, and Fscore of 94.12%. Meanwhile, in class-3,
the AOTL-CDA3S approach has gained accuy of 97.60%, precn of 94.49%, sensy of 96%,
specy of 98.13%, and Fscore of 95.24%. Concurrently, in class-4, the AOTL-CDA3S method
has gained accuy of 95.70%, precn of 91.57%, sensy of 91.20%, specy of 97.20%, and Fscore of
91.38%.
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Table 2. Crowd classification outcome of the AOTL-CDA3S system with different measures under
the entire database.

Entire Dataset

Labels Accuracy Precision Sensitivity Specificity F-Score

Class-1 97.00 92.31 96.00 97.33 94.12

Class-2 95.30 92.83 88.00 97.73 90.35

Class-3 97.60 94.49 96.00 98.13 95.24

Class-4 95.70 91.57 91.20 97.20 91.38

Average 96.40 92.80 92.80 97.60 92.77
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Table 3 and Figure 5 exemplify detailed crowd classification results of the AOTL-
CDA3S approach on 70% of the TR database. The AOTL-CDA3S technique has exhibited
enhanced results under each class. For example, in class-1, the AOTL-CDA3S methodology
has attained accuy of 96.43%, precn of 90.76%, sensy of 95.43%, specy of 96.76%, and Fscore
of 93.04%. Meanwhile, in class-3, the AOTL-CDA3S approach has gained accuy of 97.14%,
precn of 94.15%, sensy of 94.15%, specy of 98.11%, and Fscore of 94.15%. Concurrently, in
class-4, the AOTL-CDA3S technique has achieved accuy of 94.86%, precn of 90.17%, sensy
of 89.14%, specy of 96.76%, and Fscore of 89.66%.
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Table 3. Crowd classification outcome of the AOTL-CDA3S system with different measures under
70% of the TR database.

Training Phase (70%)

Labels Accuracy Precision Sensitivity Specificity F-Score

Class-1 96.43 90.76 95.43 96.76 93.04

Class-2 94.43 90.70 87.15 96.93 88.89

Class-3 97.14 94.15 94.15 98.11 94.15

Class-4 94.86 90.17 89.14 96.76 89.66

Average 95.71 91.45 91.47 97.14 91.43
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Table 4 and Figure 6 demonstrate the brief crowd classification results of the AOTL-
CDA3S algorithm on 30% of the TS database. The AOTL-CDA3S approach has displayed
enhanced results under each class. For example, in class-1, the AOTL-CDA3S technique
has gained accuy of 98.33%, precn of 96.05%, sensy of 97.33%, specy of 98.67%, and Fscore of
96.69%. Meanwhile, in class-3, the AOTL-CDA3S approach has reached accuy of 98.67%,
precn of 95.18%, sensy of 100%, specy of 98.19%, and Fscore of 97.53%. Concurrently, in
class-4, the AOTL-CDA3S technique has reached accuy of 97.67%, precn of 94.74%, sensy of
96%, specy of 98.22%, and Fscore of 95.36%.
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Table 4. Crowd classification outcome of the AOTL-CDA3S system with different measures under
30% of the TS database.

Testing Phase (30%)

Labels Accuracy Precision Sensitivity Specificity F-Score

Class-1 98.33 96.05 97.33 98.67 96.69

Class-2 97.33 98.46 90.14 99.56 94.12

Class-3 98.67 95.18 100.00 98.19 97.53

Class-4 97.67 94.74 96.00 98.22 95.36

Average 98.00 96.11 95.87 98.66 95.93
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The training accuracy (TRacc) and validation accuracy (VLacc) acquired by the AOTL-
CDA3S approach under test database is shown in Figure 7. The simulation value denoted
by the AOTL-CDA3S method has attained maximal values of TRacc and VLacc; the VLacc is
greater than TRacc.

The training loss (TRloss) and validation loss (VLloss) reached by the AOTL-CDA3S
method under the test database are displayed in Figure 8. The simulation values dis-
played by the AOTL-CDA3S technique have exhibited minimal values of TRloss and VLloss.
Seemingly, the VLloss is less than TRloss.
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A clear precision-recall inspection of the AOTL-CDA3S technique under the test
database is depicted in Figure 9. The figure denotes that the AOTL-CDA3S approach has
resulted in enhanced values of precision-recall values in every class label.
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A brief ROC study of the AOTL-CDA3S approach under the test database is repre-
sented in Figure 10. The outcomes exemplified by the AOTL-CDA3S method have revealed
its capability in classifying different classes in the test database.
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Lastly, a comprehensive comparative study of the AOTL-CDA3S model was made
with recent models in Table 5 and Figure 11 [12]. These results affirm that the AOTL-CDA3S
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model has reached improved performance over other models. For instance, based on accuy,
the AOTL-CDA3S model has gained a higher accuy of 98%, whereas the Gabor, BoW-SRP,
BoW-LBP, GLCM-SVM, GoogleNet, VGGNet, and MDTL-ICDDC models have reached
reduced accuy of 71.95%, 79.95%, 84.26%, 80.20%, 84.51%, 84.49%, and 96.94% respectively.

Table 5. Comparative analysis of the AOTL-CDA3S system with recent approaches.

Methods Accuracy Precision Sensitivity F-Score

AOTL-CDA3S 98.00 96.11 95.87 98.66

Gabor 71.95 61.88 61.84 61.78

BoW-SRP 79.95 68.25 67.75 68.32

BoW-LBP 84.26 74.36 74.37 74.74

GLCM-SVM 80.20 75.57 73.63 87.99

GoogleNet 84.51 83.16 84.94 80.92

VGGNet 84.49 85.72 82.74 84.76

MDTL-ICDDC 96.94 93.24 93.11 93.29
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Additionally, based on precn, the AOTL-CDA3S method has obtained a higher precn
of 96.11%, whereas the Gabor, BoW-SRP, BoW-LBP, GLCM-SVM, GoogleNet, VGGNet, and
MDTL-ICDDC methods have attained a reduced precn of 61.88%, 68.25%, 74.36%, 75.57%,
83.16%, 85.72%, and 93.24% correspondingly.

The AOTL-CDA3S model has attained maximum crowd density classification per-
formance. Since the SqueezeNet model has 50 times less parameters than AlexNet with
effective accuracy, the proposed model reaches better performance over other models. At
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the same time, the SqueezeNet model derives the significant features from the preprocessed
input images for the classification process. In addition, the DL model suffers from several
issues: namely, gradient vanishing, overfitting, hyperparameter tuning, and extensive
computation. The DL model encompasses several hyperparameters and the selection of
optimal configuration for these parameters in such a high dimensional space is challenging.
These hyper-parameters act as knobs, which can be tweaked during the training of the
model. Because of continual deepening of the model, the number of parameters of DL
models also increases quickly which results in model overfitting. At the same time, different
hyperparameters (learning rate, epoch count, and batch size) have a significant impact
on the efficiency of the CNN model, particularly the learning rate. It is also necessary to
modify the learning rate parameter for obtaining better performance. Therefore, in this
study, we employed the AO technique for the hyperparameter tuning of the SqueezeNet
model, which in turn enhances the classification performance. In addition, the unique
characteristics of the AO algorithm, such as faster optimization speed, global exploration
ability, high search efficiency, and fast convergence speed helps to attain improved crowd
classification results over other models.

5. Conclusions

For accurate crowd density classification, we have developed a new AOTL-CDA3S
technique for sustainable smart cities. The presented AOTL-CDA3S technique aims to
identify different kinds of crowd densities in the SC ecosystem. To accomplish this, the
presented AOTL-CDA3S approach initially used the WAF technique for improving the
quality of the input frames. Next, the AOTL-CDA3S model employs the AO algorithm
with the SqueezeNet model for feature extraction. Finally, to classify crowd densities,
the XGBoost classification model is used. The experimental validation of the AOTL-
CDA3S model is tested using benchmark crowd datasets and the results are examined
under distinct metrics. The comparative outcomes report the improvements in the AOTL-
CDA3S method over recent state of the art techniques. In the future, the crowd density
classification results can be improvised using ensemble learning with fusion based DL
models. Hybrid metaheuristic algorithms can be designed to enhance the characteristics of
the AO algorithm.
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