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Abstract: Memory properties of fractional-order operators are considered for an input-output data
model for highly uncertain nonlinear systems. The model arises by relating the fractional-order
variation of the output to the fractional-order variation of the input; the instantaneous gain is
computed through a fuzzy inference network, whose output consequences are adapted online on
a gradient descent rule. The fractional-order nature of the proposed model relaxes the stringent
conditions on data-driven schemes, allowing instantaneous changes in the output signal with a
null variation in the controller. The main contribution consists of taking advantage of the memory
properties of fractional-order operators and the flexibility of fuzzy logic rules to construct a data-
driven model for highly uncertain discrete-time nonlinear systems. The relevance of the proposed
method is assessed through experiments in a real-world scenario.

Keywords: fuzzy logic control; discrete-time control; robotic manipulators; discrete-time fractional
calculus

1. Introduction

Robust tracking and regulation in highly uncertain discrete-time nonlinear systems
is a non-trivial and interesting problem. This paper proposes a fractional input-output
data model that relies on a dynamic linearization between the fractional-order variation
of the input function and the fractional-order variation of the output signal, in contrast to
classical approaches that consider just local information related to first-order variations [1].
An intrinsic advantage of the proposed method is that the model is still valid when there
are instantaneous changes in the output signal, while the variation in the controller is null.
Another advantage is less sensitivity to measurement and input noise because more data
are considered to synthesize the equivalent model. These features can be provided by the
inherent memory properties of fractional-order operators [2–5].

Modern engineering systems are composed of different elements with uncertain
models. This motivates the study of model-free approaches that rely on less restrictive
assumptions on the system response [6–8]. In addition, computing the controller during the
implementation time is of preponderant importance to assure a good degree of robustness
and performance [9].

In recent years, the paradigm of data-driven control has been considered for the case of
complex and uncertain dynamic systems [10–14]. In particular, the concept of compact form
dynamic linearization was investigated in [9], which proposed a data-driven model that
relates the first-order variations of input and output signals by means of an instantaneous
gain, also called the pseudo-partial derivative (PPD). The validity of the proposed model
relies on assuring that the PPD is finite for any time instant, thus, the equivalent model is
undefined if there is any variation of the output but the input remains at a constant value.
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In order to estimate the PPD, a fuzzy logic formulation was proposed in [15], where
the universal approximation properties of fuzzy systems are considered to compute the
equivalent model. Full and partial forms of dynamic linearizations were investigated
in [16,17], accounting for more data to produce a more accurate model representation.
Nevertheless, this was done at the price of adjusting more parameters.

A popular scheme for model-free implementation is, for instance, the proportional-
integral-derivative (PID) control, which is very appealing in industrial applications due to
its simplicity and reliability [18,19]. In addition, the increasing in complexity of modern
automation applications requires more robust and more flexible techniques to operate in
uncertain conditions, thus, some advanced versions of the PID control consider sliding
mode [20,21], fractional-order [22], fuzzy logic [23], and adaptive schemes [24]. How-
ever, a structure for the dynamical model is still necessary to assure, at least analytically,
an acceptable closed-loop response.

In this paper, the inherent memory properties of fractional-order operators [25,26]
are considered to produce a discrete-time equivalent input-output data model, where the
fractional PPD (FPPD) is computed by means of fuzzy rules emulating networks. The
advantages of the proposed scheme consist of accounting for the history of the process,
while searching for a single parameter through a fuzzy aggregation scheme. An interesting
property of the proposed algorithm is that the model is still valid when the output changes
in the presence of a locally constant output signal.

It is important to note that some neural network structures can be considered [27–29],
as an alternative to the fuzzy logic approach, to actively estimate the FPPD during imple-
mentation time. Nonetheless, the user experience on the system behaviors can be of great
value when designing the fuzzy inference system [30,31].

The remaining of this paper is organized as follows. The next section presents the prob-
lem formulation. The fractional input-output equivalent model is presented in Section 3.
The control design is given in Section 4. The experimental results are analyzed in Section 5,
and the main conclusions are discussed in Section 6.

2. Problem Formulation

Consider a class of discrete-time nonlinear systems of the form

y(k + 1) = f (ȳ(k), ū(k)), (1)

where f (−) is an unknown, but smooth, nonlinear function, y(k + 1) ∈ R is the output, and
u(k) ∈ R is the control input. Consider the vectors ȳ(k) = [y(k), y(k− 1), · · · , y(k− ny)]T

and ū(k) = [u(k), u(k − 1), · · · , u(k − nu)]T , where ny and nu are unknown integer
numbers.

The problem is to design u(k), such that the output y(k) tracks a smooth desired
reference r(k). Moreover, only input-output data are available for control purposes, that is,
y(k) and u(k), and their preceding values.

3. Fractional Input-Output Equivalent Model

The discrete-time fractional difference of the sequence x(k) ∈ R, with k ∈ N0, is
defined as

∆α
N x(k) =

N

∑
i=0

ωα(i)x(k− i), (2)

where α ∈ (0, 1] is the order, and the fractional binomial coefficient ωα(i) is determined
recursively as

ωα(i) =
(

1− 1 + α

i

)
ωα(i− 1), (3)

for i ≥ 1, and initial condition ωα(0) = 1.
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Accordingly, the equivalent model based on the FPPD (fractional pseudo partial
derivative) θ(k) is proposed as

∆α
Ny

y(k + 1) = θ(k)∆α
Nu

u(k). (4)

Relying on the definition in (2), we have

∆α
Ny

y(k + 1) = ωα(0)y(k + 1) + · · ·+ ωα(Ny)y(k− Ny + 1), (5)

and
∆α

Nu
u(k) = ωα(0)u(k) + · · ·+ ωα(Nu)u(k− Nu). (6)

Simplifying ω(i) = ωα(i) and using (3), we obtain

y(k + 1) = θ(k)∆α
Nu

u(k)

−ω(1)y(k)−ω(2)y(k− 1)− · · · −ω(Ny)y(k− Ny + 1). (7)

Therefore, the equivalent model is formulated as

ŷ(k + 1) = θ̂(k)∆α
Nu

u(k)

−ω(1)y(k)−ω(2)y(k− 1)− · · · −ω(Ny)y(k− Ny + 1), (8)

where ŷ(k + 1) is the output of the equivalent model and θ̂(k) is the estimated FPPD.
With the aim of utilizing the fractional input-output equivalent model proposed by (8),
the adaptive network multiple-input fuzzy rules emulating network (MiFREN) is employed
to establish θ̂(k).

The fuzzy network architecture relies on the IF-THEN rules:

◦ Rulei=1,··· ,N f :{
IF u(k− 1) is µui and y(k) is µyi THEN θ̂i(k) = βi(k)

}
,

where N f is the number of IF-THEN rules, µui and µyi are membership functions of u(k− 1)

and y(k), respectively, and β(k) ∈ RN f
is the weight-vector of output consequences.

In addition, considering ϕi(k) = µui ∧ µyi , with the product as the t-norm, as the degree of
validity of Rulei. Then, the estimated FPPD, or θ̂(k), is obtained as

θ̂(k) =
N f

∑
i=1

ϕi(k)βi(k) = ϕT(k)β(k). (9)

An alternative for the membership functions is given by

• x is POSITIVE: µP(x) = 0.5[1 + tanh(σx− 1)];
• x is ZERO: µN(x) = 1− tanh2(σx); and
• x is NEGATIVE µZ(x) = 0.5[1− tanh(σx + 1)],

for agglomeration parameter σ > 0. Note that, if the range of argument x is small,
the parameter σ should be large, and vice-versa. Moreover, the adaptation allows us
to reduce the number of fuzzy sets, and in turns the number of rules, to be considered.

The learning law of the weight parameters β(k) in (9) is derived from minimizing the
cost function

Ê(k + 1) =
1
2

ê2(k + 1), (10)

where ê(k + 1) is the model error given by

ê(k + 1) = y(k + 1)− ŷ(k + 1). (11)
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By employing the gradient descent approach to minimize the cost function (10),
the learning law for β(k + 1) is derived as

β(k + 1) = β(k)− η(k)
[

∂Ê(k + 1)
∂β(k)

]T

, (12)

where η > 0 is the learning rate. Applying the chain rule with (10) through (9) and (8),
∂Ê(k+1)

∂β(k) in (12) can be obtained as

∂Ê(k + 1)
∂β(k)

=
∂Ê(k + 1)
∂ê(k + 1)

∂ê(k + 1)
∂ŷ(k + 1)

∂ŷ(k + 1)
∂θ̂(k)

∂θ̂(k)
∂β(k)

,

= −ê(k + 1)∆α
Nu

u(k)ϕT(k). (13)

Substitution of (13) into (12) leads to the learning law

β(k + 1) = β(k) + ηê(k + 1)∆α
Nu

u(k)ϕ(k). (14)

Furthermore, the appropriate learning rate η is established by the following result to
guarantee an acceptable performance of the equivalent model.

Lemma 1. Consider the fractional-order dynamics in (5), whose equivalent model is given in (8)
and (9). Then, the boundedness of the internal signals and the model error is guaranteed if the
learning rate η is selected with a positive constant µη as

η =
γη

µη + ∆u2
M ϕ2

M
, (15)

where
0 < γη < 1, (16)

ϕM ≥ ||ϕ(k)||, (17)

and
∆uM ≥ |∆α

Nu
u(k)|. (18)

Proof. According to the universal approximation property of the MiFREN method [32],
with the estimated FPPD in (9), and the ideal weight vector β∗, one has that θ(k) in (9) can
be rewritten as

θ(k) = ϕT(k)β∗ + εθ(k), (19)

where |εθ(k)| ≤ εM
θ is the bounded residue error.

By using (19) with (7), one gets

y(k + 1) = [ϕT(k)β∗ + εθ(k)]∆α
Nu

u(k)

−ω(1)y(k)−ω(2)y(k− 1)− · · · −ω(Ny)y(k− Ny + 1)

= −y
Ny
∆ (k) + ϕT(k)β∗∆α

Nu
u(k) + εθ(k)∆α

Nu
u(k), (20)

where
y

Ny
∆ (k) = ω(1)y(k) + ω(2)y(k− 1) + · · ·+ ω(Ny)y(k− Ny + 1). (21)

Next, using (8) and (9) produces

ŷ(k + 1) = −y
Ny
∆ (k) + ϕT(k)β(k)∆α

Nu
u(k). (22)



Appl. Sci. 2022, 12, 11168 5 of 12

By utilizing the model error (11) with (20) and (22) yields

ê(k + 1) = y(k + 1)− ŷ(k + 1)

= ϕT(k)[β∗ − β(k)]∆α
Nu

u(k) + εθ(k)∆α
Nu

u(k)

= ϕT(k)β̃(k)∆α
Nu

u(k) + εθ(k)∆α
Nu

u(k), (23)

where
β̃(k) = β∗ − β(k). (24)

Applying one-step forward with (24) and using (14) leads to

β̃(k + 1) = −ηê(k + 1)∆α
Nu

u(k)ϕ(k) + β̃(k),

= −η[ϕT(k)β̃(k)∆α
Nu

u(k) + εθ(k)∆α
Nu

u(k)]∆α
Nu

u(k)ϕ(k) + β̃(k)

=
[

I − η|∆α
Nu

u(k)|2 ϕ(k)ϕT(k)
]

β̃(k)

−ηεθ(k)|∆α
Nu

u(k)|2 ϕ(k). (25)

Note that, for β(k) ⊥ ϕ(k), one has that β(k)T ϕ(k) = β∗ϕ(k). Thereby, only the case of
β(k) ‖ ϕ(k) is considered, and consequently,

β̃(k + 1) =
[
1− η|∆α

Nu
u(k)|2||ϕ(k)||2

]
β̃(k)

−ηεθ(k)|∆α
Nu

u(k)|2 ϕ(k). (26)

Therefore, the learning rate η in (15) renders

0 < 1− η|∆α
Nu

u(k)|2||ϕ(k)||2 < 1. (27)

Thus, β̃(k) is a bounded sequence for a control effort u(k) with bounded fractional difference
∆α

Nu
u(k). Thereafter, the model error ê(k) is also a bounded sequence according to (23) and

the boundedness of β̃(k).

4. Adaptive Controller

By utilizing the fractional equivalent model proposed in (8), the adaptive control law
is derived in this section. First, the filtered tracking error s(k) is defined as

s(k) = e(k) + γee(k− 1), (28)

where γe < 1 is a parameter of design, and e(k) = r(k)− y(k) is the tracking error for the
smooth reference r(k). The reaching condition is designed as

s(k + 1) = −γss(k), (29)

where the constant parameter γs < 1 is the reaching rate. Combining (28) and (29) results in

e(k + 1) = −γss(k)− γee(k). (30)

The dynamics in (7) can be rewritten as

y(k + 1) = θ(k)[u(k) + uNu
∆ (k− 1)]− y

Ny
∆ (k), (31)

where
uNu

∆ (k− 1) = ω(1)u(k− 1) + · · ·+ ω(Nu)u(k− Nu). (32)

Thus, the error dynamics in (30) can be processed as

r(k + 1)− y(k + 1) = −γss(k)− γee(k), (33)
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or
y(k + 1) = r(k + 1) + γss(k) + γee(k), (34)

and consequently

r(k + 1) + γss(k) + γee(k) = θ(k)[u(k) + uNu
∆ (k− 1)]− y

Ny
∆ (k). (35)

Rearranging (35), the ideal control law u∗(k) can be obtained as

u∗(k) =
1

θ(k)

[
r(k + 1) + γss(k) + γee(k) + y

Ny
∆ (k)

]
− uNu

∆ (k− 1). (36)

Nevertheless, since θ(k) is unknown, the control law u(k) is established by θ̂(k) in (9) as

u(k) =
1

θ̂(k) + εθsign
(
θ̂(k)

) [r(k + 1) + γss(k) + γee(k) + y
Ny
∆ (k)

]
−uNu

∆ (k− 1), (37)

where εθ is a positive constant.

Theorem 1. The sliding surface s(k) and the tracking error e(k) remain as bounded sequences for
small enough positive gains γs and γe ∈ (0, 1).

Proof. Dynamics (31) with control law (37) leads to

y(k + 1) = θ(k)

{
1

θ̂(k) + εθsign
(
θ̂(k)

) [r(k + 1) + γss(k) + γee(k)

+y
Ny
∆ (k)

]
− uNu

∆ (k− 1) + uNu
∆ (k− 1)

}
− y

Ny
∆ (k) (38)

=
θ(k)
θ̂ε(k)

r(k + 1) + γs
θ(k)
θ̂ε(k)

s(k) + γe
θ(k)
θ̂ε(k)

e(k) +
[ θ(k)

θ̂ε(k)
− 1
]
y

Ny
∆ (k),

where
θ̂ε(k) = θ̂(k) + εθsign

(
θ̂(k)

)
. (39)

Thereafter, the tracking error is derived as

e(k + 1) = r(k + 1)− y(k + 1)

=
[
1− θ(k)

θ̂ε(k)

]
r(k + 1)− γs

θ(k)
θ̂ε(k)

s(k)− γe
θ(k)
θ̂ε(k)

e(k)

−
[ θ(k)

θ̂ε(k)
− 1
]
y

Ny
∆ (k). (40)

Referring to the definition of s(k) in (28), one obtains

s(k + 1) = e(k + 1) + γee(k)

=
[
1− θ(k)

θ̂ε(k)

]
r(k + 1)− γs

θ(k)
θ̂ε(k)

s(k) +
[
1− θ(k)

θ̂ε(k)

]
γee(k)

−
[ θ(k)

θ̂ε(k)
− 1
]
y

Ny
∆ (k). (41)

In addition, consider

ξr(k) =
[
1− θ(k)

θ̂ε(k)

]
r(k), (42)
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ξy(k) =
[
1− θ(k)

θ̂ε(k)

]
y

Ny
∆ (k), (43)

and

ξθ(k) = −
θ(k)
θ̂ε(k)

. (44)

Thus, the dynamics in (40) and (41) can be rearranged as

e(k + 1) = γsξθ(k)s(k) + γeξθ(k)e(k) + ξr(k) + ξy(k), (45)

and
s(k + 1) = γsξθ(k)s(k) + γe[1 + ξθ(k)]e(k) + ξr(k) + ξy(k), (46)

respectively. In view of (45) and (46), one obtains the closed-loop dynamics[
s(k + 1)
e(k + 1)

]
=

[
A1,1(k) A1,2(k)
A2,1(k) A2,2(k)

]
︸ ︷︷ ︸

Aθ

[
s(k)
e(k)

]
+

[
1
1

]
[ξr(k) + ξy(k)], (47)

where
A1,1(k) = γsξθ(k), (48)

A1,2(k) = γe[1 + ξθ(k)], (49)

A2,1(k) = A1,1(k), (50)

and
A2,2(k) = γeξθ(k). (51)

Note that ξθ(k) is a bounded sequence; then, it is possible to find small enough values
γ̄e and γ̄s, such that Aθ is a convergent matrix, whenever 0 < γe < γ̄e and 0 < γs < γ̄s.
One way to determine conservative bounds for γ̄e and γ̄s relies on utilizing the Gershgorin
Circle Theorem, which states that all the proper values of Aθ lie inside of at least one of the
circles of Gershgorin. In addition, these circles are centered at A1,1 and A2,2, and have radii
|A1,2| and |A2,1|, respectively. Then, it suffices to show that

γsξθM + γe(1 + ξθM) < 1,

γsξθM + γeξθM < 1,
(52)

for |ξθ(k)| ≤ ξθM. Then, the two circles are inside the unit disk if

0 < γs, γe <
1

2(1 + ξθM)
. (53)

In that case, the proper values of Aθ lie inside the unit disk for any k ≥ 0, and in particular
for k→ ∞.

5. Experimental System and Results

To validate the performance of the proposed controller, the direct-current motor torque
control system is constructed, as shown in Figure 1. A high-gain Namiki 22CL-3501PG
motor is driven by push–pull transistors through the input voltage u(k) [V], which is
generated by the analog output of CONTEC AIO-160802LPE. The output y(k + 1) [kg·cm]
is measured by the torque-converter that is equipped with the analog-input.

The system is considered as an unknown discrete-time nonlinear system, and only
input-output data are considered to be available. Thereafter, the membership functions of
y(k) ∈ ±10 [kg-cm] and |u(k− 1)| ≤ 8 [V] are designed according to the operating ranges
depicted in Figure 2.
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Figure 1. Experimental system.
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Figure 2. Membership functions.

Figure 3 shows the tracking performance with the plots of the output y(k) and the
desired trajectory r(k). Furthermore, the plot of ŷ(k) is provided in the same figure to
demonstrate the reliability of the equivalent model. The control voltage u(k) is illustrated
in Figure 4. The time-varying behavior of |∆α

Nu
u(k)|2 is shown in Figure 5, which shows

condition (18) using Lemma 1.
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Figure 5. Time varying of |∆Nu
α u(k)|2.

The experimental study is repeated by introducing the unknown disturbance ds(k).
Figure 6 shows the plots of y(k) along with r(k) and ŷ(k) to represent the closed-loop
performance, and the model proficiency, regarding ds(k). The amplitude of ds(k) is more
than 20% of the nominal output amplitude, but the disturbance is rejected by the proposed
controller. The control voltage u(k) is displayed in Figure 7 that leads a fast response.
Finally, the plot of |∆Nu

α u(k)|2, for the case with a disturbance, is given in Figure 8.
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6. Conclusions

This paper proposed a fractional data-driven model, which relies only on input-output
data information. The instantaneous gain from the fractional output variation to the input
one is computed by means of a fuzzy inference system, whose output consequences are
adjusted online by reducing an appropriate cost function. The data-driven estimation
is ensured, even when the output changes while the input remains at a constant value.
The robust performance is guaranteed for suitable tuning of the control parameters. The
experimental results unveiled an acceptable tracking performance, where an unknown
discrete-time nonlinear system was considered.
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