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Abstract: The characterization of electromagnetic metamaterials (MMs) plays a fundamental role in
their engineering processes. To this end, the Nicolson–Ross–Weir (NRW) method is intensively used
to recover the effective parameters of MMs, even though this is affected by the branch ambiguity
problem. In this paper, we face this issue in the context of global analytic functions and Riemann
surfaces. This point of view allows us to rigorously demonstrate the mathematical foundations of an
algorithmic approach for avoiding the branch ambiguity problem, in which the phase unwrapping
method is merged with K-K relations for recovering the effective parameters of an MM. In addition,
exploiting the intimate relationship between the K-K relations and the Hilbert transform, a simple
variant of the above algorithm is presented.

Keywords: metamaterial; Nicolson–Ross–Weir method; phase unwrapping; Kramers–Kronig
relations; analytic continuation; global analytic functions; Riemann surfaces

1. Introduction

Tailoring a material by adjusting its internal microstructure is the key to controlling
the interaction between electromagnetic waves and the material itself, i.e., the key to ruling
the properties of electromagnetic waves [1]. Electromagnetic metamaterials (MMs) are
synthetic composites precisely based on this concept [1–3]. The MM’s ability to show exotic
properties is due to its intimate structure and based on subwavelength-engineered units
called meta-atoms [1–3]. However, for analysis and design purposes, an MM is modeled as
a continuous medium [1,3]. This viewpoint, called homogenization procedure [1,3], allows
replacing the detailed description of an electromagnetic MM with a small set of averaged
parameters, named effective parameters [1–4]. Among the different approaches used for
achieving this aim [5,6], the Nicolson–Ross–Weir (NRW) method is the most generally em-
ployed because of its theoretical simplicity and ease in algorithmic implementations [7–15].
However, despite the above considerations, it is well known that NRW is affected by
some shortcomings that limit the validity of its findings, thus demanding special attention
when the effective parameters are retrieved [16,17]. In particular, the branch ambiguity
issue, i.e., the lack of uniqueness in the evaluation of the effective refractive index, ne f f (ω)
[18,19], turns out to be the most critical and problematic of all, even though all the condi-
tions for the employment of the NRW method are fully satisfied [18,19]. In the literature,
a number of techniques based on Kramers–Kronig (K-K) relations [20–24] and on the phase
unwrapping approach [25–28] have been developed to counter this problem. Concerning
the rationale behind the use of K-K relations, it is a direct consequence of the causality prin-
ciple, which makes it possible to determine the real part of the effective complex refraction

Appl. Sci. 2022, 12, 11121. https://doi.org/10.3390/app122111121 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111121
https://doi.org/10.3390/app122111121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3153-9338
https://orcid.org/0000-0003-3837-6671
https://doi.org/10.3390/app122111121
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111121?type=check_update&version=2


Appl. Sci. 2022, 12, 11121 2 of 15

index without any ambiguity, Re[Ne f f (ω)] = ne f f (ω), from the knowledge of its imaginary
part, Im[Ne f f (ω)] = κe f f (ω) [29]. Regarding the phase unwrapping approach, its formal
equivalence with the operation of analytic continuation of holomorphic functions has been
demonstrated very recently in [30]. As clearly shown in [30], the branch ambiguity issue
is rooted in the use of the multivalued complex logarithm LOG(·) for solving the NRW
relationship. To this aim, an analytic continuation is crucial for performing the proper
inversion operation to solve it, thus avoiding any ambiguity in evaluating the effective
refractive index ne f f (ω). Starting with the above-mentioned considerations, we extend the
analysis conducted in [30], placing the NRW relation in the context of the global analytic
functions and the Riemann surfaces. The main results of our study can be summarized
as follows: (i) we provide a rigorous mathematical framework within handling the NRW
relationship; (ii) we exploit this framework to derive a couple of phase unwrapping-based
analytic continuation algorithms, with the first being based on the K-K relations and the
second on the Hilbert transform, and they are both capable of solving the NRW equa-
tion while avoiding any ambiguity. The idea behind these algorithmic approaches, in the
intuitive form, is that the Riemann surface of the global analytic logarithm contains all
exact solutions of the NRW equation. More precisely, these solutions are regions of its
Riemann surface. Hence, the K-K relations or the Hilbert transform can be used to localize
these regions so that the principal complex logarithmic function, appropriately reshaped,
can extract the solution of the NRW relationship based on their indications. Furthermore,
the theory we propose in this study allows us to rigorously demonstrate some algorithmic
procedures empirically proposed in the literature [20,21], broadening their interpretation.
The paper is organized as follows: in Section 2, we review the cause of branch ambiguity
in the NRW method (Section 2.1) and present a brief discussion on the K-K approach
(Section 2.1.1) and the phase unwrapping method (Section 2.1.2) currently used to solve
this issue. Afterward, (Section 2.2) we introduce the concept of a global analytic function
and Riemann surfaces. First, we discuss the relationship between analytic continuation and
global analytic functions (Section 2.2.1) and then the connection between global analytic
functions and Riemann surfaces (Section 2.2.2). Finally, we use these theoretical tools to
derive a couple of phase unwrapping methods for overcoming the NRW branch ambiguity
issue, with the first being based on K-K relations and the second on the Hilbert transform
(Section 2.3). In Section 3, their numerical performances are investigated by retrieving
the effective refraction index of a couple of hypotetical MM samples and comparing their
findings with those provided by the K-K relations and the phase unwrapping approach [30].
In Section 4, conclusions are drawn.

2. Theory
2.1. The Cause of Branch Ambiguity

The Nicolson–Ross–Weir (NRW) method is a well-established procedure first intro-
duced to characterize electromagnetic materials [7] and later employed in the MM field [31].
Using the NRW method, the effective complex refractive index Ne f f (ω) of an MM slab
with effective thickness de f f is recovered via the inversion of the following relation (the
e−iωt time convention is assumed and suppressed):

eiNe f f (ω)k0de f f =
S21(ω)

1− S11(ω)R01(ω)
(1)

in which k0, S11(ω), S21(ω), and R01(ω) are, respectively, the free-space propagation
constant, scattering parameters, and the reflection coefficient belonging to the effective
medium slab related to the MM at hand [30]. Routinely, Equation (1) is solved by using
the complex logarithm LOG(·) = log(·) + 2pπi, where log(·) is the principal logarithm
and p ∈ Z is the branch index [32], from which we obtain, for Re[Ne f f (ω)] = κe f f (ω) and
Im[Ne f f (ω)] = ne f f (ω), the following expressions.
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ne f f (ω) =
1

k0de f f
Im
[

log
(

S21(ω)

1− S11(ω)R01(ω)

)]
+ 2pπ (2)

κe f f (ω) = − 1
k0de f f

Re
[

log
(

S21(ω)

1− S11(ω)R01(ω)

)]
(3)

Because of the presence of term p, which ranges in the set of integer numbers, refractive
index ne f f (ω) turns out to be not uniquely determined, giving rise to the so-called branch
ambiguity issue [18,19].

2.1.1. Surmounting the Branch Ambiguity Issue: Kramers–Kronig Relations

Since the effective dielectric permittivity εe f f (ω) and the effective magnetic perme-
ability µe f f (ω) of an MM must be causal quantities [29,33], we have it that their real and
imaginary parts must obey Kramers–Kronig (K-K) relations [29,33]. This result suggests
a way to overcome the lack of uniqueness afflicting Equation (2). The rationale can be
outlined as follows: because of causality, we have it that the effective complex refraction

index, Ne f f (ω) =
√

εe f f (ω)µe f f (ω), must be analytic on the complex upper plane C↑,
with no zeros on this region [29,33]. This fact allows relating the real and the imaginary part
of Ne f f (ω) via K-K relations. More precisely, since the term κe f f (ω) is uniquely determined
from relation (3), it allows ne f f (ω) to be expressed as follows:

ne f f (ω) = 1 +
2
π
P
∫ +∞

0

ω′κe f f (ω
′)

ω′2 −ω2 dω′ (4)

from which ne f f (ω) can be computed without any ambiguity [30,33]. Exploiting the
intimate relationship between K-K relations and the Hilbert transform: H[·]

H[·] = 1
π
P
∫ +∞

−∞

[·]
ω−ω′

dω′ (5)

it is possible to rewrite relation (4) as follows [29,34].

Re[Ne f f (ω)] = 1−H
[
Im[Ne f f (ω)]

]
(6)

2.1.2. Surmounting the Branch Ambiguity Issue: Phase Unwrapping as
Analytic Continuation

As discussed in [30], the branch ambiguity problem afflicting ne f f (ω) is caused by the
incorrect handling of Equation (1). Here, we summarize the main theoretical considerations
and results from that study. If we set the following:

w = iNe f f (ω)k0de f f (7)

z =
S21(ω)

1− S11(ω)R01(ω)
(8)

relation (1) then becomes

ew = z. (9)

Now, if the complex exponential e(·) turns out to be a univalent function [32], it will
be invertible, and its inverse will be unique [32]. Accordingly, relation (9) can be solved
without ambiguity. However, it has been highlighted in [30] that e(·) holds this property
only when the path (8) lies strictly inside a semi-open stright-line strip of C, with width 2π,
parallel to R+. However, since the place where this image lies is tied to Ne f f (ω), which
is the unknown we are searching for, we must handle e(·) as if it was a non-univalent
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function [30]. Therefore, relation (9) can be only right-inverted [30,35]; i.e., relation (9) can
be solved by evaluating an analytic function h(·) such as the following.

e(h(z)) = z ∀z ∈ D (10)

Unlike the inverse function, right-inverse function h(·) is not unique [35]. Therefore,
when e(·) is handled in this way, it is fundamental to use a suitable constraint condition to
obtain a unique solution from inverting Equation (9) (i.e., from inverting (1)) [30]. In [30],
it has been demonstrated that h(·) can be computed via an analytic continuation of the
principal complex logarithm log(·) on the path traced in Ċ by term (8), which guarantees the
fulfillment of condition Im(h(0)) = 0 that ensures the causality of the refractive index [30].
As a further result, in [30], it has been shown that the analytic continuation operation can be
carried out by a phase unwrapping method using the algorithm developed by Oppenheim
and Schafer for the homomorphic filtering, PUNWOS, [36]. It restores the continuity of
the imaginary part of h(·) along path (8) [30], thus unambiguously providing ne f f (ω)
as follows.

ne f f (ω) =
1

k0de f f
Im[h(z)] (11)

2.2. Analytic Continuation, Global Analytic Functions, and Riemann Surfaces

In this section, we will introduce the theoretical concepts of the global analytic function
and Riemann surface. Using these mathematical tools, the K-K and phase unwrapping
approaches can be merged together, thus providing an analytic continuation algorithmic
methodology to solve Equation (1). Roughly speaking, the rationale is the following: In [30],
it was shown that the solution of Equation (9) is given by the analytic continuation of the
principal complex logarithm over the domain defined by the path described by Equation (8).
Hence, different solutions of Equation (9) correspond to different analytic function elements.
At this stage, the idea to exploit the global analytic functions and Riemann surface has
its origin. A global analytic function is a pool containing all analytic continuations of
its essential components—the analytic function elements, i.e., precisely the objects that
are solutions of Equation (9). Accordingly, in Section 2.2.1, we will show that the set of
all solutions of Equation (9) realizes the global analytic logarithm. In Section 2.2.2, we
will discuss the concepts of Riemann surfaces and the lift operation (or lifting operation).
We will show how the Riemann surface for the global analytic logarithm is realized by
the Cartesian product between solutions of Equation (9) and points of the complex plane
and how the lifting operation allows placing, in correspondence, the values assumed by
the global analytic logarithm on regions of the Riemann surface with the values taken
by the solution of Equation (9) on its domain of definition, i.e, the path (8). From this
fundamental relation, we derive an algorithmic approach to solve Equation (9) in which
the phase unwrapping method (i.e., the analytic continuation) is merged with the K-K
relations and a variant based on the Hilbert transform. All topics will be presented in-depth,
although topological details will be omitted to simplify the discussion.

2.2.1. Analytic Continuation and Global Analytic Functions

Roughly speaking, the analytic continuation is the operation with which it is possible
to enlarge the domain of an analytic function f (·), Ω. To formalize this idea, we provide
the following definition [32].

Definition 1. An ordered pair (Ω, f (·)) where Ω is a domain (Ω ⊂ C) and f (·) is an ana-
lytic function is called an analytic function element. A pair (ΩN , fN(·)) is the direct analytic
continuation of a pair (Ω1, f1(·)) if the following is the case.

f1(z) = fN(z) ∀z ∈ Ω1 ∩ΩN (Ω1 ∩ΩN 6= ∅) (12)
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Alternatively, they are indirect analytic continuations of each other if the following set of
analytic function elements exist between elements (Ω1, f1(·)) and (ΩN , fN(·)):

{(Ω2, f2(·)), . . . , (ΩN−1, fN−1(·))} (13)

where (Ωk, fk(·)) is the direct analytic continuation of (Ωk−1, fk−1(·)) for k = 2, . . . , N [32].

Based on the above statements, a global analytic function G is a non-empty set of pairs
(Ω, f (·)) that are the direct or indirect analytic continuation of each other [32,35].The union
M = ∪iΩi of all domains Ωi of all analytic function elements belonging to G is the domain
of existence of G [32]. Each analytic function elements (Ω, f (·)) ∈ G is called a branch
of G [35]. The value w0 provided by a pair (Ω, f (·)) ∈ G at z0 ∈ Ω, i.e., w0 = f (z0), is
called the value of G at z0 [32]. A global analytic function G can have several branches over
the same domain. This behavior follows directly from the indirect analytic continuation’s
working, which can provide different results using different sequences of analytic function
elements [32,35]. In that case, G is a multivalued function from M to C [32,35].

Remark 1. The set L of all analytic function elements (Ω, h(·)) for which the following equation

eh(z) = z ∀z ∈ Ω (14)

holds is a global analytic function, L, and is named the global analytic logarithm [32]. Its domain
of existence is M = Ċ. Any branch of L has the form log(·) = ln| · |+ i[argπ(·)], where ln| · |
and argπ(·) are the natural logarithm of the absolute value function and the principal argument
function, respectively. Two distinct branches of L differ by 2pπi where p ∈ Z [32,35].

2.2.2. Global Analytic Functions and Riemann Surfaces

To handle a multivalued global analytic function G as a function in the ordinary sense,
it becomes mandatory to redefine a suitable domain S(G) for G and to operate in a way
that it becomes an ordinary single-valued function from the new domain S(G) to C. To this
aim, instead of dealing with analytic function elements (Ω, f (·)), where Ω is an arbitrary
domain, we have to consider pairs of the form (∆, f (·)) where ∆ ⊆ Ω is a disk [35].
Between these elements, it is possible to introduce an equivalence relation [35,37].

Definition 2. Two pairs (∆′, f ′(·)) and (∆′′, f ′′(·)), with disks ∆′ and ∆′′ centered in z′ and z′′,
respectively, are equivalent if the following is the case:(

z′ = z′′
)
∧
(

f ′(·) = f ′′(·)
)

(15)

in some neighborhood of the point z′.

From it, we derive the possibility to partition G into particular subsets, called germs [37].

Definition 3. The set of all the equivalent pairs (∆, f (·)) ∈ G is called germ, centered at z,
and denoted by the symbol [ f ]z. The value of a germ [ f ]z at its center z, ¯[ f ]z, is the value w = f (z)
given by any of its elements at z.

The germs can be collected together as sets [37].

Definition 4. The set of all germs in which all elements (∆, f (·)) belonging to a global analytic
function G can be collected is denoted by G∗. The set of all germs in G∗ with the same center z is
denoted by G∗z .

Using the concept of a set of germs, we can introduce a theorem that formalizes what
was first said about the number of values that a global analytic function G could assume
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in correspondence to a given point z of its domain of existence M (for its demonstration,
see [32]).

Theorem 1 (Poincaré–Volterra). Let G be a global analytic function. For all z ∈ C and G∗z ∈ G∗,
the cardinality of G∗z is at most countable.

Based on the Poincaré-Volterra theorem, we are in the condition to introduce the
concept of Riemann surface S(G) for a global analytic function G. It consists of a number
of abstract sheets lying above C. These sheets (or layers) can be built by associating an
array to each z ∈ C, for which its elements are germs belonging to set G∗z with the center
at z. The array can be empty (no germs at all) or, at most, have an infinite (countable)
dimension [35,37]. In a more formal language, we have the following.

Definition 5. The set
S(G) = ((z, [ f ]z) : z ∈ C, [ f ]z ∈ G∗z ) (16)

is the Riemann surface related to G.

Remark 2. In the case of the global analytic logarithm L, its Riemann surface S(L) is realized by
all pairs (z, [ f ]z) where z ∈ Ċ and [ f ]z = log(·) + 2pπi where p ∈ Z. The p-th sheet of S(L),
Sp(L), consists of all couples of (z, log(·) + 2pπi) with p fixed.

In other words, S(G) is a subset of the Cartesian product between C and G. Using the
Riemann surface S(G) in lieu of M, it is possible to redefine G in a way that it realizes a
function from its Riemann surface S(G) to C [37].

Definition 6. The function Ĝ[·] is as follows:

Ĝ[(z, [ f ]z)] = w (z, [ f ]z) ∈ S(G), w ∈ C, (17)

where w = ¯[ f ]z is called the lift of G on its Riemann surface S(G).

Another function of paramount importance is the following.

Definition 7. The function P̂ [·]

P̂ [(z, [ f ]z)] = z (z, [ f ]z) ∈ S(G), z ∈ C (18)

is called the projection of S(G) to C.

To clarify the idea behind the lift operation, let us consider set Ω̂ of all pairs (z, [ f ]z)
such that z ∈ Ω̄, and [ f ]z is germ-derived by (Ω̄, f̄ (·)). This set, Ω̂, is a copy of Ω on S(G)
(we recall that P̂ [(z, [ f ]z)] = z ∈ Ω̄). Let (z, [ f ]z) be an element of Ω̂; then, according to
definition (6), we have the following.

Ĝ[(z, [ f ]z)] = ¯[ f ]z = f̄ (z) (19)

In otherwords, Ĝ[·] assigns to each point in (z, [ f ]z) ∈ Ω̂ ⊂ S(G) precisely the same
value that f̄ (·) assigns to each point in z ∈ Ω̄ ⊂ C. In sum, we have that the lift of G on its
Riemann surface, Ĝ[·], and it is restricted to Ω̂ and behaves exactly as f̄ (·) on Ω̄ [37].

Remark 3. The lift of L on S(L) is given by the following.

L̂[(z, [ f ]z])] = ¯[ f ]z = log(z) + 2pπi (20)
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If (Ω, f (·)) ∈ L, the set Ω̂ of all pairs

(z, log(·) + 2pπi), z ∈ Ω (21)

is a copy of Ω on S(L). The integers p fulfilling Equation (21) define sheets Sp(L) where Ω̂ lies.

2.3. Kramers–Kronig Relations and Phase Unwrapping Approach: A Unique Point of View within
the Framework of the Global Analytic Functions on Riemann Surfaces

As stated in Sections 2.1.1 and 2.1.2, Equation (1) is solved by evaluating h(·) via the
K-K relations or by the phase unwrapping approach, and both methods are equivalent
to analytic continuation. It is quite straightforward to encompass these methods in the
theoretical framework given in Section 2.2.2. Specifically, from Remark 1, the set of all the
solutions of Equation (9) is a global analytic function, i.e, the global analytic logarithm
L[·]; from Remark 2, we have the explict structure of its Riemann surface S(L); finally,
from Remark 3, the values assumed by the lift of the global analytic logarithm L̂[(·)] on
sub-domain D̂ established by pairs (z, [ f ]z]) are equal to the values taken by h(·) on D; i.e.,
between the lift of global analytic logarithm, L̂[·], and the right inverse h(·), relation (20)
must hold.

L̂[(z, [ f ]z])] = ¯[ f ]z = h(z) ∀z ∈ D (22)

That is, we have the following.

¯[ f ]z = log(z) + 2pπi = h(z) ∀z ∈ D (23)

Only in the context of the theory described above can the equalities (22) and (23) be derived
and have meaning. Since log(·) = ln| · |+ i[argπ(·)], we can write the following.

Im[h(z)] = [argπ(z) + 2pπ] = ∀z ∈ D (24)

Considering Equation (8), the above relation can be written as follows.

Im
[

h
(

S21(ω)

1− S11(ω)R01(ω)

)]
=

[
argπ

(
S21(ω)

1− S11(ω)R01(ω)

)
+ 2pπ

]
(25)

With respect to integers p that specify the sheets of S(L) where (D, h(·)) is embedded,
they are unknowns that have to be determined. By means of Equation (11), we can write
Equation (25) as follows.

k0de f f ne f f (ω) =

[
argπ

(
S21(ω)

1− S11(ω)R01(ω)

)
+ 2pπ

]
(26)

Because term ne f f (ω) can be obtained from κe f f (ω) via the K-K relation (4), p can be
evaluated as follows.

p =
1

2π

[
k0de f f

(
1 +

2
π
P
∫ +∞

0

ω′κe f f (ω
′)

ω′2 −ω2 dω′
)
− argπ

(
S21(ω)

1− S11(ω)R01(ω)

)]
(27)

Equation (25) highlights an important concept: Im[h(·)] can be determined from the
knowledge of the argument of the principal logarithm, argπ(·), properly compensated by
phase term 2pπ, where unknown integer p can be evaluated by using K-K relations by using
Equation (27). Once we determined Im[h(·)], the effective refractive index ne f f (ω) can be
evaluated via Equation (11). In sum, using the framework of global analytic functions, we
rigorously demonstrated and derived a phase unwrapping approach based on Kramers–
Kronig relations, which provides an analytic continuation solution h(·) for Equation (1)
based on log(·) and restoring the continuity of its imaginary part, Im[h(·)] [30], given by
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argπ(·). As an alternative, using the Hilbert transform of κe f f (ω) from Equation (5), we
have the following.

p =
1

2π

[
k0de f f

(
1−H(κe f f (ω))

)
− argπ

(
S21(ω)

1− S11(ω)R01(ω)

)]
(28)

3. Results

As derived in the above section, relations (27) and (28) represent two phase unwrap-
ping approaches based on the K-K relation (4) and the Hilbert transform (6), respectively.
We named PUNWKK and PUNWHT the related numerical procedures. Regarding the
PUNWKK method, the numerical evaluation of the involved K-K integral has been per-
formed using the Simpson quadrature method described in [38], while for the PUNWHT
procedure, the Hilbert Transform has been computed by using the FFT technique described
in [34]. For both methods, the parameter p has been determined, forcing it to assume an
integer value selected to ensure the continuity of argπ(·) [36]. To assess their numerical
performances, we compared these with those provided by the numerical evaluation of the
K-K relation (4) using the same numerical integration algorithm adopted for PUNWKK [38]
and the phase unwrapping PUNWOS method [36] using the implementation described
in [30]. To this end, we have considered recovering the effective refractive index ne f f (ω)
of two theoretical double negative MM slabs, in which relative permeability µr(ω) and
permittivity εr(ω) are described by the following Lorentzian model [3].

µr(ω) = µ∞ +
np

∑
n=1

(µs,n − µ∞)ω2
0m,n

ω2
0m,n −ω2 + iγm,nω

(29)

εr(ω) = ε∞ +
np

∑
n=1

(εs,n − ε∞)ω2
0e,n

ω2
0e,n −ω2 + iγe,nω

(30)

The parameters of the two models are reported in Table 1. This modeling choice
is justified because: (i) Lorentzian models describe the dispersive nature of split-ring
resonators and strip wires [3], and (ii) the superposition of Lorentzian functions describes
every causal function [39]. The MATLAB environment has been employed to code all
methods. All numerical experiments were performed on a 2.0 GHz Intel Xeon workstation.
The percentage error (PE) is defined as follows:

‖nex(ω)− ne f f (ω)‖2

‖nex(ω)‖2
% (31)

where ‖ · ‖2 is the 2-norm [40], nex(ω) = Re[
√

εr(ω)µr(ω)] and ne f f (ω) are the exact and
recovered refractive indexes, respectively, which have been used as criteria to evaluate the
efficiency of the considered recovering procedures. Moreover, computational time t has
been evaluated. However, this last datum has to be considered as only indicative of the or-
der of magnitude rather than the exact time involved in each considered retrieval procedure
since such knowledge would require the development of numerical codes optimized for
a given CPU in order to achieve the best possible computational performances [41]. Figure 1
shows path γ(ω) traced by Equation (8) for the first slab, with de f f = 180 nm, which is char-
acterized by a single pole Lorentzian model for pair (εr(ω), µr(ω)). As pointed out in [30],
this trend for γ(ω) confirms that this is an electrically thick slab because γ(ω) repeatedly
intersects ray Rπ , i.e., the branch cut for the principal complex logarithm log(·) [30,32].
Accordingly, the complex exponential function in equation e(·) in (1) lacks univalence for
the considered case, thus indicating that ne f f (ω) must be evaluated via the right-inverse
operation [30]. Table 2 shows the values of PE and t as a function of the number of sample
points ns in frequency band [0, 1] PHz for all the considered recovering methods.
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Table 1. Parameters for the Lorentzian model adopted in this study.

First slab: np = 1, de f f = 180 nm

ε∞ 1.8 µ∞ 1.0
εs,1 2.0 µs,1 1.3
ωoe,1 2π·0.695 PHz ωom,1 2π·0.7 PHz
γe,1 0.08 PHz γm,1 0.05 PHz

Second slab: np = 2, de f f = 300 nm

ε∞ 1.8 µ∞ 1.0
εs,1 2.5 µs,1 1.8
εs,2 2.0 µs,1 1.3
ωoe,1 2π·0.695 PHz ωom,1 2π·0.7 PHz
ωoe,2 2π·0.895 PHz ωom,2 2π·0.899 PHz
γe,1 0.09 PHz γm,1 0.07 PHz
γe,2 0.08 PHz γm,2 0.05 PHz
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Figure 1. Path γ(ω) traced by Equation (8) on the complex punctured plane Ċ for the slab with
de f f = 180 nm. Green diamond marker: path starting point, ω = 0 Hz. Red diamond marker: path
end point, ω = 1 PHz.

Table 2. Percentage Error (PE) and computational time t for the slab with de f f = 180 nm.

ns
PE
PUNWOS K-K PUNWKK PUNWHT

512 303.88 13.97 1.51× 10−3 1.51× 10−3

1024 260.49 13.67 1.11× 10−3 1.11× 10−3

2048 130.14 13.61 2.63× 10−3 2.63× 10−3

4096 2.01× 10−3 13.63 2.01× 10−3 2.01× 10−3

ns
t (s)
PUNWOS K-K PUNWKK PUNWHT

512 0.25 0.29 0.35 0.34
1024 0.28 0.42 0.34 0.33
2048 0.26 1.01 0.54 0.69
4096 0.33 2.92 1.16 0.35

In correspondence to starting value ns = 512, we can note that the PE value turns
out to be high for the K-K approach and very high for the PUNWOS method, whereas
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in the cases of the PUNWKK and PUNWHT methods, it is already factually negligible. In
correspondence to ns = 1024, the value of this parameter related to the PUNWHT and the
PUNWKK methods is still factually insignificant, whereas in the cases of the PUNWOS
and K-K methods, it turns out to be comparable to the previous case. While increasing
to ns = 2048, the above trend remains stationary for all methods. Finally, for ns = 4096,
we have three unwrapping methods (PUNWOS, PUNWKK and PUNWHT) that provide a
factually insignificant PE, whereas we have no improvements for the PE in the case of the
K-K method. As indicated by the PE parameter, values reported in Table 2 are confirmed
by the results shown in Figure 2, which reports the plot of the retrieved refractive index
ne f f (ω) compared with the exact refractive index nex(ω) for the four recovering methods
for all the considered ns values. Figure 3 shows the sequence of p integers needed to
give continuity to argπ(·) provided by PUNWOS, PUNWHT , and PUNWKK for ns = 2048.
The high PE related to the PUNWOS method is clearly due to its incorrect calculation of
the p sequence until an adequate number of sample points ns is used. Figure 4 shows path
γ(ω) traced by Equation (8) for the slab with de f f = 300 nm. This last case we analyzed
is characterized by a double pole Lorentzian model for its pair (εr(ω), µr(ω)). Since for
this slab, the resulting path γ(ω) intersects Rπ many times more than in the previously
considered case, the number of integers p that has to be computed to recover the continuity
of argπ(·) will be higher than previously performed, thus providing a more challenging
test for the considered recovering approaches. The results reported in Table 3 validate the
above hypothesis. For this test case, only the PUNWHT method provides values for PE that
are factually negligible for all considered values of ns. Lower performances characterize all
other remaining methods. More precisely, the PUNWOS method reaches a value of PE equal
to those characterizing PUNWHT only when the number of sample point in the [0, 1.5] PHz
band increases to ns = 16,384. On the other hand, for K-K and PUNWKK methods, the PE is
always high, thus providing a recovered ne f f (ω) of lower quality, as demonstrated by the
results reported in Figure 5, which shows the plot of ne f f (ω) compared with nex(ω), as a
function of ns over the [0, 1.5] PHz frequency range. The results shown in Figure 6 confirm
what has been stated about the number of p integers needed to ensure the continuity of the
argument of log(·), meaning that the number of Riemann sheets involved by h(·) increase
(as expected) with an increase in the slab’s thickness. Moreover, in this case, the high PE
related to the PUNWOS method is clearly due to its incorrect calculation of the p sequence
until an adequate number of sample points ns is used.
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Figure 2. Plot of ne f f (ω), as a function of ns, and nex(ω) for the MM with de f f = 180 nm over the
frequency band [0, 1] PHz. Top left: PUNWOS method; top right: PUNWHT method; bottom left:
K-K relations; bottom right: PUNWKK method. The insets magnify ne f f (ω) around its peaks.
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Figure 3. Values of the integer p over the band [0, 1] PHz (ns = 2048). Left: PUNWOS; centre:
PUNWHT ; right: PUNWKK .
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Figure 4. Path γ(ω) traced by (8) on the complex punctured plane Ċ for the slab with de f f = 300 nm.
Green diamond marker: path starting point, ω = 0 Hz. Red diamond marker: path end point,
ω = 1.5 PHz.
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frequency band [0, 1.5] PHz. Top left: PUNWOS method; top right: PUNWHT method; bottom left:
K-K relations; bottom right: PUNWKK method. The insets magnify ne f f (ω) around its peaks.
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Table 3. Percentage error (PE) and computational time t for the slab with de f f = 300 nm.

ns
PE
PUNWOS K-K PUNWKK PUNWHT

1024 206.03 6.86 3.90 5.76× 10−4

2048 503.37 6.51 3.19 5.62× 10−4

4096 464.54 6.48 2.84 5.81× 10−4

8192 485.42 6.72 3.93 7.73× 10−4

16,384 8.85× 10−4 6.86 3.86 8.85× 10−4

ns
t (s)
PUNWOS K-K PUNWKK PUNWHT

1024 0.30 0.41 0.37 0.36
2048 0.31 0.93 0.50 0.37
4096 0.38 3.18 1.30 0.27
8192 0.40 11.13 3.84 0.35
16,384 0.37 45.04 14.97 0.33

4. Conclusions

In this work, we extend the analysis conducted in [30], placing the NRW relation in
the context of the global analytic functions and the Riemann surfaces, thus providing a
rigorous mathematical framework for handling the NRW relationship. In this context,
the branch ambiguity problem finds its correct interpretation in terms of the number of
Riemann surface sheets S(L) on which the right-inverse h(·), the solution of the NRW
Equation (1), lies. Furthermore, we exploit this framework to derive a couple of phase
unwrapping-based analytic continuation algorithms: the first, named PUNWKK, is based
on K-K relations, and the second, named PUNWHT , is based on the Hilbert transform;
both are capable of solving the NRW equation and avoid any ambiguity. To validate their
numerical performances, some numerical experiments conducted on a couple of theoretical
negative refractive index (NRI) slabs have been carried out. The close agreement obtained
between the recovered and the exact refraction index provided by the PUNWHT approach
demonstrates its superiority over the other recovery methods considered in this study and
confirms the validity of our theoretical analyses. Although the results provided by the
PUNWKK were less satisfactory than those given by PUNWHT , the use of K-K relations
merged with the phase unwrapping approach enhances the results these relations provides.
Finally, to conclude, we point out that the theory we have given in this work rigorously
demonstrates some algorithmic procedures empirically proposed in the literature [20,21],
broadening their meaning.
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Abbreviations
The following symbols are used in this manuscript:

LOG(·) Complex logarithm;
log(·) Principal logarithm;
ln(·) Natural logarithm function;
| · | Absolute value function;
argπ(·) Principal argument function;
p Branch index;
e(·) Complex exponential;
h(·) Right inverse function;
H[·] Hilbert transform;
P Cauchy principal value;
C Complex plane;
Ċ Complex punctured plane;
R+ Positive real axis;
C↑ Upper complex plane;
G A global analytic function;
[ f ]z Germ centered at z;
¯[ f ]z Value of the germ at z;
G∗ Set of all the germs [ f ]z of G;
G∗z Set of all the germs [ f ]z centered at z;
M Domain of existence of a global analytic functionv
L Global analytic logarithm;
L̂[·] Lift of the global analytic logarithm;
S(G) Riemann surface of G;
Ĝ[·] Lift of G on S(G);
P̂ [·] Projection from the Riemann surface S(G) to C.
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