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Abstract: A person’s routine is a sequence of activities of daily living patterns recurrently per-
formed. Sticking daily routines is a great tool to support the care of persons with dementia, and 
older adults in general, who are living in their homes, and also being useful for caregivers. As state-
of-the-art tools based on self-reporting are subjective and rely on a person’s memory, new tools are 
needed for objectively detecting such routines from the monitored data coming from wearables or 
smart home sensors. In this paper, we propose a solution for detecting the daily routines of a person 
by extracting the sequences of recurrent activities and their duration from the monitored data. A 
genetic algorithm is defined to extract activity patterns featuring small differences that relate to the 
day-to-day contextual variations that occur in a person’s daily routine. The quality of the solutions 
is evaluated with a probabilistic-based fitness function, while a tournament-based strategy is em-
ployed for the dynamic selection of mutation and crossover operators applied for generating the 
offspring. The time variability of activities of daily living is addressed using the dispersion of the 
values of duration of that activity around the average value. The results are showing an accuracy 
above 80% in detecting the routines, while the optimal values of population size and the number of 
generations for fitness function evolution and convergence are determined using multiple linear 
regression analysis. 

Keywords: daily routine; activities of daily living; recurrent activity patterns; genetic algorithm; 
tournament-based strategy; multiple linear regression analysis 
 

1. Introduction 
Sticking daily routines is a great tool to support the care of older adults or persons 

living with dementia in their home being useful for caregivers and the patient itself. The 
daily routine is a sequence of recurrent activities performed by a person every day [1]. 
Routine means organization and discipline and can bring several benefits to in-person 
care, such as the improvement of mental health by reducing anxiety and stress levels and 
physical health and productivity [2,3]. In the case of dementia, it helps prevent faster cog-
nitive decline allowing the detection of subtle changes or deviations in time [4]. Having a 
rather chaotic lifestyle can negatively impact health in the long term [5]. For example, 
sleep deprivation can lead to the probability of developing cardiovascular or nervous sys-
tem diseases and diabetes in time, while irregular meals or late meals can affect emotional 
or mental state, increase the likelihood of developing digestive system diseases and de-
crease the defense capacity of the immune system. 

In this context, it is useful to provide solutions to allow the detection of recurrent 
patterns of activities and to objectively infer the daily routine of a person out of Internet 
of Things (IoT)-monitored data. The large-scale adoption of wearable IoT devices eases 
the data collection, but inferring personalized daily routines is not an easy task as it is 
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affected by many variables (e.g., time frame, weekday or weekend, chronic condition, etc.) 
and differentiation factors [6]. Nevertheless, monitoring the person’s daily routine using 
IoT wearable devices is a promising research field [7], insufficiently explored, with ap-
plicability in personalizing health and care services. Discovering the person’s daily life 
routine from sensors’ data and deviations from it can help in assessing the health status 
of the person enabling the healthcare personnel to proactively intervene to avoid the per-
son’s institutionalization [8]. For example, sleeping more than usual can be a symptom of 
depression, while frequent going to the toilet can be associated with a urinary tract infec-
tion. 

Most of nowadays research is focused on identifying the activities of daily living 
(ADL) to observe abnormal data [9–12]. Only a few research is looking at the activity 
length and sequence of such activities to detect the person’s recurrent behavior patterns 
that are part of their daily routine and relevant deviations from it. The use of IoT sensors 
can generate large volumes of data that require efficient algorithms capable of processing 
this data and associated search space to identify recurrent behavioral patterns [13]. The 
collected data could be incomplete and inaccurate, and in this case, algorithms capable of 
handling data quality issues are required [13]. Metaheuristics algorithms could be a viable 
solution for solving such types of problems since they provide a near-optimal solution for 
problems with incomplete and inaccurate data or when the computing power is limited, 
and the execution time must be low [14]. They can provide approximate solutions with 
lower computational overhead than state-of-the-art solutions such as neural networks or 
exhaustive search algorithms and better solutions than deterministic and rule-based algo-
rithms [15]. 

In this paper, we propose the use of a genetic metaheuristic for the detection of re-
current activity sequences that form a person’s daily routine. An individual is encoded as 
a sequence of activities performed by a person in a day while its quality is evaluated using 
a fitness function that considers four types of probabilities, previously introduced by us 
in [16]: the probability of transition among activities, the probability that an activity is the 
first or last in a recurrent pattern of activities, and the pattern length probability. A method 
based on the average daily activity time variability is defined to enrich the inferred activity 
patterns with time-related information. For the selection process of the parent chromo-
somes, we have used a tournament-based strategy, and the population evolution is en-
sured by applying crossover and mutation operators. To avoid premature convergence a 
roulette wheel selection strategy is used for the dynamic selection of the operators to be 
used in generating the next generation of offspring. 

The genetic heuristic has good results for constraint-based optimization problems 
that can be translated into digging for the best solutions in the search space, as in the case 
of the routine detection problem. The length of the daily activities has a certain degree of 
flexibility and is bounded by upper and lower values, while the transition among activi-
ties can happen with different probabilities. Moreover, this type of constraint is rather 
personalized as they depend on the wishes and needs of each person. Consequently, the 
space and datasets for searching the routine are large and hard to explore. The genetic 
heuristic is more suitable compared to the deterministic algorithms as it uses the history 
encoded in the chromosomes of the previous population to guide the search. Therefore, 
our genetic-based solution can identify more than one routine for a person, while most 
state-of-the-art deterministic approaches [16–18] can identify only one rigid routine. This 
solution is more realistic since a person can have several variations of recurrent daily ac-
tivity patterns that differ slightly depending on contextual factors. For the duration of 
activities, we use an interval determined by the dispersion of the duration values of that 
activity around the average value, which is a more flexible approach than deterministic 
ones [16], which use only one value namely the average time. Finally, the tournament-
based strategy combined with roulette wheel selection for generating new populations of 
chromosomes guides the search process with a good balance between exploitation and 
exploration of the search space for routine detection. As reported in other literature works 
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[19], the balance is important to identify regions in the areas that are closer to daily rou-
tines with good quality and to dismiss the parts already explored or with poor quality 
solutions. 

The novel contributions of this paper are the following: 
• A heuristic approach based on a genetic algorithm for identifying the recurrent ac-

tivity patterns of a person and constructing the daily routine. The chromosomes are 
encoded using the person’s ADL and a probability-based fitness function is used to 
evaluate the quality of the population. Thus, it allows the extraction of several pat-
terns of activities that differ slightly from each other capturing the day-to-day con-
textual variations that occur in a person’s daily routine. 

• A tournament-based strategy for dynamic selection of operators applied for generat-
ing the offspring, while the time variability of activities of daily living is addressed 
using the dispersion of the duration values of that activity around the average value. 

• Study the impact of the population size and number of generations on the fitness 
function evolution and convergence by using multiple linear regression analysis. 
The paper is structured as follows: Section 2 reviews the state of the art and presents 

the progress beyond, Section 3 presents the genetic solution for detecting recurrent activ-
ity patterns forming the person’s daily routine using genetic algorithms, Section 4 presents 
the experimental results, Section 5 discusses the impact of the adjustable parameters on 
the performance of the genetic algorithm, and Section 6 presents conclusions and possible 
further developments. 

2. Related Work 
Most state-of-the-art approaches to detecting frequent activity patterns of persons 

and daily routines can be classified as machine learning-based supervised and unsuper-
vised approaches [7,18,20] and statistical or model-based approaches [17,21,22]. 

Many authors are addressing the detection of frequent daily activity patterns and 
routines of a person using unsupervised or supervised machine learning-based solutions. 
Mohan et al. [13] propose an unsupervised approach consisting of two steps for extracting 
the daily routine. In the first step, the activity data corresponding to each day are seg-
mented into groups of locations with homogeneous distribution using the superpixels ex-
tracted via energy-driven sampling, while the second step groups the activity segments 
using the hierarchical graph-based region growth algorithm. In the clustering process, 
each activity segment is represented by the activity start and end time, the activity dura-
tion, the activity location distribution, and the location of previous activities. Even though 
the approach can capture the gradual change of the routine, there are some disadvantages 
such as the high number of parameters that need to be fine-tuned and the fact that it relies 
only on the person’s movement data. Combined with IoT devices ML techniques are 
proven to be very useful for classification problems in the healthcare domain [23]. Adap-
tive neuro-fuzzy inference system provides good results on coagulation and flocculation 
problems classification. Seiter et al. [24] propose the use of topic models to extract daily 
routines in the case of patients who are in the hemiparetic rehabilitation period. The time 
and frequency domain-related features are extracted from sensors’ data and preprocessed 
in activity words that are used as a vocabulary for the topic model. The activity vocabulary 
is built using either the K-mean algorithm to cluster the feature vectors or using rules to 
extract characteristics of activity routine. The main disadvantage of the approach is that, 
in the case of some patients, the accuracy of the results obtained is quite low (about 56% 
in the case of the clustered approach and 66% in the case of the rule-based approach). The 
hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algo-
rithm is used in [25] to cluster sleep events and extract sleep patterns. The sleep event is 
represented as a vector of features that stores information about the sleep start and end 
time, the sleep duration, the number of sleep interruptions, and the interruption category 
(i.e., toss and turns, awakenings, breaks). The HDBSCAN algorithm groups sleep events 
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into nocturnal and daytime sleep patterns, from which the corresponding sleep routines 
will then be extracted. Even if the approach is promising, there is no relevant qualitative 
evaluation of the obtained results provided. Similarly, the DBSCAN algorithm is used to 
group instances of each activity type based on duration and start time in [26]. The cluster-
ing results are used to extract the average start time and the duration of each activity. The 
daily routine is defined as a sequence of activities ordered according to the activities’ start 
time. 

Quaid et al. [27] propose a reweighted genetic algorithm-based feature selection and 
classification algorithm that can be used for human behavior recognition. Accelerometer 
signal data gathered from wearable devices are encoded into chromosomes, and a genetic 
algorithm is used to identify and select the classification parameters. The authors report 
an 85.4% accuracy, better than the compared classical techniques. Maučec et al. [7] use the 
partition around medoids clustering to identify partitions of daily routines. Two vectors, 
one for active sensors and one for daily activities, are submitted to the clustering algo-
rithm. The similarity between vectors is determined using the generalized Hamming dis-
tance and the Levenshtein distance, but no qualitative evaluation of the obtained results 
is provided. The Gap-BIDE algorithm is combined with collaborative clustering to extract 
flexible daily routines by considering variations in terms of activities sequence and 
timespan in [28]. The routine is defined based on the time spent by the person in each 
room in [20]. The time is estimated with a Bluetooth-based location system and supervised 
machine learning algorithms. Routine detection is performed with the affinity propaga-
tion algorithm using as input the time vectors of each of the monitored days and grouping 
them into clusters from which different routines are extracted. The main drawback is that 
the routine is extracted using only a single feature, namely the time spent by the person 
in each room. Shahid et al. [18] learn the routine of older persons by extracting features 
such as activities’ duration and frequency from sensors’ data. However, this approach 
does not consider contextual information that could reduce the false positives in the iden-
tified routines. Genetic algorithms have proved to be useful for various domains that re-
semble daily living activities identification and classification such as disassembly se-
quence planning, a combinatorial optimization problem [29]. Heuristics such as red deer 
and whale optimization can be considered alone or hybridized with a genetic algorithm 
and simulated annealing to obtain more accurate results [30]. An approach based on spa-
tiotemporal fusion adaptive resonance theory (ART) neural network to learn the person’s 
daily routine is proposed in [6]. The spatiotemporal information is encoded as input fea-
tures of the neural network. It allows learning for each activity the time interval, the du-
ration, the day of the week, and the location in which is carried. A limitation is that there 
is no meaningful symbolic representation of the learned patterns, and the interpretation 
of the learned routine is done manually. The complexity of home healthcare under pan-
demic situations such as COVID-19 has been addressed in [31,32]. Routing and scheduling 
caregivers to visit patients’ homes considering economic, environmental, and social crite-
ria is rather difficult. Multi-objective optimization heuristic has been proposed on top of 
the IoT monitoring further improving the home care processes. 

The statistical and model-based approaches are aiming to construct a deterministic 
model of the frequent behavioral patterns and use the model to detect the person’s rou-
tines. Wang et al. [17] determine the daily routine based on the data provided by the 
smartphone and environmental sensors. The person’s daily behaviors are created using 
hidden Markov models and include sequences of performed activities and their location. 
To extract the daily routine, the maximum probability transitions and the Viterbi algo-
rithm are used. One limitation of this approach is that it considers the logical relationship 
of the behavior occurrence without interpreting their time rule. The daily routine is de-
tected based on the data collected with Beacon technology in [16]. The person’s daily rou-
tine is extracted using a Markov-based model and includes sequences of performed activ-
ities and their duration. The main drawback of this approach is that it can identify only a 
single rigid routine. 
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Friedrich et al. [21] propose an approach based on activity probability maps, where 
the sensors data are used to identify the daily routine. Activity maps are created for each 
room of the house where the person lives and contain the probability that a sensor is acti-
vated. Similarly, in [33], a model-based approach is described in which activity maps are 
used to encode the information (i.e., activity, intensity, and spatial distribution) about the 
daily life activities collected from binary sensors. A set of activity maps is created. Each 
map is modeled one hour from the considered days. The smallest bounding circle is iden-
tified as part of the routine. The approach does not consider the time when the monitored 
person is not at home, and more experiments need to choose the best timeframe to build 
the activity maps. Probabilistic models are used in [22] to model the daily habits of the 
elders as a two-layer tree, the first layer containing the activities, and the second layer 
containing the probabilities of performing an activity. The proposed approach is not able 
to recognize the activities that have been performed by multiple persons in the house. In 
[34], an approach that combines frequent pattern mining with complex event processing 
to extract the social routines of a person is proposed. The approach considers, as features, 
the time interval in which social activity takes place, as well as specific context information 
such as: whether it is a working day or a weekend day, whether it is a rainy or sunny day, 
etc. A limitation of this approach is that it is not able to provide information about the 
sociability level and detect other behavioral patterns (i.e., physical activity and mobility 
patterns). Soussa et al. [33] use the sensors data to build behavioral patterns that include 
the room’s occupancy and sleep computed using a density function, house entry, and exit 
computed as average times and frequency in a day. A drawback of this approach is that 
it was tested only on two persons monitored over a period of 25 days. 

Analyzing the above state of the art, we did not find any relevant approaches to ad-
dress the problem of daily routine detection using approximation methods such as bio-
inspired heuristics. Existing solutions use classifiers or rule-based models that can identify 
rigid sequences of daily life activities as routines lacking flexibility and failing to detect 
gradual or contextual changes. They need large amounts of annotated data and the fine-
tuning of many adjustable parameters to obtain satisfactory results. The solution pro-
posed in this paper is based on an approximation method that successfully identifies more 
than one routine, capturing several variations of recurrent daily activity patterns. These 
routines slightly differ in terms of the sequence of activities that are performed as well as 
their duration. The metaheuristic-based solution is more suitable than a classifier to pro-
vide good results with smaller amounts of data as the search spaces are personalized. 
Moreover, we must consider that the data monitored a long time ago (for example, a year 
ago) may not be relevant for learning the current routine of a person as the routine may 
change over time. In contrast with deterministic approaches, our solution can provide 
good solutions in a reasonable time without going through the entire search space and 
features only tew parameters that need to be tuned. 

3. Materials and Methods 
Genetic algorithms (GA) are stochastic search methods that mimic natural biological 

evolution [35]. They apply the survival of the fittest principle and operate on a population 
of individuals to produce better individuals in the next generation. The main steps of ap-
plying GA to solve a specific problem are to define a suitable representation of an indi-
vidual and generate the initial population, define a fitness function for evaluating the in-
dividuals and select the best ones, and define an appropriate interpretation for crossover 
and mutation operators that will be used to generate new offspring and update the pop-
ulation (see Figure 1). 
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Figure 1. Genetic solution for routine detection. 

In the next paragraphs, these steps are followed to describe how GA is used to detect 
the recurrent activity sequences carried out by humans to construct a person’s daily rou-
tine. 

An individual (also named chromosome) is encoded as a sequence of ADL represent-
ing a potential frequent pattern, part of the daily routine of a person: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = {𝑎𝑎𝑖𝑖:∃ 𝑇𝑇(𝑎𝑎𝑖𝑖−1 → 𝑎𝑎𝑖𝑖)  ∧  𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1 ∈ 𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 𝑖𝑖 ≠ 0  (1) 

where 𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) represents the historical monitored data (i.e., monitored days) of a 
person, 𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1 are activities performed by the person, and 𝑇𝑇(𝑎𝑎𝑖𝑖−1 → 𝑎𝑎𝑖𝑖) is a transition 
between two activities (i.e., 𝑎𝑎𝑖𝑖 follows 𝑎𝑎𝑖𝑖−1). 

The generation of the first population of individuals has a great impact on the indi-
viduals’ evolution and eventually on the algorithm convergence. In our case, we have 
opted for the random generation of the initial population considering the historically 
monitored activities of the person on daily basis: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴| 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 ⊏  𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (2) 

The approach is suitable because the daily routine we want to extract must contain 
some of the activities patterns already observed in the historical monitored data of a per-
son (𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)). To assess the quality of an individual and to select the best ones from 
the population we have defined a probabilities-based fitness function: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =   �𝑃𝑃𝑃𝑃(𝑎𝑎1) �𝜔𝜔1 ∗ 𝑃𝑃𝑃𝑃(𝑎𝑎𝑛𝑛) + 𝜔𝜔2 ∗ 𝑃𝑃𝑃𝑃�𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��∏ 𝑃𝑃�𝑎𝑎𝑗𝑗�𝑎𝑎𝑗𝑗+1�𝑛𝑛
𝑗𝑗=1 �

1
𝑛𝑛+1  (3) 

In (3), 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the length of the individual 𝑖𝑖, 𝑛𝑛 is the number of activities in the 
sequence, 𝑃𝑃𝑃𝑃(𝑎𝑎1) is the start probability of the first activity in the sequence, 𝑃𝑃𝑃𝑃(𝑎𝑎𝑛𝑛) is 
the end probability of the last activity in the sequence, 𝑃𝑃𝑃𝑃�𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  is the length probabil-
ity computed for the individual 𝑖𝑖, 𝑃𝑃�𝑎𝑎𝑗𝑗�𝑎𝑎𝑗𝑗+1� is the transition probability from 𝑎𝑎𝑗𝑗 to ac-
tivity 𝑎𝑎𝑗𝑗+1. 𝜔𝜔1and 𝜔𝜔2 are the weights associated to the end and length probabilities such 
that relation (4) is true. In our experiments, 𝜔𝜔1 is set to the value of 0.4 and 𝜔𝜔2 to the 
value of 0.6. 

𝜔𝜔1 + 𝜔𝜔2 = 1 (4) 

The four types of probabilities were defined by us in [16] were a Markov model-based 
solution was introduced for routine detection. In this paper, we have adapted and re-used 
their calculation method for the fitness function definition. 

The start and the end probability of an activity 𝑎𝑎𝑖𝑖 (activity that is most likely to be 
the first or last activity in the daily routine) are computed by counting the number of ap-
pearances of the activity 𝑎𝑎𝑖𝑖 at the beginning and end of the pattern sequences in specific 
days and we divide it with the number of days of monitored data available for the person: 
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𝑃𝑃𝑃𝑃 (𝑎𝑎𝑖𝑖) =  |{𝑑𝑑𝑑𝑑𝑑𝑑: 𝑑𝑑𝑑𝑑𝑑𝑑 ∈𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∧ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑖𝑖}|
|{𝑑𝑑𝑑𝑑𝑑𝑑: 𝑑𝑑𝑑𝑑𝑑𝑑 ∈𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)}|

  (5) 

𝑃𝑃𝑃𝑃 (𝑎𝑎𝑖𝑖) =  {𝑑𝑑𝑑𝑑𝑑𝑑: 𝑑𝑑𝑑𝑑𝑑𝑑 ∈𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∧ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑖𝑖}
|𝑑𝑑𝑑𝑑𝑑𝑑: 𝑑𝑑𝑑𝑑𝑑𝑑 ∈𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)}

  (6) 

The transition probability 𝑃𝑃(𝑎𝑎𝑖𝑖|𝑎𝑎𝑗𝑗) is calculated by dividing the number transitions 
form 𝑎𝑎𝑖𝑖  to 𝑎𝑎𝑗𝑗  to the number of all transitions between 𝑎𝑎𝑖𝑖  and all the other activities 
available different from 𝑎𝑎𝑗𝑗 [16]: 

𝑃𝑃�𝑎𝑎𝑖𝑖�𝑎𝑎𝑗𝑗� =
∑ |{𝑛𝑛
𝑘𝑘=1  𝑇𝑇�𝑎𝑎𝑖𝑖→𝑎𝑎𝑗𝑗�: 𝑇𝑇�𝑎𝑎𝑖𝑖→𝑎𝑎𝑗𝑗� ∈𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘}|

∑ |𝑛𝑛
𝑘𝑘=1  {𝑇𝑇(𝑎𝑎𝑖𝑖→𝑎𝑎𝑚𝑚): 𝑇𝑇�𝑎𝑎𝑖𝑖→𝑎𝑎𝑗𝑗� ∈𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘}|

  (7) 

where 𝑛𝑛 = |𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)| and 𝑚𝑚 ≠  𝑗𝑗. 
The length probability of a sequence of activities is defined as the probability of hav-

ing a routine of a certain length and is calculated by counting the number of days that 
have the same length divided by the total number of days present in the population of 
individuals: 

𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  = |𝑑𝑑𝑑𝑑𝑑𝑑: 𝑑𝑑𝑑𝑑𝑑𝑑 ∈ 𝑅𝑅𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∧  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡(𝑑𝑑𝑑𝑑𝑑𝑑) }|
|𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)|

  (8) 

where 𝑅𝑅𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ⊂ 𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 
To determine the individuals in the current population that will be chosen to transmit 

their genetic material to the next generation, we have used a tournament-based approach. 
In the tournament selection, several individuals are randomly selected from the popula-
tion. The best ones among them as ranked using the fitness function become parents of 
the next generation of individuals (also called offspring) who are created using some op-
erators. 

To avoid the premature convergence of the genetic algorithm when the population 
reaches a suboptimal state the operators can no longer produce offspring with fitness val-
ues better than that of their parents, we dynamically apply several crossover and mutation 
operators as suggested in [36]. The selection of the crossover operator that will be applied 
in each generation is performed dynamically based on the rules presented below that 
compute the progress rate of applying a specific crossover operator, 𝑜𝑜𝑝𝑝𝑐𝑐. If the offspring 
𝐷𝐷  dominates the parents 𝑃𝑃1  and 𝑃𝑃2  then the progress rate of the crossover operator 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑐𝑐) is set to the value 1. When the offspring 𝐷𝐷 does not dominate the parents, 
then the progress rate value for the crossover operator is set to 0.5. If the offspring 𝐷𝐷 
dominates either the parent P1 or the parent P2 or no dominance relation exists with the 
other one, then: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑐𝑐) = max �1 − 𝑘𝑘1∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

, 0.5�  (9) 

Finally, if the offspring D dominates at least one parent, then: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑐𝑐) = max �1 − 𝑘𝑘2∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

, 0�  (10) 

In relation (9) and (10), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the current generation, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the maxi-
mum number of generations, and 𝑘𝑘1,𝑘𝑘2 are two parameters that set the velocity of pro-
gress which are fine-tuned on an experimental basis. In our experiments, 𝑘𝑘1 and 𝑘𝑘2 were 
set to a value of 0.3. 

The scheme for dynamic selection of crossover and mutation operators allows to bal-
ance between the exploration and exploitation of the search space avoiding the local opti-
mum and premature convergence. The crossover represents a search within a region 
closer to a potential solution, while the mutation leads to a solution outside the region. At 
the same time, the dynamic selection scheme allows the consideration of a variety of op-
erators to guide the search and generate the next population. As there is a variety of op-
erators in the literature, the main criteria used in choosing the operators were the encod-
ing type used in the genetic algorithm for routine detection as well as the reports from 
literature papers [37]. 



Appl. Sci. 2022, 12, 11030 8 of 20 
 

We have considered three types of crossover operators, namely one-point crossover, 
two-point crossover, and maximal preservation crossover. The crossover operators re-
quire two parents to generate the offspring, one being the donor and the other the receiver. 

In one-point crossover, a crossover point is randomly generated based on the length 
of the shortest parent: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑀𝑀𝑀𝑀𝑀𝑀 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟))) (11) 

Both parents are then split at the location defined by the crossover point. The first 
offspring will get the first part of the first parent and the second part of the second parent, 
while the second offspring will get the first part of the second parent and the second part 
of the first parent (see Figure 2). 

 
Figure 2. One-point crossover on two individuals representing daily activities sequence of a person. 

In two-point crossover, two different crossover points are generated that should have 
a smaller value than the length of the shortest parent. The two points are used to split both 
parents into three parts. The two offspring chromosomes will have the first and last sub-
sequence of the same parent, but the middle sequence will be from the other parent (see 
Figure 3). 

 
Figure 3. Two-point crossover on two individuals representing daily activities sequence of a person. 

The maximal preservation crossover [23,24] is a method that produces only one off-
spring. Figures 3 and 4 show how we apply the maximal preservation crossover for the 
case in which the donor and receiver parents have the same gene and for the case when 
they do not have the same genes. The crossover point is randomly generated within the 
donor’s length. The donor sequence is split, and the first part is copied into the offspring, 
while the second part is reordered based on the receiver parent. In the case in which the 
donor and receiver parents have the same gene (see Figure 4), the genes of the second part 
of the donor will be copied into the offspring based on the order in which they appear in 
the receiver parent. 
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Figure 4. Maximal preservation crossover operator usage when the two parents have the same genes 
(blue—genes from the donor, red—genes from the receiver, orange—genes from the donor reor-
dered as in receiver). 

In the case in which the donor and receiver parents do not have the same genes (see 
Figure 5), the remaining genes from the receiver that are found in the donor will be rear-
ranged in the order in which they appear in the receiver parent, while also keeping the 
genes that are present only in the recipient (i.e., sport) and then they will be copied in the 
offspring. In this case, if a gene from the donor is not present in the receiver, it will not be 
present in the offspring. 

 
Figure 5. Maximal preservation crossover operator when the two parents do not have the same 
genes (blue—genes from the donor, red—genes from the receiver, orange—genes from the donor 
reordered as in receiver together with genes from receptor that are not in donor). 

In the case of mutation, we have defined a parameter that specifies for each chromo-
some if it will be mutated or not. A random number is generated and compared with this 
parameter to decide. Two types of mutation operators are considered, namely, mutation 
with random selection and mutation with weighted selection. 

In the case of mutation with random selection, we have generated two numbers, one 
in range [1, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)] and another one in range [1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)]. 
The first number will correspond to the chromosome gene that will be replaced, and the 
second number will correspond to the selected activity from the activity pool that will 
replace the gene. Figure 6 presents an example of applying a mutation operator with ran-
dom selection. The two arrows point to the randomly selected activities. As you can see, 
the gene inside the chromosome will be replaced by a gene from the activity pool. 

 
Figure 6. Example of applying mutation with random selection. 
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The mutation with weighted selection is similar, but the selection of the new activity 
to replace the gene is controlled. Once we have selected a gene to be replaced (see Figure 
7), we will look at the transition probabilities of the gene before it. As we can see in the 
example in Figure 5, the activity (i.e., gene) selected to be replaced is “Sleep”, which is 
preceded by the activity “Work”. To identify the activity that will replace the “Sleep” ac-
tivity, we will use the values of the transition probabilities of the “Work” activity. We 
represent the distribution of the “Work” activity transition probabilities in a pie chart 
where the width of the sectors is proportional to the transition probabilities from “Work” 
activity to another activity. Based on this pie chart, the selection of the activity that will 
replace the “Sleep” activity will be performed similarly to the roulette wheel selection 
method. In our example, the activities that are more likely to follow the “Work” activity 
(that is, those for which the transition probabilities have higher values) will have a higher 
chance of replacing the “Sleep” activity. The improvements this method brings over the 
previous one, is that mutated chromosomes will be more likely to have a higher fitness 
than the original chromosomes. 

 
Figure 7. Example of applying mutation with weighted selection. 

The progress rate specific to the application of each mutation operator 𝑜𝑜𝑜𝑜𝑚𝑚 is calcu-
lated based on the following rules. If the offspring resulted after applying the mutation 
operator 𝑜𝑜𝑝𝑝𝑚𝑚 on an individual dominates the individual, then the progress rate of the mu-
tation operator, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑚𝑚) is set to the value 1. When the individual dominates the 
offspring resulted after applying the mutation operator 𝑜𝑜𝑜𝑜𝑚𝑚 on the individual, or the off-
spring is not valid, then the progress rate value for the mutation operator is set to 0.5. If 
no dominance relation exists between individual and the offspring resulted after applying 
the mutation operator, 𝑜𝑜𝑜𝑜𝑚𝑚 on the individual, then: 

𝑝𝑝𝑝𝑝𝑜𝑜𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑜𝑜𝑜𝑜𝑚𝑚) = max �1 − 𝑘𝑘3∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

, 0.5�  (12) 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the current generation, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number of gener-
ations, and 𝑘𝑘3 is the velocity of the progress and is set in our experiments to 0.2 value. 

The average progress rates of applying each crossover and mutation operator are 
computed starting from the first generation until the current generation based on the rules 
described. In the first generation, each operator is assigned the same probability of selec-
tion which is 1/n where n represents the number of operators considered in the selection 
process. The average progress rate of a specific operator is defined as the ratio between 
the sum of progress starting from the first generation up to the current generation and the 
number of times the operator has been applied. The result is used to compute the crosso-
ver or operator selection probabilities. 
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Algorithm 1 shows the pseudocode for routine detection using the genetic algorithm 
with dynamic operators. 

Algorithm 1: GA for Routine Detection Using Dynamic Operators. 
Inputs: dataset—the historical dataset, maxGen—the number of generations 
Output: routine—activity sequence representing the routine of a person 
Comments: crossovers—the set of crossover operators; mutations—the set of mutation op-
erators; best_routines—the best routines identified during each generation; Opc—crosso-
ver operator; Opm—mutation operator 
1. Begin 
2.   Generate 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
3.   while maxGen is not exceeded 
4.          Select individual1 and individual2, using the tournament selection 
5.          foreach Opc in crossovers do 
6.             offspring = Opc(individual1, individual2) 
7.             Compute the average progress and update the selection probability for   
                  Opc 
8.          end for 
9.          Use the roulette wheel selection to choose the most appropriate Opc 
10.          Opc (individual1, individual2)  
11.                  Include the resulting offspring in the population 
12.          foreach individual in the population do 
13.               foreach Opm in mutations do 
14.                  Opm (individual) 
15.                  Compute the average progress and update the selection probabil 
                       ity of Opm 
16.               end foreach 
17.               Use the roulette wheel selection to choose the most appropriate Opm 
18.               Opm (individual) 
19.               Include the resulting offspring in the new population 
20.          end foreach 
21.          Keep in the new generation several the best individuals 
22.          Identify and store the current best individual in best_routines 
23.   end while 
24.   return the best routine out of best_routines 
25.  End 

The algorithm takes as inputs the dataset collected from sensors containing the activ-
ities performed by a person on each of the monitored days and the maximum number of 
generations and returns a person’s daily living routine. The algorithm will test all the 
crossover and mutation operators on every generation, and we will always advance with 
the generation of the operator with the highest progress rate. 

To incorporate time-related information (e.g., duration of the activity) into the de-
tected patterns of activities, we proposed an approach that measures the dispersion of the 
time values of the duration of an activity around the average value for each period of the 
day, namely for morning (between 6:01 a.m. and 12 p.m.), for afternoon (between 12:01 
p.m. and 18 p.m.), for evening (between 18:01 p.m. and 0:00 a.m.), and for night (between 
0:01 a.m. and 6:00 a.m.). To compute the lower and upper bounds of the interval corre-
sponding to the duration of the activity 𝑎𝑎𝑖𝑖 is carried out, the standard deviation is deter-
mined as: 
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𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖) = �∑ (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑎𝑎𝑖𝑖
𝑗𝑗�−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖))𝑛𝑛

𝑗𝑗=1

𝑛𝑛−1
  (13) 

where: 𝑛𝑛 is the number of days from the dataset in which the activity ai is performed, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑎𝑎𝑖𝑖

𝑗𝑗� is the duration of the activity 𝑎𝑎𝑖𝑖 in day 𝑗𝑗 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the average value 
of the durations of the activity 𝑎𝑎𝑖𝑖 in 𝑛𝑛 days. Based on the standard deviation the lower 
and upper bounds of the interval of the duration for the activity 𝑎𝑎𝑖𝑖 are computed as fol-
lows: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑖𝑖) = [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −  3 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖),𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 3 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖)] (14) 

4. Evaluation Results 
In our experiments, we have used the dataset from [16]. It contains data over three 

months linked to the ADLs performed by 10 older adults (ids 1 to 10) daily in their own 
homes. The data were acquired using a monitoring infrastructure based on wearable sen-
sors and Beacons technology. Each ADL features a start and end time and one of the fol-
lowing activity labels: sleeping, eating (i.e., breakfast, lunch, snack, dinner), personal hy-
giene, reading, spare time/TV, walking, and outside. Not all the activities are registered 
for each person. Some of them do not perform specific activities such as going outside, or 
walking is highly dependent on their health state. The monitored older adults who vol-
unteered to participate are aged between 70 and 85 years. All of them suffer from cardio-
vascular diseases. They live alone but have the support of their family. The ten apartments 
in which they live have similar plans and devices. They have the same number and types 
of devices that they use in their homes. 

Compared to the classification-based solutions where the number of persons in the 
dataset may influence the quality of the results obtained, in the case of our genetic solu-
tion, this is not the case. For each person, a different search space is created based on the 
daily activities’ length intervals and probabilities for activities transition. They are rather 
personal and driven by individual conditions, wishes, and needs. They are encoded into 
the chromosomes and used in the reproduction phases to guide and balance the explora-
tion and exploitation of the search space. No search information is being translated and 
used across the different persons’ individual search spaces. 

To analyze the characteristics of the dataset used in experiments, we conducted an 
exploratory analysis using statistical graphs. Figure 8 shows the distribution of the aver-
age durations of each ADL for each person in the dataset, while Figure 9 illustrates the 
frequency of appearance of each ADL. 

 
Figure 8. The average duration of each ADL per person. Different colors are used for different per-
sons: blue for id = 1, orange for id = 2, gray for id = 3, yellow for id = 4, lilac for id = 5, green for id = 
6, red for id = 7, pink for id = 8, fuchsia for id = 9, brown for id = 10. 
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Figure 9. The frequency of occurrence of each ADL per person. Different colors are used for different 
persons: blue for id = 1, orange for id = 2, gray for id = 3, yellow for id = 4, lilac for id = 5, green for 
id = 6, red for id = 7, pink id = 8, fuchsia for id = 9, brown for id = 10. 

The sleep activity has the longest average duration for all the persons in the dataset 
and the frequency of occurrence of breakfast, lunch, and dinner activities has a high degree 
of similarity for all the persons in the dataset. Higher differences in the frequency of oc-
currence are observed in the case of sleep, personal hygiene, or spare time/TV and reading 
activities. Moreover, there are persons with missing activities such as snacks, walking, 
reading, or outside. This is due either to the fact that the sensor did not record that activity, 
or because the person did not do that activity. 

The duration of activities, their frequency of appearance as well as the potential tran-
sitions among the activities influence the dimension of the search space: 

∏ 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖→𝐴𝐴𝐴𝐴𝐿𝐿𝑗𝑗
2

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝐴𝐴𝐴𝐴𝐿𝐿𝑗𝑗∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (∑ (∏ ∗ 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐴𝐴𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝐴𝐴∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ))  (15) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 represent the set of activity labels from the dataset, 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖→𝐴𝐴𝐴𝐴𝐿𝐿𝑗𝑗
2  the combina-

tions of transitions among two activities in the dataset, 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐴𝐴𝐴𝐴𝐴𝐴) is the frequency of 
appearance of an activity and 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 all combinations of activities with their duration. 

Figure 10 also shows the distribution of sleep activity duration for a person. As can 
be seen, there is a variety of durations for each activity which makes the search space for 
daily routines quite big and difficult to be processed in a reasonable time by deterministic 
algorithms requiring the use of heuristics. 

 
Figure 10. Distribution of sleep activity duration over the days. 

To assess the performance of our genetic algorithm for behavioral patterns and rou-
tines discovery, we have computed the accuracy of the generated solutions for all persons 
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monitored in our dataset. Table 1 illustrates the computed accuracies for each person 
which vary between 80% and 86% with an average accuracy of 82%. 

Table 1. Accuracy of routine detected by our genetic algorithm. 

Person Id 1 Id 2 Id 3 Id 4 Id 5 Id 6 Id 7 Id 8 Id 9 Id 10 
Accuracy 83% 86% 83% 80% 80% 86% 80% 81% 80% 81% 

Figure 11 illustrates the best-ranked routines generated by the genetic algorithm for 
the person with id 6 showing the frequent activities sequences and their duration. 

 

 
Figure 11. The best-ranked routines considering the fitness value for the person with id 6. 

The duration interval corresponding to each activity in each period of the day (i.e., 
morning, afternoon, evening, and night) for the first routine is presented in Table 2. 

Table 2. Duration intervals for the activities part of the first routine returned by the genetic algo-
rithm for patient with id 6. 

Activity of Daily Living Period of Day Duration Interval (min) 
Sleep night [486–490] 

Walking morning [22,27] 

Personal hygiene morning [25–27] 
evening [26–32] 

Reading morning [27–29] 
Breakfast morning [54–58] 

Outside 
morning [59–65] 
afternoon [13–17] 
evening [30–34] 

Lunch afternoon [49–53] 

Spare time/TV 
afternoon [71–75] 
afternoon [60–62] 
evening [104–110] 

Dinner evening [51–53] 
Snack afternoon [20–22] 

By analyzing the best routine returned by the genetic algorithm we can observe that 
the patient sleeps between 11 p.m. and 7 a.m. with an average sleep duration of 8 h, has 
breakfast between 8 and 10 a.m. with an average duration of 26 min, goes outside two 
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times per day, in the morning and in the evening with an average duration of 62 min in 
the morning and 47 min in a part of the afternoon and evening. 

To compare our results with previous solutions from the reviewed literature, we tried 
to identify similar approaches that address routine detection using only bio-inspired heu-
ristics. The closest we could find was the one proposed by Quaid et al. [27]; thus, we com-
pared it with their reported results. They proposed a reweighted genetic heuristics and 
classification algorithm for human behavior recognition from accelerometer signals. Table 
3 presents the accuracy metric value reported by the authors compared with the accuracy 
of our algorithm, which achieves slightly better results. 

Table 3. Routine detection comparative results. 

Refence Description Detection Accuracy 

[27] Reweighted genetic heuristics combined with 
classification 

85.4% 

Our solution Genetic heuristics with dynamic selection of 
operator and probability-based fitness 

80–86% 

5. Discussion 
To identify the impact of the control parameters on the performance of the genetic 

algorithm and to fine-tune their values we have performed sensitivity analysis. We have 
determined how the target variables reflecting the performance of our proposed solution 
(i.e., fitness value and execution time) are affected by the changes in input parameters 
such as population size (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and number of generations (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). The objec-
tive was to finetune them to the best variant so that the genetic algorithm determines the 
person’s daily routine with the greatest accuracy. The ranges in which the input parame-
ters are varied are [20,120] for number of generations and [20,70] for population size. 

Figures 12 and 13 show the evolution of the fitness value and execution time when the 
proposed genetic algorithm is used to detect the routine of a person.  

 
Figure 12. The average fitness variation when generations number is changed, and population size 
is constant. 

First, we maintained the population size at a constant value and varied the number 
of generations between 20 and 120. Then, we repeated this experiment for a population 
size varying between 20 and 70. For each considered configuration, 30 runs were made to 
compute the average values for fitness and execution time. As shown in Figure 12, with 
the increase in the population size, an improvement in the fitness value is achieved but 
also increases the execution time (see Figure 13). The trend is similar when the size of the 
population is maintained constant and the number of generations is increased (i.e., the 
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value of the fitness and the execution time increase). In the case of fitness evolution, at 
some point, the increase in the value of fitness stabilizes and does not change for many 
generations, while in the case of the execution time, the growth is proportional to the 
number of generations. 

 
Figure 13. The execution time variation when number of generations is changed, and population 
size is maintained constant. 

As we aim to identify a routine that reflects as faithfully as possible the frequent pat-
terns of activities that the person performs during the day, thus we focus on solutions 
with a fitness value as high as possible even if it involves a higher execution time. Table 4 
presents the configurations that have provided the best results in terms of fitness values 
for routine detection. The best average fitness value is obtained for a population size of 70 
and 110 generations with a minimum impact on the execution time which is kept below 
1.5 s. 

Table 4. The fitness function value sensitivity to the variation of the input parameters. 

Size of the  
Population 

Number of  
Generations 

Avg. Fitness Avg. Execution Time (s) 

20 110 0.85583 0.404229 
30 100 0.90717 0.497875 
40 80 0.94555 0.587858 
50 100 0.962 0.878382 
60 100 0.98761 1.200938 
70 110 0.99284 1.465077 

We have performed multiple regression studies to analyze how the size of the popu-
lation and the number of generations affect the value of the fitness in the GA approach. 
We investigated various regression coefficients, the ANOVA table, and the regression 
analysis table. For the correlation coefficient, multiple R takes values in the range [−1, 1] 
and indicates a linear relation strength between the independent and dependent variables. 
In the case of our algorithm, the multiple R-value is 0.92 showing a positive relation be-
tween the fitness value (dependent variable) and the population size and the number of 
generations (independent variables. The coefficient of determination, R square measures 
how much of the variation in the fitness value can be explained by the variation in 
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population size and number of generations. In our case, the R-square value of 0.85 indi-
cates that 85% of the variation in fitness value can be explained by the change in the pop-
ulation size and number of generations. The standard error measures the precision of our 
analysis model, and the lower the value is, the more precise predictions are provided. In 
our case, we obtained a standard error of 0.024, thus the regression model produces pre-
cise predictions. Finally, the observation represents the number of configurations of the 
parameters considered which in our case is the combination of the number of generations 
and the size of the population in our model. 

The analysis of variance, ANOVA table, (see Table 5) provides information about the 
variability level of our regression model reflected by several components. At the same 
time, Figure 14 shows details of the spread and distribution of the results achieved on how 
the control variables of population size and the number of generations influence the value 
of the fitness function. The residuals show the difference of the mean sample (i.e., positive 
when the value is greater and negative when the value is smaller). The degree of freedom, 
df, is associated with the variance sources, while the sum of squares SS provides infor-
mation about data dispersion, and how well the data fits into the regression model. As 
can be seen in our case the value of the residual SS is lower compared to the total SS, 
indicating that the model fits well the data. The mean squares parameter, MS, provides 
an estimate of the variance concerning the regression and is calculated as the ratio be-
tween the sum of squares and the degree of freedom. It is used to determine the F value 
which provides information about the fitness model’s importance in relation to the null 
hypothesis. Significance F shows if our solution with the two independent variables (that 
is, the population size and the number of generations) can be used to explain the variabil-
ity of the fitness value. Since in our case, the value of Significance F is lower than 0.05 the 
model is statistically significant. 

Table 5. ANOVA table. 

 df SS MS F Significance F 
Regression 2 0.238686198 0.119343 192.1951 1.52266 × 10−27 
Residual 63 0.039119699 0.000621   

Total 65 0.277805898    

 
Figure 14. Boxplot for data distribution of ANOVA analysis. 

The regression analysis from Table 6 provides more in-depth information on the in-
fluence of the size of the population and the number of generations. The coefficients are 
the least square estimates for the independent variables (i.e., the size of the population 
and the number of generations), the standard errors for coefficients are the standard errors 
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of the least squares estimates for the independent variables and the p-value is the value 
for hypothesis testing. 

Table 6. Regression analysis table. 

 Coefficients Standard Error p-Value 
Intercept 0.70711862 0.010992243 3.52× 10−59 

Size of population 0.00311164 0.000179602 1.19× 10−25 
Number of generations 0.00089019 9.69964× 10−5 3.19× 10−13 

The coefficients values reflect the mathematical relation between an independent var-
iable either the population size or the number of generations and the dependent variable, 
while the p-value indicates if the relation between an independent variable and the de-
pendent variable is statistically significant or not (i.e., if there is a correlation between an 
independent variable and the dependent variable). In the case of our algorithm, the coef-
ficient for the size of population is 0.003, while for the number of generations is 0.0008. 
These values mean for an increase in one unit in population size, the value of the fitness 
function will increase on average by 0.003, and for an increase in one unit of the number 
of generations, the value of the fitness function will increase on average by 0.0008. Since 
these values are small, we conclude that the size of the population and the number of 
generations have quite a small influence on the variability of the value of the fitness. How-
ever, of these two variables, the size of the population has a greater influence on fitness 
than the number of generations. Both the number of generations and the population size 
are statistically significant and influence the fitness variability since the p-values are lower 
than 0.05. 

6. Conclusions 
In this paper, we proposed a solution for identifying the frequent behavioral patterns 

part of the daily routines of a person by considering, as relevant features, the sequence in 
which the activities are performed as well as the time interval and the duration corre-
sponding to each activity in the sequence. Genetic algorithms are used to identify the se-
quence of activities that occur on the vast majority of monitored days, and a method based 
on the standard deviation is used to calculate the time interval and duration correspond-
ing to each activity in the sequence. 

To avoid the premature convergence of the genetic algorithm and to maintain a better 
balance between exploration and exploitation, a strategy based on the dynamic applica-
tion of crossover and mutation operators has been used. The selection of crossover and 
mutation operators that were applied in the dynamic selection strategy was made taking 
into consideration the encoding strategy of an individual that we used as well as the ad-
vantages that these operators offer as reported in the specialized literature. 

The approach has been tested on a dataset of ten patients with age between 75 and 
80 who suffer from cardiovascular diseases. For each person, a different search space was 
created based on the duration intervals of the daily activities and the transition probabil-
ities of the activities, on which the genetic algorithm was applied to extract the daily rou-
tine corresponding to that person. To determine how the performance of the genetic algo-
rithm is influenced by the variations of the control parameters, we have performed a sen-
sitive analysis. We have also compared our approach with other state-of-the-art ap-
proaches, to assess its performance in terms of the accuracy of the results. 

The obtained results demonstrate that our approach can provide good results even 
when working with smaller amounts of data, unlike existing classifier-based approaches 
that require large amounts of annotated data to achieve good results. 

In future work, we plan to implement a distributed version that runs several genetic 
algorithm instances in parallel, aggregates the best solution provided by each instance, 
and outputs the best solution out of this set. This may improve the accuracy of detecting 
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the routine of the person. Moreover, to better capture the behavior of a person in a certain 
context, we intend to encode in the individual representation contextual information as 
well as additional information regarding the location in which the activities are performed 
or the frequency of the activities. Finally, we will look into newer and promising metaheu-
ristics such as Whale or Harris hawks optimization algorithms that may improve the re-
sults of daily routine detection. 
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