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Abstract: Collaborative filtering is a popular approach for building an efficient and scalable rec-
ommender system. However, it has not unleashed its full potential due to the following problems.
(1) Serious privacy concerns: collaborative filtering relies on aggregated user data to make personal-
ized predictions, which means that the centralized server can access and compromise user privacy.
(2) Expensive resources required: conventional collaborative filtering techniques require a server
with powerful computing capacity and large storage space, so that the server can train and maintain
the model. (3) Considering only one form of user feedback: most existing works aim to model user
preferences based on explicit feedback (e.g., ratings) or implicit feedback (e.g., purchase history,
viewing history) due to their heterogeneous representation; however, these two forms of feedback
are abundant in most collaborative filtering applications, can both affect the model, and very few
works studied the simultaneous use thereof. To solve the above problems, in this study we focus
on implementing decentralized probabilistic matrix factorization for privacy-preserving recommen-
dations. First, we explore the existing collaborative filtering algorithms and propose a probabilistic
matrix co-factorization model. By integrating explicit and implicit feedback into a shared probabilistic
model, the model can cope with the heterogeneity between these two forms of feedback. Further, we
devise a decentralized learning method that allows users to keep their private data on the end devices.
A novel decomposing strategy is proposed for users to exchange only non-private information, in
which stochastic gradient descent is used for updating the models. Complexity analysis proves that
our method is highly efficient with linear computation and communication complexity. Experiments
conducted on two real-world datasets FilmTrust and Epinions show that our model gains a guarantee
of convergence as the RMSE decreases quickly within 100 rounds of iterations. Compared with the
state-of-the-art models, our model achieves lower model loss in rating prediction task and higher
precision in item recommendation task.

Keywords: privacy-preserving; probabilistic matrix factorization; recommendation; decentralized
learning

1. Introduction

With the explosive growth of information, it becomes more difficult for people to
find what they are interested in. To address this problem, Recommender System (RS) [1]
is proposed to provide users with personalized recommendations which we call items.
Its key idea is to profile users and items and model the relation between them. As one of
the most popular techniques for building RSs, Collaborative Filtering (CF) [2] is based
on the past behavior of users such as their previous viewing history and rating records.

Challenges. In real-world applications, although CF has proven to be effective and
scalable in predicting user preferences, it still suffers from some problems.

(1) Conventional CF models have possible risks to privacy.
Most service providers in CF tend to collect users’ historical behaviors to train the

recommendation model, which might jeopardize user privacy since the plaintext infor-
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mation is exposed to the service provider. Thus, some data privacy regulations, such as
General Data Protection Regulation (GDPR) [3], have been published. These regulations
attempt to place restrictions on the collection, storage, and use of user data. To tackle this
privacy problem, federated learning (FL) [4] is proposed to legally and efficiently make use
of users’ data. FL distributes the model learning process to users’ end devices, making it
possible to train a global model from user-specific local models, which ensures that user’s
private data never leaves their end devices. However, CF under federated learning still has
privacy issues as it is susceptible to some attacks. For example, Mothukuri et al. [5] prove
the practicality in conducting backdoor attacks in federated learning. Zhang et al. [6] study
and evaluate poisoning attack in federated learning system based on generative adversarial
nets (GAN). Recently, decentralized learning (DL) [7] has drawn people’s attention in many
real-world applications. As shown in Figure 1, in decentralized learning the model is
learned collaboratively by a group of users without needing a centralized server. However,
malicious participants might steal privacy from other users in the communication phase [8].
Thus, we propose a decomposing strategy in our decentralized scheme to ensure that users
exchanging only non-private information with each other, which shows practicality in
preserving user privacy.

(1) Centralized Learning

Server

User 1 User 2 User n

……

(2) Federated Learning

Server

User 1 User 2 User n

……

User 1 User 2

User 3

(3) Decentralized Learning

End DeviceData Model Server Node Data Flow Model Flow

User 3

Figure 1. The comparison between centralized learning, federated learning, and decentralized learning.

(2) Conventional CF models might be limited by high resource requirements.
Except for privacy concerns, Kairouz et al. [9] point out that in order to maintain the

user data and train the CF model, centralized learning needs a server with high storage
and computing capacity. Although the server in federated learning is only responsible
for aggregating and distributing the model, it still has to store a large amount of model
information and coordinate communication with various users. This might become a
bottleneck when the learning scale becomes large and further lead to single point of failure
in practice [10]. Thus, in this study, we focus on implementing a decentralized learning
scheme for building a CF model. As shown in Figure 1, by performing local training and
exchanging some non-private information with neighbors, users collaboratively learn a
global model. In this way, the storage and computing load are transferred to users which
improves the scalability and stability of the system.

Most CF models cannot learn from both explicit and implicit feedback simultaneously.
CF aims to model user preference based on user feedback, which generally has two

categories: explicit feedback and implicit feedback [11]. Explicit feedback is often the form
of numeric ratings given by users to express the extent to which they like the items. It
could measure user preference in a direct and granular way, but some users are reluctant to
have such extra operations [12]. In contrast, implicit feedback is easier to be collected. It
includes users’ behaviors that indirectly reflect their opinion (e.g., browse history, clicking
record). However, compared with explicit feedback, it has lower accuracy and granularity.
For example, a woman buys a skirt online and finds out she dislikes it after wearing it.
Through the above analysis, it is clear that these two forms of feedback are complementary
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to each other since explicit feedback is higher in quality while implicit feedback is higher
in quantity. As far as we know, few CF models are based both on explicit and implicit
feedback. Thus, in this study we devise a matrix co-factorization model to cope with the
heterogeneity between these two forms of feedback.

Our contributions. In this study, we first explore a probabilistic model specifically
suitable for handling both explicit and implicit feedback and then devise a decentralized
method called DPMF to protect users’ sensitive information. To the best of our knowledge,
this is the first privacy-preserving framework for recommendation with both explicit and
implicit feedback. The main contributions are listed as follows.

• We devise a novel probabilistic matrix factorization method for recommender systems.
It uses both explicit and implicit feedback simultaneously to model user preferences
and item characteristics, which is practical and interpretable in rating prediction and
item recommendation.

• We propose a novel decomposing strategy to decompose the shared information
among users into two parts, and only share the non-private part. In this way, the model
not only gains a guarantee of convergence by exchanging the public information,
but also maintains user privacy as the private information is kept locally by users.

• We propose a secure and efficient method to train our model. By finding neigh-
bors from the trust statement, users exchange public model information with others.
The public and personal model gradients are updated through stochastic gradient
descent. Extensive experiments on two real-world datasets show that our method
outperforms the existing state-of-the-art CF methods with lower RMSE loss in rating
prediction task and higher precision in item recommendation task.

The rest of this study is organized as follows. We introduce the background in
Section 2 and then discuss the preliminaries and the system model in Section 3. We conduct
experiment and discuss the model performance in Section 4. Finally, we conclude this
study in Section 5.

2. Background

In this section, we first introduce the probabilistic model that we have to use in
Section 3, and then discuss the existing decentralized learning scheme.

2.1. Probabilistic Matrix Factorization

The basic hypothesis for CF is that users with similar past behavior tend to like similar
items. Matrix factorization (MF), as one of the most famous techniques in CF, aims to
embedding users and items into low-dimensional dense vector space. By computing the
inner product of user and item latent factor vector, it can predict user i’s preference on
item j:

R̂ij = UT
i Vj, (1)

where UT
i and Vj represent the latent factor vector for user i and item j, respectively. R̂ij is

the predicted rating of user i for item j.
Based on this assumption, probabilistic matrix factorization (PMF) model [13] is

proposed which defines the conditional distribution over the observed ratings:

p(R|U, V, σ2
R) =

m

∏
i=1

n

∏
j=1

[N (Ri,j|g(UT
i Vj), σ2

R)]
IR
ij , (2)

where g(·) defines the logistic function, withN (x|µ, σ2) representing the Gaussian distribu-
tion with its mean value µ and variance σ2. The function IR

ij equals 1 if Rij is available in the
observed data and 0 otherwise. Some other notations are defined in Table 1. Furthermore,
they also place zero-mean spherical Gaussian priors on user and movie feature vectors:
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p(U|σ2
U) =

m

∏
i=1
N (Ui|0, σ2

U I), (3)

p(V|σ2
V) =

n

∏
i=1
N (Vj|0, σ2

V I). (4)

By introducing Bayesian method, it defines the posterior distribution over matrix U
and V:

p(U, V|R, σ2
R, σ2

U , σ2
V) ∝ p(U|σ2

U) · p(V|σ2
V)p(R|U, V, σ2

R) (5)

To obtain optimal parameter U and V, we maximize (5) and then have:

E =
1
2

m

∑
i=1

n

∑
j=1

IR
ij [Rij − g(UT

i Vj)]
2 +

λU
2
||U||2F +

λV
2
||V||2F, (6)

where || · ||2F denotes the Frobenius norm of a matrix.

Based on this, Cai et al. [14] further propose constrained probabilistic matrix factoriza-
tion which is called Constrained-PMF. It introduces an additional method of constraining
user-specific feature vectors that has strong effect on infrequent users, which define the
conditional distribution over the observed ratings as:

p(R|U, V, Q, σ2
R) =

m

∏
i=1

n

∏
j=1

[N (Ri,j|g([Ui +

n
∑

k=1
IR
ikQk

n
∑

k=1
IR
ik

]Vj), σ2
R)]

IR
ij , (7)

where Ui + (
n
∑

k=1
IR
ikQk)/

n
∑

k=1
IR
ik denotes the user latent feature vector with IR

ikQk capturing

captures the effect of a user i having rated item k. Moreover, it also places spherical
Gaussian prior on matrix Q as:

p(Q|σ2
Q) =

m

∏
k=1
N (Qk|0, σ2

Q I). (8)

Table 1. Notation Table.

Notation Definition

U user set
V item set
R explicit feedback matrix
R̂ predicted rating matrix
M implicit feedback matrix
W implicit feedback weighting matrix
U user latent factor matrix
V item rating latent factor matrix
Z item selecting latent factor matrix
Q user offset latent factor matrix

m size of the user set
n size of the item set
g(·) logistic function
I identity matrix
IR
ij indicator that equals 1 when user i rates item j

and 0 otherwise
L loss function
N d(i) d closest neighbors of user i
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Table 1. Cont.

Notation Definition

λU , λV λZ, λQ, λ regularization parameters
θ learning rate
T numbers of training iterations
d number of neighbors for a user
K dimension of the latent factors

2.2. Probabilistic Model for Implicit Feedback

Conventional MF methods are tailored to the need for explicit feedback and cannot
be directly used for implicit feedback as they have no numeric ratings to build the loss
function. To solve this problem, Chen et al. [15] provide a PMF model using implicit
feedback to implement item recommendation task. Specifically, Mik denotes two types of
implicit feedback including positive and negative feedback. Chen et al. assume Mik is from
a Bernoulli distribution that equals 1 when user i and item k have implicit interactions and
equals 0 otherwise. The uniform weighting strategy [12] is adopted to sample negative
implicit feedback. By calculating the product between the user latent factor vector and the
item latent factor vector, the probability distribution of Mik is obtained as:

p(Mik = 1|Ui, Zk) = g(UT
i Zk),

p(Mik = 1|Ui, Zk) = 1−Wikg(UT
i Zk),

(9)

where Wik denotes the weight of the negative samples. Similar to Equation (2), it defines
the conditional distribution of M as:

p(M|U, Z) =
m

∏
i=1

n

∏
k=1

p(Mik|Ui, Zk) = ∏
(i,k)∈P

g(UT
i Zk) · ∏

(i,k)∈N
(1−Wikg(UT

i Zk)) (10)

where (i, k) ∈ P and (i, k) ∈ N means that the interaction between user i and item j are
positive and negative implicit feedback, respectively. As we discuss in Section 2.1, it places
zero-mean spherical Gaussian priors on user latent matrix U and the item latent matrix Z:

p(U|σ2
U) =

m

∏
i=1
N (Ui|0, σ2

U I) (11)

p(Z|σ2
Z) =

n

∏
k=1
N (Zk|0, σ2

Z I) (12)

2.3. Decentralized Learning

In the current environment of information overload, in order to dig out valuable
content from the massive amount of information for user, a large number of research has
promoted the rapid development of personalized recommendation system. However, user
data are normally distributed in various end devices. Due to privacy constraint, users and
institutions are reluctant to share their personal data for centralized training. Decentralized
learning [7] is proposed to solve this problem. Recently, it has been applied in many real-
world applications, such as navigation [16] and localization [17]. Chen et al. [18] propose a
decentralized matrix factorization based on FunkSVD for point-of-interest recommendation.
Duriakova et al. [3] propose a general algorithmic framework for decentralized matrix
factorization. However, it has a low efficiency problem. To the best of our knowledge, there
is no existing work that achieves great performance in decentralizing a matrix factorization
model using explicit and implicit feedback simultaneously.

In this study, we propose a decentralized learning scheme where models are shared
and learned without needing a server node, as shown in Figure 1. Specifically, we im-
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plement a decentralized CF model where a decomposing strategy is applied for users to
exchange only non-private information, and thus collaboratively train a model.

3. The Proposed Model

In this section, we first provide overview regarding probabilistic matrix co-factorization,
and then we devise a decentralized strategy to secure user privacy while training the model.
The frequently used notations in the remainder of the paper are summarized in Table 1.

3.1. Overview

The probabilistic model discussed in Sections 2.1 and 2.2 can be well applied with
explicit feedback or implicit feedback. However, it cannot handle problems with explicit
and implicit feedback simultaneously. In real-world CF applications, a user chooses an item
based on their preference but cannot tell whether the item really suits him/her. Thus, in this
study, we relate items with two types of latent factor vectors to distinguish between their
behavior and true taste, namely the item rating latent factor vector and the item selecting
latent factor vector. A user will select a certain item if the item selecting latent factor vector
matches the user latent factor vector and will give a high rating on the item if the item
rating latent factor vector matches the user latent factor vector.

According to [11], real-world datasets contain both explicit and implicit feedback in
the observed data and both of them are useful for predicting user preferences and modeling
item characteristics. However, there is little research that uses both of them simultaneously
in one recommendation model, which shows that the recommender system still has room
for improvement. Thus, in this section, we propose a recommendation model based on
probabilistic matrix factorization with both explicit and implicit feedback. As shown in
Figure 2, we derive an implicit feedback matrix M and an explicit feedback matrix R from
the original observed data. Then M is decomposed into the product of an item selecting
latent factor matrix Z and a user latent factor matrix U. Similarly, the explicit latent factor
matrix R is decomposed into the product of an item rating latent factor matrix V and a user
latent factor matrix U. As mentioned in Equation (7), we also add an offset matrix Q to the
user latent factor matrix to constrain user-specific feature vectors that has a strong effect on
infrequent users.

Observed Data

Implicit Feedback M

Explicit Feedback R

item selecting latent matrix Z

user latent matrix U

item rating latent matrix V

d=3

d=3

d=3

m=4

n=4

Q

d=3

0.3 0.5 +

+ 0.5 +

0.5 +

+ 0.7

+

+ +

+

+

0.3 0.5

0.5

0.5

0.7

Figure 2. Observed data is divided into implicit and explicit feedback which are used for obtaining
user latent matrix and different item latent matrix. ‘+’ denotes the positive implicit feedback.
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The main goal of our scheme is to separate rating prediction and item recommendation
into two different tasks: once the model is obtained, we can predict the user ratings for the
unknown items by calculating the product of U and V; Further, we can provide a rank list
for item recommendation by calculating the product of U and Z.

3.2. Matrix Co-Factorization

The key idea of matrix co-factorization is to associate implicit and explicit feedback
together with the PMF model. Specifically, the model of decomposing explicit feedback
matrix R and implicit feedback matrix M are linked by the user latent factor matrix U.
Based on Bayesian law [19], we define the posterior distribution over user latent factor
matrix U, item selecting latent factor matrix Z and item rating latent factor matrix V as:

ln p(U, V, Z, Q|R, M; σ2
U , σ2

V , σ2
Z, σ2

R, σ2
Q, W)

∝ p(R|U, V, Q; σ2
R)p(M|U, Z; W)p(U|σ2

U)p(V|σ2
V)p(Z|σ2

Z)p(Q|σ2
Q)

=
m

∏
i=1

n

∏
j=1

[N (Rij|g([Ui +

n
∑

k=1
IR
ikQk

n
∑

k=1
IR
ik

]Vj), σ2
R)]

IR
ij ∏
(i,k)∈P

g(UT
i Zk) ∏

(i,k)∈N
(1−Wi,kg(UT

i Zk))

×
m

∏
i=1
N (Ui|0, σ2

U)
n

∏
j=1
N (Vj|0, σ2

V)
n

∏
j=1
N (Zj|0, σ2

Z)
n

∏
k=1
N (Qk|0, σ2

Q)

(13)

Similar as we obtain the loss function in Equation (6), by maximizing the probability
of the posterior distribution in Equation (13), we have the following loss:

min
U,V,Z,Q

L =
1
2

m

∑
i=1

n

∑
j=1

IR
ij (g([Ui +

n
∑

k=1
IR
ikQk

n
∑

k=1
IR
ik

]Vj)− Ri,j)
2

− λ( ∑
(i,k)∈P

ln g(UT
i Zk) + ∑

(i,k)∈N
ln(1−Wi,kg(UT

i Zk)))

+
λU
2
||U||2F +

λV
2
||V||2F +

λZ
2
||Z||2F +

λQ

2
||Q||2F

(14)

where λ = σ2
R, with λU , λV , λZ, λQ defines similar regularization parameters. The main

idea for our method is training over explicit and implicit feedback using stochastic gradient
descent (SGD) [20], so first we need to obtain the gradients of L with respect to Ui, Vj, Zj
and Qk:

∂L
∂Ui

=



− λ
g′(UT

i Zj)

g(UT
i Zj)

Zj + λUUi, i f (i, j) ∈ P,

λ
Wi,jg′(UT

i Zj)

1−Wi,jg(UT
i Zj)

+ λUUi, i f (i, j) ∈ N,

g′(ÛT
i Vj)(g(ÛT

i Vj)− Ri,j)Vj + λUUi, i f IR
ij = 1,

(15)

∂L
∂Vj

= g′(ÛT
i Vj)(g(ÛT

i Vj)− Ri,j)Ûi + λVVj, i f IR
ij = 1, (16)

∂L
∂Zj

=


− λ

g′(UT
i Zj)

g(UT
i Zj)

Ui + λZZj, i f (i, j) ∈ P,

λ
Wi,jg′(UT

i Zj)

1−Wi,jg(UT
i Zj)

Ui + λZZj, i f (i, j) ∈ N,

(17)
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If IR
ij = 1, then for all k that satisfies IR

ik = 1 we have:

∂L
∂Qk

= g′(ÛT
i Vj)(g(ÛT

i Vj)− Ri,j)Vj
IR
ik

n
∑

k=1
IR
ik

+ λQQk, (18)

where Ûi denotes Ui + (
n
∑

k=1
IR
ikQk)/

n
∑

k=1
IR
ik to simplify the equations.

After T rounds of training, the model reaches its convergence, as in Algorithm 1.
As shown in (19), by mapping the product of Ui and Vj in the range of [0, 1], we can
predict user i’s rating for the unknown items, which corresponds to the rating prediction
task. Similarly, the logistic function value of the product UT

i Zj represents the predicted
probability of user i selecting item j, which corresponds to the item recommendation task.

R̂i,j = g(UT
i Vj)

M̂i,j = g(UT
i Zj)

(19)

Algorithm 1: Stochastic gradient descent learning for probabilistic matrix co-
factorization

Input: Observed data matrix, regularization parameter λU , λV λZ, λQ, λ,
numbers of iterations T, and learning rate θ

Output: latent factor matrixes U, V, Z, and Q
1 Derive the implicit feedback matrix M and the explicit feedback matrix R from the

observed data;
2 Initialize elements of U, V, Z, Q by zero-mean Gaussian distribution;
3 for i = 1 to T do
4 Shuffle training data;
5 foreach user-item pair (i,j) in R, P, and N do
6 Calculate gradients based on Equations (15)–(18);
7 update latent factor matrix as follows:
8 Ui ← Ui − θ ∂L

∂Ui
;

9 Vj ← Vj − θ ∂L
∂Vj

;

10 Zj ← Zj − θ ∂L
∂Zj

;

11 Qk ← Qk − θ ∂L
∂Qk

;
12 end
13 end
14 return U, V, Z, and Q

3.3. Decentralized PMF

Inspired by [18], in this study, we devise an efficient and privacy-preserving method
to train the model. Specifically, the user latent factor matrix U and the offset matrix Q
are kept on users’ end devices and are updated locally using each user’s private data.
The item rating latent factor matrix V and the item selecting latent factor matrix Z are
learned collaboratively by users. Since V and Z are stored on each user’s hand, we use Vi

j

and Zi
j to denote the local version of Vj and Zj stored on user i’s end device. To prevent

malicious inference, Vi
j , Zi

j are decomposed into personal parts vqi
j, zqi

j that are stored at
user i’s end and public parts vpj, zpj that users collaboratively learn:

Vi
j = vpj + vqi

j (20)

Zi
j = zpj + zqi

j (21)
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As shown in Figure 3, in real-world scenarios, vpj and zpj are the public latent factor
vector that all users collaboratively learn, thus at every moment there is a copy in each
user’s hand. That is to say, what user i actually holds are vpi

j and zpi
k:

Vi
j = vpi

j + vqi
j (22)

Zi
j = zpi

j + zqi
j (23)

User 1

vpj
1

vpj
2

zpj
1

zpj
2

vpj
1
zpj

1

vpj
3
zpj

3

vpj
2 zpj

2

vpj
3 zpj

3

vqj
1 zqj

1

User 2

vqj
2 zqj

2

User 3

vqj
3 zqj

3

End Device

Model

Data

Figure 3. Users share public gradients with its neighbors while keeping personal gradients at their end.

Another question for implementing training is determining how users decide which
neighbors they should communicate with. Normally, there is a large number of users
in a decentralized learning model, so it is impractical to let all users communicate with
each other for two reasons: (1) the communication cost is heavy, (2) fewer users are online
simultaneously. Thus, we let users only communicate with a small group of other users,
which we call neighbors in this study. According to [3], different neighbors have a different
impact on learning a global model with user i, therefore we need to add a weight for each
of user i’s neighbor j. To solve the above problems, we define a user adjacency matrix E
with each of its element Eij denotes the relationship between user i and user j. Normally
user i and user j having a close connection leads to a large Eij. Furthermore, we obtain d
closest users for user i (N d(i)) by sorting all Eij, j ∈ 1, 2, ..., n and select the largest d ones.
For the sake of simplicity, we also call N d(i) as user i’s neighbors in this study. Once user i
has finished one round of its local training, it will send its public gradients to its neighbors
to help them learn a global model. The overall process is summarized in Algorithm 2.
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Algorithm 2: Decentralized PMF Algorithm
Input: implicit feedback (R), explicit feedback (M), weight matrix for implicit

feedback (W), learning rate (θ), user adjacency matrix (E), neighbors of user
i (N d(i)), regularization parameter (λU , λV λZ, λQ, λ), number of
iterations (T)

Output: latent factor factor vectors Ui, vpi
j, vqi

j, zpi
k, zqi

k
1 for i = 1 to m, j = 1 to n, and k = 1 to n do
2 Initialize Ui, vpi

j, vqi
j, zpi

j, zqi
j, Qi

k
3 end
4 for t = 1 to T do
5 Derive the implicit feedback matrix M and the explicit feedback matrix R from

the observed data;
6 Shuffle training data;
7 foreach user-item pair (i, j) in R, P, and N do
8 Compute gradients according to (15)–(18) Update Ui by Ui ← Ui − θ ∂L

∂Ui

9 if IR
ij == 1 then

10 for k that satisfies IR
ik = 1 do

11 Update Qk by Qk ← Qk − θ ∂L
∂Qk

12 end

13 Update vpi
j by vpi

j ← vpi
j − θ ∂L

∂Vi
j

∂Vi
j

∂vpi
j

14 Update vqi
j by vqi

j ← vqi
j − θ ∂L

∂Vi
j

∂Vi
j

∂vqi
j

15 end
16 else

17 Update zpi
j by zpi

j ← zpi
j − θ ∂L

∂Zi
j

∂Zi
j

∂zpi
j

18 Update zqi
j by zqi

j ← zqi
j − θ ∂L

∂Zi
j

∂Zi
j

∂zqi
j

19 end
20 for user i′ in N d(i) do
21 if Receive ∂L

∂vpi
j

from user i then

22 vpi′
j ← vpi′

j − θEii′
∂L

∂vpi
j

23 end
24 if Receive ∂L

∂zpi
j

from user i then

25 zpi′
j ← zpi′

j − θEii′
∂L

∂zpi
j

26 end
27 end
28 end
29 end
30 return Ui, vpi

j, vqi
j, zpi

k, zqi
k, Qi

k

4. Evaluation

In this section, we compare our work with the state-of-the-art works. First, we provide
a complexity analyze to prove the efficiency of our method. Then, by implementing the
experiments on a multicore server using parallel toolbox, we explore the performance on
real-world datasets.
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4.1. Setting
4.1.1. Datasets

As shown in Table 2, we implement our experiment on two real-world datasets, namely
FilmTrust [21] and Epinions [22,23]. The FilmTrust dataset contains 35,497 records with
1508 users and 2071 items. Moreover, 1853 trust statements are given as the relationship
between users. Another dataset used in our experiment is Epinions collected from online
website Epinions.com, which is also a famous benchmark for evaluating recommendation
systems. However, we only sample 30,000 records randomly from the whole dataset due to
its large scale. It consists of 1336 users and 6584 items with 7465 trust statements. For both
datasets, we scale the ratings into the range of [0, 1].

Table 2. Dataset Analysis.

Dataset #Rating #User #Item #Trust

FilmTrust 35,497 1508 2071 1853

Epinions 30,000 1336 6584 7465

4.1.2. Implicit Data

Since DPMD is a model investigating both explicit and implicit feedback, and both
FilmTrust and Epinions contain only explicit ratings, we need to make modifications to the
original dataset. Specifically, we randomly sample user i and its rated item j from the
observed data at a certain percentage α to obtain the positive implicit feedback Mij, and the
rest remains for representing the explicit feedback Rij. For the sake of simplicity, we set α
as 50% in the following experiment. Moreover, 70% of the dataset is used for training and
the rest is for testing.

4.1.3. Neighbor Adjacent Matrix

For dataset TrustFilm and Epinions, they both have a trust statement issued by users
that are denoted as {(i, j, trust)|i ∈ U , j ∈ V}. We set Eij =

1
d if (i, j, trust) is in the trust

statement. At each training iteration, only d users from {j|Eij =
1
d} can receive user i’s

public gradients, and those users are denoted as N d(i).

4.1.4. Metric

For rating prediction task, we adopt root mean square error (RMSE) to measure the
distance between the predicted result and the test data. With Y denotes all the user-item
pairs in the test set of rating prediction task, we define RMSE as follows:

RMSE =

√√√√ 1
Y ∑

(i,j)∈Y
(R̂ij − Rij)2 (24)

Moreover, we follow the work of [24] to use P@k and R@k as two metrics to eval-

uate the item recommendation task. For user i, they are defined as P@k =
|ST

i ∩SR
i |

k ,

R@k =
|ST

i ∪SR
i |

ST
i

, where ST
i denotes the items that user i chooses in the test set and SR

i

denotes the recommended items of user i which contains k results.

4.1.5. Baseline Methods

We compare SecSVD++ with three existing works as follows.

• DMF [18] is a decentralized model based on MF. It is mainly designed for point-of-
interest recommendation, therefore we simplify the setting and make it practical for
handling the same rating prediction problem as DPMF.

• SVD++ [25] is an improved version for MF version that takes users’ historical interac-
tions into consideration.
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• WRMF [12] is a typical centralized matrix factorization method for implicit feedback.
• PMF is the probabilistic model that we introduced in Section 2.2.

4.2. Complexity Analysis

As concluded in Algorithm 2, the model is trained collaboratively by users. Here, we
define K as the dimension of the latent factor vectors, and we use |R| and |M| to denote the
size of the explicit data and the size of the implicit data, respectively.

The computation that our method carries out is mainly two parts: (1) users locally
compute gradients of L with respect to Ui and other latent factor vectors as shown
in line 8 of Algorithm 2, and (2) users update the latent factors as shown from line 9
to line 27 of Algorithm 2. The computation complexity is (|R| + |M|) · K for (1) and
(|R|+ |M|) · K · d for (2), so the total computation complexity is (|R|+ |M|) · K · d in one
iteration. Normally, we can manually set d and K as small values so the computation
overhead is linear with the size of the training set. As for the communication overhead,
line 21 and line 24 in Algorithm 2 show that at a certain iteration, user i′ receives public
gradients ∂L

∂vpi
j

or ∂L
∂zpi

j
from user i. Thus, the communication cost is (|R|+ |M|) · K · d,

which is also linear with the size of the training set. The complexity comparison with
other state-of-the-art methods is listed in Table 3, we can see that we have a comparable
efficiency with latest DMF model.

Table 3. Complexity Comparison.

Methods SVD++ DMF WRMF PMF DPMF

Computation |R| · K |R| · K · d m · n · K |M| · K (|R|+ |M|) · K · d

Communication - |R| · K · d - - (|R|+ |M|) · K · d

4.3. Rating Prediction

First, we uniformly sample the same number of negative implicit feedback as the
positive implicit feedback. Then we set λ = 0.02, Wij = 0.5 K = 3, d = 3 and validate
the convergence of our model on both datasets. As the number of iterations increases,
the RMSE decreases for models using both datasets, and they both achieve convergence
after around 100 rounds of iterations, as shown in Figure 4.

Furthermore, there are two important parameters in the loss function. One is λ, which
adjusts the proportion of each part in the loss function. The other is W, which represents
the weight of the negative implicit data. By varying the values of these two parameters
and placing the RMSE results of the experiment on the contour plot as Figure 5, we can
observe that when the model is training on FilmTrust, the RMSE reaches its minimum when
W = 0.5 and λ = 0.02, and for Epinions the minimum RMSE is obtained when W = 1 and
λ = 0.06.

0 25 50 75 100
Training iteration (FilmTrust)

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

0.141

0 25 50 75 100
Training iteration (Epinions)

0.20

0.25

0.30

0.35

0.40

RM
SE

0.181

Figure 4. The RMSE of FilmTrust and Epinions decreases as the number of model iterations increases.
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0.25

0.5

0.75

1

W

0.145

0.150

0.155

0.160

0.165

RMSE

(a)

0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

W

0.174

0.177

0.180

0.183

0.186

0.189
RMSE

(b)

Figure 5. The contour map of RMSE as λ and W changes when training DPMF model on two datasets.
(a) FilmTrust, (b) Epinions.

Based on this result, we further explore how our method compares with other state-of-
the-art methods. Specifically, we set λ = 0.02, Wij = 0.5, d = 3 for conducting experiment
on FilmTrust and λ = 0.06, Wij = 1, d = 3 for conducting experiment on Epinions. As shown
in Figure 6, for the experiments on both datasets, the RMSE for all three models decreases
as the size of the latent factor vector K increases and our model consistently outperforms
the DMF and the SVD++ model. This is mainly because our model fully uses the implicit
data which helps to train a matrix co-factorization model.

3 6 9 12
K

0.13

0.14

0.15

0.16

0.17

0.18

RM
SE

DPMF
DMF
SVD++

(a)

3 6 9 12
K

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

0.200

RM
SE

DPMF
DMF
SVD++

(b)

Figure 6. The histogram of RMSE as K changes when training different RS model on two datasets.
(a) FilmTrust, (b) Epinions.

4.4. Item Recommendation

In this section, we compare our method with two famous models for the item recom-
mendation task. One of them is the WRMF model, that assigns a weight and confidence to
all user-item pairs, which helps to put the implicit data into the loss function for calculation.
The other one is PMF, which we decribed in Section 2.2. Different from the traditional
PMF model, it uses a logistic function to map the results to the range of [0, 1], and then
establishes probability distribution function through Bernoulli distribution. These two
models are tailored to solve the item recommendation problems using implicit feedback.

As in Section 4.3, first we set λ = 0.02, Wij = 0.5, d = 3 for conducting experiment on
FilmTrust and λ = 0.06, Wij = 1, d = 3 for conducting an experiment on Epinions. Then we
change the value of K to see how precision and recall changes. In Table 4, we can see that (1)
as the increase of K, the P@5 and R@5 of the three models all increase. (2) when K is small
(K = 3), our model and the other two models have similar performance. (3) when K is large
(K >= 6), our model has clear advantages over the other two models. This is mainly because
DPMF uses more data to construct the model, so as the size of the latent factors K becomes
larger, we are more able to explore the potential information hiding in the data.
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Table 4. Performance comparison for item recommendation task.

FilmTrust Epinions

Metrics P@5 R@5 P@5 R@5

Dimension K = 3

PMF 0.0332 0.0711 0.0715 0.1529

WRMF 0.0352 0.0751 0.0717 0.1497

DPMF 0.0342 0.0722 0.0716 0.1524

Dimension K = 6

PMF 0.0380 0.0771 0.0761 0.1571

WRMF 0.0379 0.0763 0.0760 0.1563

DPMF 0.0396 0.0796 0.0781 0.1599

Dimension K = 12

PMF 0.0410 0.0831 0.0781 0.1611

WRMF 0.0404 0.0823 0.0789 0.1603

DPMF 0.0435 0.0889 0.0821 0.1653

5. Conclusions

In this study, we propose a privacy-preserving recommendation framework based
on decentralized probabilistic matrix factorization called DPMF. Specifically, we devise
a novel model combining explicit and implicit feedback into a probabilistic matrix co-
factorization model by decomposing observed data into explicit and implicit data matrixes
and mapping users and items to a shared subspace of low dimensionality. Besides, we
propose a novel decomposing strategy under decentralized settings to keep users’ private
information at their end while users’ public information is shared and helps to learn
the model collaboratively. The experiments on two real-world datasets demonstrate that
compared with classic models, the proposed model improves its performance in lower loss
in rating prediction task and higher precision in item recommendation task. Furthermore,
the complexity analysis shows that our method is practical with linear computation and
communication complexity.

In the future, we will focus on model compression. The recommendation model has
made significant progress in using users’ data to predict user preferences and model item
characteristics. However, the scale of recommendation model is becoming larger since
there are increasing parameters, thus the storage overhead is becoming higher. How to
reduce the storage of the recommendation model will be our next stage of work.
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