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Abstract: In a human-robot collaborative disassembly line, multiple people and robots collaboratively
perform disassembly operations at each workstation. Due to dynamic factors, such as end-of-life
product quality and human capabilities, the line balancing problem for the human-robot collaborative
disassembly line is a dynamic optimisation problem. Therefore, this paper investigates this problem
in detail and commits to finding the evolutionary dynamic optimisation. First, a task-based dynamic
disassembly process model is proposed. The model can characterise all feasible task sequences
of disassembly operations and the dynamic characteristics of tasks affected by uncertain product
quality and human capabilities. Second, a multiobjective optimisation model and a feature-based
transfer learning-assisted evolutionary dynamic optimisation algorithm for the dynamic human-robot
collaborative disassembly line balancing problem are developed. Third, the proposed algorithm
uses the balanced distribution adaptation method to transfer the knowledge of the optimal solutions
between related problems in time series to track and respond to changes in the dynamic disassembly
environment. Then, it obtains the optimal solution sets in a time-varying environment in time.
Finally, based on a set of problem instances generated in this study, the proposed algorithm and
several competitors are compared and analysed in terms of performance indicators, such as the
mean inverted generational distance and the mean hypervolume, verifying the effectiveness of the
proposed algorithm on dynamic human-robot collaborative disassembly line balancing.

Keywords: dynamic disassembly line balancing; human-robot collaboration; disassembly process
model; evolutionary dynamic optimisation; transfer learning

1. Introduction

End-of-life (EOL) products have the dual attributes of environmental pollution and
resource regeneration. Improper disposal will harm the ecological environment, while
proper disposal can bring substantial economic benefits. The remanufacturing lifecycle of
EOL products includes disassembly, cleaning, inspection, repair, reassembly, and testing.
Disassembly is one of the most critical stages of the lifecycle, and it is also the basis for
the realisation of remanufacturing goals. The disassembly system gradually separates the
usable parts from EOL products following the predetermined objectives and following
various constraints, which is usually regarded as the reverse process of the assembly system.
Many researchers are currently conducting disassembly-related research based on the ideas
from many preliminary works of the past 50 years in the assembly field. The disassembly
system contains the same essential elements as the assembly system. However, due to
the uncontrolled quality of EOL products entering the industrial environment, some parts
of a product may be missing, damaged, or worn. Moreover, the supply of products and
the demand for parts may be time-varying. These factors will significantly increase the
uncertainty in the disassembly system compared to the assembly system [1].
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Since the 1990s, robot-based disassembly systems have received extensive attention
from the academic community, and researchers have carried out much work on automated
disassembly cells. However, these works are mainly oriented to the structured environment,
and they cannot deal with various uncertainties, which significantly limits their indus-
trial applications. With the development of information technologies, such as ubiquitous
perception, industrial robots, and artificial intelligence, autonomous disassembly systems
that can effectively tackle environmental uncertainties have gradually attracted attention
and made progress [2]. In disassembly systems, a disassembly line composed of multi-
ple workstations connected in sequence through a transmission module is an operation
mode that is suitable for remanufacturing enterprises to implement product disassembly.
Compared to the disassembly cell, it can guarantee higher productivity. Building the
autonomous disassembly system represented by the robotic disassembly line is a long-term
goal of disassembly research. Robots have significant advantages over humans in strength,
speed, repeatability, and stamina. However, due to the low flexibility of robots and their
limited cognitive capabilities, some complex and sophisticated tasks still require humans
to complete them [3]. Moreover, the dynamic structure of the robot is complex [4], and no
robot can handle all possible tasks. Human-robot collaboration can effectively utilise the
complementary advantages between robots and humans, and it will be an important mode
for product disassembly. Therefore, constructing a human-robot collaborative disassembly
line (HRDL) that can deal with various environmental uncertainties should be a feasible
direction in the present and future disassembly fields.

The disassembly line balancing problem (DLBP) is a crucial planning problem in the
disassembly line. It considers how to allocate a set of disassembly operations to the opera-
tors in the workstations to ensure that the constraints are not violated, while also optimising
various predetermined performance measures [5]. In the HRDL, multiple humans and
robots collaboratively perform operations at a workstation. The human uncertainty caused
by this mode and the inherent EOL product quality uncertainty result in DLBP being a
dynamic optimisation problem. Additionally, the uncertainty of product quality leads to
possible differences between batches. We define a batch as a disassembly environment,
with multiple different batches corresponding to multiple disassembly environments, con-
stituting a dynamic disassembly environment in terms of time sequence. To simplify the
problem, we assume that the product state remains constant in a single disassembly envi-
ronment. Therefore, this paper studies the dynamic human-robot collaborative disassembly
line balancing (D-HRDLB) problem so the constructed HRDL can track these uncertain
factors and calculate the optimal solutions in the new environment.

The literature lacks a study on the D-HRDLB problem, and the existing theories in
the disassembly field are not well applicable to the problem. In the DLBP literature, the
task precedence diagram (TPD) [6] and the transformed AND/OR graph (TAOG) [7] are
two widely used disassembly process models for modelling disassembly operations and
the precedence relationship between operations. Both models assume that the product
information extracted from the original CAD model is known and fixed. This assumption
is derived from and only applies to the assembly scenario. The disassembly scenario does
not hold because the product quality is uncertain. A disassembly operation is the division
of a subassembly into two subassemblies, representing a feasible cut-set on the connection
diagram of the product. A disassembly operation includes the disconnection tasks of all
edges in its cut-set and various auxiliary tasks. Generally, one disassembly operation
corresponds to multiple feasible task sequences. Existing disassembly process models, such
as the TPD and the TAOG, take the disassembly operation as the basic element, which
makes it difficult to characterise all feasible task sequences for disassembly operations.
Moreover, these disassembly process models are static or quasi-static models, and they
do not consider the time-varying nature of attributes, such as the feasibility of the task
sequence that is affected by the uncertain product quality. To bridge this gap, this study
proposes a dynamic disassembly process model based on tasks. This proposed model can
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characterise all feasible task sequences of disassembly operations and the time-varying
characteristics of tasks affected by uncertain product quality and human capabilities.

In the uncertain DLBP literature, most of the existing methods dealing with uncertainty
propose some nondeterministic models and algorithms based on statistical theories, such
as stochastic numbers [8], fuzzy numbers [9], and interval numbers [10], for some uncertain
parameters (e.g., the disassembly operation processing times). These methods need to
presuppose appropriate statistical functions or know some statistical information, which
makes them difficult to implement in industrial applications. Moreover, they cannot track
multisource uncertain factors, such as product quality and human capabilities in real time.
Therefore, it is difficult to respond to environmental changes. To fill this gap, this study
proposes a solution method for the D-HRDLB problem based on evolutionary dynamic
optimisation [11]. Evolutionary optimisation [12] is a metaheuristic method based on
population evolution that is suitable for solving multiobjective combinatorial optimisation
problems with irregular Pareto fronts, such as the DLBP. Evolutionary dynamic optimisation
is based on evolutionary optimisation by further adding fast convergence strategies, such
as generating a good initial population, so the optimal solution set changing with the
dynamic environment can be obtained in time. This dynamic optimisation method can
track and respond to various environmental uncertainties over time. At present, there is no
research on dynamic DLBPs using this method.

From the challenges described above, this paper examines the D-HRDLB problem in
detail. Humans and robots can perform one or more disassembly operations collaboratively
at any workstation of a disassembly line. To characterise the human-robot collaborative
disassembly mode and dynamic factors, such as uncertain product quality, a task-based dy-
namic disassembly process model is proposed. Based on the dynamic disassembly process
model, a multiobjective optimisation model of the D-HRDLB problem is developed. In the
D-HRDLB problem, there is a correlation between the problems in different environments.
Therefore, this study adopts the data distribution adaptation method [13] in feature-based
transfer learning to generate a good initial population in a new environment. Furthermore,
a transfer learning-assisted evolutionary dynamic optimisation algorithm is proposed to
solve the D-HRDLB problem. To verify the effectiveness of the proposed algorithm, a new
set of test instances for the D-HRDLB problem is generated, and the proposed algorithm is
compared with several competitors in terms of the mean inverted generational distance
(MIGD) and the mean hypervolume (MHV). Compared with the existing studies on DLBP,
the main differences and contributions of this study are fourfold.

(1) The D-HRDLB problem is introduced in this paper. This problem fully considers
the characteristics of human-robot collaboration, and it can track and respond to
the dynamic changes in the disassembly environment in real time. Compared with
the traditional DLBPs, this problem is more applicable to the actual production
environment in the remanufacturing enterprise.

(2) A task-based dynamic disassembly process model is proposed. This model takes dis-
assembly tasks as the basic elements instead of the traditional disassembly operations,
and it can characterise the time-varying characteristics of the task, such as the task
feasibility affected by the uncertain product quality.

(3) A mathematical model for the D-HRDLB problem with three objectives is developed
to optimise small-scale problem instances.

(4) A feature-based transfer-assisted evolutionary dynamic optimisation algorithm is
developed to obtain a dynamic Pareto-optimal solution set for the multiobjective
optimisation of the D-HRDLB problem. The algorithm can transfer the knowledge of
optimal solution sets between similar problems in different environments, thereby
tracking and responding to environmental changes and obtaining the dynamic optimal
solution set in a time-varying environment.

The importance of this research is mainly reflected in the following two aspects.
First, the human-robot cooperative disassembly line balance problem proposed by us is
a dynamic multiobjective optimisation problem considering the uncertainty of product
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quality, which is more in line with the actual disassembly environment. Second, the
optimisation algorithms used to solve the DLBP problem usually target a deterministic
disassembly environment. The algorithm proposed in this study can effectively deal with
the changing disassembly environment, and it has more practical significance.

The remainder of this paper is structured as follows. Section 2 discusses the related
work from two aspects: the disassembly process model and the DLBP under uncertainty.
Subsequently, Section 3 presents and defines the related concepts of the task-based dynamic
disassembly process model. The concept of the D-HRDLB problem is explained, and a
three-objective optimisation model for this problem is developed in Section 4. Section 5
delivers insights into the implementation details of the proposed algorithm, including the
basic algorithm framework, initial population generation, solution encoding and decoding,
and solution variation. Afterwards, experimental studies are provided in Section 6. Finally,
Section 7 concludes the study and highlights possible future research avenues.

2. Literature Review
2.1. Disassembly Process Model

To solve the D-HRDLB problem, a task-based dynamic disassembly process model that
can track the time-varying environment is needed. The EOL product modelling methods
in DLBP literature are derived from the assembly field, including the connection diagram
and its enhanced versions, such as the datum flow chain [14] and the relational model for
assemblies [15]. The connection diagram shows the relations between parts, but it does
not describe the space-blocking relations. However, the blocking relation is a necessary
input to generate or detect feasible disassembly operations. Therefore, product structure
models, such as the directional blocking graph, the nondirectional blocking graph [16],
and the interference matrix [17], have been proposed one after another. Reasoning on the
structure of an EOL product and the blocking relations between parts, all the detachable
subassemblies or parts, as well as all the corresponding feasible disassembly operations
and precedence relationships between operations, are obtained. Disassembly process
models, including TPDs, TAOGs, state diagrams [18], hierarchical trees [19], and Petri
nets [20], are generally used to describe this information. In addition, some complete
product information modelling methods have been proposed to define product structural
and behavioural schema that can reflect all production information [21]. Furthermore,
no disassembly process model considers product quality, human capabilities, and other
uncertain factors.

2.2. Disassembly Line Balancing under Uncertainty

Although there is a high level of environmental uncertainty in the DLBP, few studies
in the DLBP literature consider the uncertain environment. These studies follow the
idea of statistical modelling; establish nondeterministic models for specific uncertain
parameters, such as the operation processing time, demand, revenue, and workload at
the workstations; and use stochastic numbers [22–24], fuzzy numbers [25–27], interval
numbers [10], and other nondeterministic approaches to address uncertainty in DLBP
models. He et al. [28] studied a bi-objective stochastic disassembly line balancing problem
to minimise the line design cost and the cycle time, using only the knowledge of the mean,
standard deviation, and upper bound of stochastic task processing times. Based on the
characteristics of the DLBP, a method based on fuzzy set theory is developed to evaluate
the performance scores and determine the ranking of disassembly tasks [27]. Some of these
studies establish relationships between uncertain product quality and one of the above
uncertain parameters. For instance, Colledani, and Battaïa [29] studied DLBP considering
different product quality categories. It was assumed that the operation processing time
under different categories was a random variable obeying a normal distribution. Bentaha,
Voisin, and Marangė [30] studied the relation between the condition of a subassembly and
the disassembly revenue, and they used a stochastic approach to model revenue to solve
the nondeterministic disassembly sequence planning. Bentaha, Moalla, and Ouzrout [31]
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also established a link between product condition and revenue, creating a disassembly
line that can handle product quality uncertainty. Zhu et al. [32] established a connection
between operation processing time and product condition based on a probability-weighted
approach. These studies need to presuppose appropriate statistical functions or know
some statistical information. Their time-varying abilities are limited to updating statistics,
such as probability. Moreover, they are based on disassembly operations rather than
tasks, making it challenging to estimate uncertain parameters in real time. In addition,
Altekin and Akkan [33] and Mete et al. [34] studied the DLBP in the case of disassembly
operation failure and supply change, respectively, but they did not consider the uncertainty
of product quality. Although some existing research considers the uncertainty of product
quality, they usually transform the uncertain problem into a deterministic one, which
cannot effectively deal with the dynamic environment in actual disassembly. The D-HRDLB
problem proposed in this paper combines multiple disassembly environments into a set of
dynamic environments in time order, which is closer to the real-life disassembly scenario.

Research on the human-robot collaborative disassembly line has just started in recent
years. Xu et al. [35] studied the disassembly information model of human-robot collabo-
rative disassembly considering the safe strategy. Likewise, Luca et al. [36] improved the
safety of the operators working in a collaborative workspace. Natalia et al. [37] pointed
out that human-robot collaborative solutions allow operators to coexist and interact safely
with robots of various payloads. Additionally, Liu et al. [38] and Li et al. [39] studied the
influence of the distance between humans and robots and human fatigue on the opera-
tion processing time, belonging to the scope of deterministic disassembly planning. Most
human-robot collaborative assembly studies adopt timeline-based planning approaches to
cope with human uncertainty. However, even if based on timelines, most planners cannot
manage uncontrollable events and human factors in real time [3]. Therefore, this study
develops a solution method for the D-HRDLB problem based on evolutionary dynamic
optimisation to track environmental changes and obtain the dynamic optimal solution set
in real time.

Furthermore, DLBPs with multiple uncertainty factors often have multiple conflicting
optimisation objectives. Therefore, multiobjective optimisation algorithms are usually used
to solve DLBPs, and they have a wide range of applications. Ouadfel et al. [40] presented a
multiobjective weighted, multiview clustering method based on a gradient-based optimiser.
Additionally, Sharifi et al. [41] proposed the multiobjective moth swarm algorithm for the
first time to solve various multiobjective problems. To handle the multiobjective optimisa-
tion problems of truss-bar design, Premkumar et al. [42] introduced a new metaheuristic
multiobjective optimisation algorithm. Fox et al. [43] described an efficient connectivity-
based method for multiobjective optimisation applicable to the design of marine protected
area networks. Finally, Dhiman et al. [44] extended the Seagull Optimisation Algorithm to
deal with multiobjective problems.

3. Task-Based Dynamic Disassembly Process Model

In this section, a task-based dynamic disassembly process model is developed to
depict all the potential disassembly sequences of completely separating a product into its
components and consider the uncertainty of the disassembly process. Before discussing
the model, some related terminologies need to be defined. The basic elements of a product
include the components that make up the product and the connections between them.
These elements are generally represented using a connection diagram. A disassembly
operation is the detachment of a component or a subassembly, represented by a cut-set in
the corresponding connection diagram. A disassembly process is a sequence of disassembly
operations through which a product is separated into its components. Restricted by
topological constraints, geometric constraints, and technical constraints of the product,
these operations need to be performed in a specific order. These orderly operations in the
disassembly process are also known as disassembly sequences.
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In general, numerous possible disassembly sequences can be applied to disassemble
a product completely. The transformed AND/OR graph (TAOG) [7] is a frequently used
disassembly process model representing all these possible disassembly sequences and
precedence relationships among all operations in these sequences. In the TAOG repre-
sentation, nodes are divided into artificial and normal nodes. Artificial nodes represent
subassemblies and components, while normal nodes correspond to disassembly operations.
The precedence relationships between artificial nodes and normal nodes are represented
by the arcs connecting the nodes. Two types of hyperarcs are emphasised to differentiate
between AND relationships and OR relationships. An AND-type hyperarc is adjacent to
one normal node and two artificial nodes. A disassembly operation can split a product
or subassembly into two subassemblies. An OR-type hyperarc is adjacent to one artifi-
cial node and adjacent to one or more normal nodes, which indicates that one or more
follow-up disassembly operations can be selected, and only one of these operations should
be processed.

Using a TAOG as the input to the DLB problem implies that the selection of disassem-
bly sequences and the assignment of the selected disassembly sequence are considered
simultaneously. However, the TAOG representation ignores the fact that each disassembly
operation is complex, requiring multiple humans or robots to work collaboratively in
multiple steps. A disassembly operation must be subdivided into multiple elementary
tasks to facilitate execution. These tasks involve not only some disassembly tasks, such as
disconnecting all connections in the corresponding cut-set, but also some additional tasks,
such as component state detection, fixture establishment, robot moving, tool changing, and
product transferring. A proper disassembly process model should be able to represent tasks
rather than disassembly operations alone, and DLB problems should consider the assign-
ment of tasks rather than the assignment of disassembly operations alone. In addition, used
products may contain rusty, deformed, or missing components, together with the variable
ability and uncertain behaviour of humans, which determine that the disassembly process
is dynamic and uncertain. The TAOG representation cannot model these characteristics of
the disassembly process. For the reasons given above, we developed another disassembly
process model called a task-based dynamic TAOG (TD-TAOG). It is an extended version
of a TAOG containing all possible disassembly operations, and all possible tasks can also
consider the dynamics and the uncertainty of the disassembly process.

A TD-TAOG contains complete information about the dynamic disassembly process of
a product. TD-TAOG is divided into the operation layer and the task layer. The operation
layer corresponds to the TAOG of the product. For each disassembly operation (normal
node) on the operation layer, there is a task graph corresponding to it on the task layer. The
task graph contains all possible task sequences for completing the operation. Note that
a task sequence consists of multiple elementary tasks that jointly complete an operation.
Unlike a disassembly operation, which is always feasible, whether a task in a task sequence
is feasible depends on the current state of the component or subassembly to be disassembled.
For example, if the component to be disassembled is detected as damaged, tasks used in
the normal state of the component are not feasible, and they cannot be chosen to complete
the corresponding operation. The state of a component needs to be identified by sensor
feedback. In addition, some task processing times in TD-TAOG are time-varying due to the
influence of uncertain human abilities and behaviours. Clearly, the introduction of the task
graph for each operation gives the possibility of processing various dynamic operations
intuitively and practically, considering the uncertainty of the disassembly process.

TD-TAOG contains three types of nodes, artificial nodes, normal nodes, and unit
nodes, with two types of hyperarcs: AND-type hyperarcs and OR-type hyperarcs. Among
them, the definitions of artificial nodes, normal nodes, AND-type hyperarcs, and OR-type
hyperarcs are the same as the corresponding definitions in the TAOG. Unit nodes in the
task layer represent elementary tasks, including disassembly and supplementary tasks.
To distinguish these two types of hyperarcs, we use a slight curve as the mark of the
OR-type hyperarcs. A flashlight [45] is taken as an example of a product to better illustrate
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TD-TAOG. The flashlight is constructed with seven components and their connections, as
shown in Figure 1. Figure 1 contains the cross-section view and the connection diagram of
the flashlight. The TD-TAOG of the flashlight in the `th environment is given in Figure 2.
In Figure 2, subassemblies, disassembly operations, and tasks are modelled by artificial
nodes labelled Aas, normal nodes labelled Bbs, and unit nodes labelled Uus. The number
sequence next to each artificial node represents the related subassembly. For instance,
artificial node A6 represents the subassembly ‘5/7’, which consists of component five
(main housing), component six (spring), and component seven (battery). For simplicity, in
Figure 2, subassemblies with only one component are not shown.
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Furthermore, only the task graph of operation B9 is shown in Figure 2. The operation
layer has four AND-type hyperarcs and two OR-type hyperarcs. In addition, Figure 2
provides numerous possible disassembly sequences, such as the disassembly sequence
[B1, B8, B4, B7, B9, and B10]. Based on feedback from the sensors, the state of an artificial
node or a normal node can be determined in real time. In the example shown in Figure 2,
since component three (bulb) is detected as being lost at the starting time instant of the
`th environment, nodes A1, A4, B3, and B7 are determined to be in the missing state.
Component four (head housing) is detected as damaged; therefore, nodes A3, B4, and B6 are
determined to be in the damaged state. In the task graph of operation B9, Uini

9 and Uter
9 are

the initial and terminal nodes, respectively. These two dummy nodes (dummy tasks) are
introduced to obtain feasible task sequences. Each directed arc in the task graph represents
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an ordered task pair. We need to find a path consisting of feasible unit nodes (tasks) from
Uini

9 and Uter
9 as a feasible task sequence to complete B9. In Figure 2, since B9 is in the

normal state, unit nodes for the normal state, such as U2, U5, and U7, are all feasible.
In contrast, unit nodes such as U1, U4, U6, and U3 are infeasible for damaged or

missing states. Therefore, these unit nodes cannot be selected to complete B9. The feasibility
of each disassembly task is determined by the state of the disassembly operation to which
it belongs. Those feasible tasks in the damaged state can only be selected when the
disassembly operation they belong to is in the damaged state. Note that there may be
multiple feasible task sequences in each state of a disassembly operation. The processing
time of some tasks in the task graph is time-varying.

4. Dynamic Human-Robot Collaborative Disassembly Line Balancing

This section addresses a serial-paced HRDL and one of its dynamic line-balancing
problems. The HRDL is formed by multiple human-robot collaborative workstations
connected in a series by a conveyor system. Multiple types of used products in the same
batch can enter the HRDL for complete disassembly at the same time. The disassembly
operations are assigned to each workstation in sequence to disassemble these products
completely, according to their precedence relationships. The state of each component in
the same product is allowed to change in different batches. We assume that they can be
identified by sensor feedback before the disassembly of the product begins.

It is specified that multiple robots and humans can work at the same workstation.
They share the same workspace and resources. Considering the workspace and resource
constraints, there is an upper limit to the number of robots and humans that can be accom-
modated at each workstation. For each disassembly operation assigned to a workstation, at
least one feasible task sequence in its corresponding task graph can be used to complete it
at any time. Generally, humans have high flexibility, while robots are superior in strength
and accuracy and more suitable for performing unsafe tasks. In the HRDL, a task can only
be assigned to a robot or a human that meets its requirement.

The D-HRDLB problem is raised to balance the HRDL to work efficiently in different
environments. This problem is assumed to be stationary for each environment. It contains
four subproblems for each environment: (a) how to find the optimal disassembly sequence
for each product; (b) how to find the optimal task sequence for each selected disassembly
operation; (c) how to assign the selected tasks to the appropriate robots or humans; and
(d) how to allocate the robots and the humans that have been assigned tasks to an ordered
sequence of workstations. These four subproblems need to be optimised simultaneously
under a series of constraints, such as precedence and sequence constraints. In this study,
three optimisation objectives are considered: minimising the cycle time, minimising the
total number of robots and humans in use, and minimising the number of humans in use.
In addition, the number of workstations is fixed and predetermined.

Figure 3 shows an example of a D-HRDLB problem in the `th environment. In Figure 3,
an HRDL consists of three human-robot collaborative workstations. A used flashlight is
completely disassembled on this line. At the starting time instant of the `th environment,
the multimodel sensing system detects that component three (bulb) of the flashlight is
lost; thus, the HRDL changes from the (` − 1)th environment to the `th environment.
Since the selected task sequence for the disassembly operation—seven (B7) in the (` − 1)th
environment—is no longer feasible, for the `th environment, the planning system needs to
redetermine the feasible task sequences for B7 and recalculate the Pareto-optimal solutions.
One of the Pareto-optimal solutions in the `th environment is shown in the lower part of
Figure 3. The D-HRDLB problem in changing environments can be formally defined by a
dynamic multiobjective optimisation model. In the formulation, the feasibility of a task
and the set of operators used to perform a task are taken as dynamic factors leading to
changing environments.
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The indices, sets and parameters, and decision variables for modelling the D-HRDLB
problem are given in Table 1, Table 2, and Table 3, respectively. To simplify the model
expression, the TD-TAOGs corresponding to multiple types of products are merged into a
general TD-TAOG by default.
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min CT(`) (1)

min NO(`) = ∑
Ww∈W

∑
Oo∈R∪H

Lwo (2)

min NH(`) = ∑
Ww∈W

∑
Oo∈H

Lwo (3)

Formula (1)–(3) give the three objective functions for the model in any environment,
including minimising the cycle time, the total number of robots and humans being used,
and the number of humans being used. Notably, there is no need to consider workload
balancing between humans and robots in the human-robot collaborative disassembly
environment. Therefore, Formula (3) is an objective function.
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Table 1. The indices used in the model.

Notation Definition Notation Definition

a Index of artificial nodes b, b′ Index of normal nodes

u, u′, υ, υ′, σ, ς Index of unit nodes w, w′ Index of human-robot
collaborative workstations

o, o′ Index of operators t, t′ Index of time
` Index of environments

Table 2. The sets and parameters used in the model.

Notation Definition Notation Definition

W Set of workstations R Set of robots
H Set of humans T Set of time

I(`) Set of all selected unit nodes in the `th
environment TO Maximum number of operators at

each workstation
Ro(A(`)) Set of artificial root nodes S(Aa) Set of immediate successors of Aa

P(Aa) Set of immediate predecessors of Aa FS(Uu, `) Set of feasible immediate successors
of Uu in the `th environment

FP(Uu, `) Set of feasible immediate predecessors of Uu in
the `th environment F(R∪H, Uu, `) Set of feasible operators for Uu in the

`th environment
IP(Uu, I(`)) Set of immediate predecessors of Uu in I(`) IPa(Uu, I(`)) Set of all predecessors of Uu in I(`)
ISa(Uu, I(`)) Set of all successors of Uu in I(`) Ww The wth workstation
Oo The oth operator ψ A big positive number

TCuo(`) The time required for the oth operator to
process Uu in the `th environment |I(`)| The number of unit nodes in I(`)

comtu(`) Completion time of Uu in the `th environment

Table 3. The decision variables used in the model.

Notation Definition Notation Definition

Zb 1, if Bb is selected to perform; 0, otherwise Gbυ
1, if Uυ ∈ Ub(`) ∪

{
Ub

ini, Ub
ter

}
is selected

to complete Bb; 0, otherwise

Xuwot

1, if Uu is assigned to the oth operator (e.g., a
feasible robot or human for Uu) in the wth
workstation and completes its processing at
time t; 0, otherwise

Lwo
1, if the oth operator is used in the wth
workstation; 0, otherwise

Yuu’
1, if Uu is executed earlier than Uu’ by the same
operator; 0, otherwise

comtu(`) ≤ CT(`), ∀Uu ∈ I(`) (4)

Formula (4) defines the cycle time constraint.

∑
Bb∈S(Aa)

Zb = 1, ∀Aa ∈ Ro(A(`)) (5)

∑
Bb∈S(Aa)

Zb = ∑
Bb′∈P(Aa)

Zb′ , ∀Aa ∈ A(`)− Ro(A(`)) (6)

Zb � Gbυ = 1, ∀Bb ∈ B(`) and ∀Uυ ∈ {Ub
ini, Ub

ter} (7)

Zb � ( ∑
Uυ∈FS(Ub

ini ,`)

Gbυ) =Zb � ( ∑
Uυ′∈FP(Ub

ter ,`)

Gbυ′) = 1, ∀Bb ∈ B(`) (8)

Gbu · (1− ∑
Uσ∈FS(Uu ,`)

Gbσ) = Gbu · (1− ∑
Uς∈FP(Uu ,`)

Gbς) = 0, ∀Bb ∈ B(`) and ∀Uu ∈ Ub(`) (9)
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∑
Ww∈W

∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

Xuwot = Gbu, ∀Bb ∈ B(`) and ∀Uu ∈ Ub(`) (10)

Formulae (5) and (6) ensure that for each product, only one disassembly sequence can
be selected from the operation layer of its TD-TAOG for the complete disassembly of the
product. Formulae (7)–(9) guarantee that for each operation in the disassembly sequence,
only one feasible task sequence can be chosen from the task layer of the TD-TAOG to
complete the operation. Formula (10) ensures that a selected task can only be assigned to
one of the feasible operators at one of the workstations and finished at a precise time.

Zb · Gbu · Gbu′ · ( ∑
Ww∈W

∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

w · Xuwot − ∑
Ww′∈W

∑
Oo′∈F(R∪H,Uu′ ,`)

∑
t′∈T

w′ · Xu′w′o′t′) = 0,

∀Bb ∈ B(`) and ∀Uu, Uu′ ∈ Ub(`)
(11)

Formula (11) checks the integrity constraints of the selected operations. In other words,
all selected tasks for completing the same operation must be assigned to the same workstation.

Zb · Zb′ · Gbu · Gb′u′ · ( ∑
Ww∈W

∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

w · Xuwot − ∑
Ww′∈W

∑
Oo′∈F(R∪H,Uu′ ,`)

∑
t′∈T

w′ · Xu′w′o′t′) ≤ 0,

∀Aa ∈ A(`)− Ro(A(`)) and ∀Bb ∈ P(Aa) and ∀Bb′ ∈ S(Aa) and ∀Uu ∈ Ub(`) and ∀Uu′ ∈ Ub′(`)
(12)

Formula (12) ensures that the assignment of the selected tasks cannot violate the
precedence constraints between tasks.

comtu(`)− comtu′(`)
+ψ · (1− ∑

Oo∈F(R∪H,Uu ,`)
∑
t∈T

Xuwot) + ψ · (1− ∑
Oo∈F(R∪H,Uu′ ,`)

∑
t∈T

Xu′wot) ≥ ∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

Xuwot · TCuo(`),

∀Uu ∈ I(`) and Uu′ ∈ IP(Uu, I(`)) and ∀Ww ∈W

(13)

comtu(`)− comtu′(`) + ψ · (1− Xuwot) + ψ · (1− Xu′w′t′) + ψ · (1−Yu′u) ≥ Xuwot · TCuo(`),
∀Uu ∈ I(`) and ∀Uu′ ∈ I(`)\{IPa(Uu, I(`)) ∪ ISa(Uu, I(`))} and ∀Ww ∈W and ∀t ∈ T
and ∀Oo ∈ F(R∪H, Uu, `) and ∀Oo′ ∈ F(R∪H, Uu′ , `)

(14)

Formulas (13) and (14) control the sequence-dependent completion time of each
selected task. For any pair of tasks with an immediate precedence constraint on the
same workstation, Formula (13) becomes active. For a pair of selected tasks that have
no precedence constraint, but are assigned to the same operator at the same workstation,
Formula (14) becomes active.

I(`) = {Uu|Bb ∈ B(`) and Uu ∈ Ub(`) and Zb = Gbu = 1} (15)

comtu(`) = ∑
Ww∈W

∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

t · Xuwot, ∀Uu ∈ I(`) (16)

comtu(`)− ∑
Ww∈W

∑
Oo∈F(R∪H,Uu ,`)

∑
t∈T

Xuwot · TCuo(`) ≥ 0, ∀Uu ∈ I(`) (17)

TCuo(`) > 0, ∀Uu ∈ U(`) and ∀Oo ∈ F(R∪H, Uu, `) (18)

∑
Uu∈I(`)

Xuwot ≤ |I(`)| · Lwo, ∀Ww ∈W and ∀Oo ∈ R∪H and ∀t ∈ T (19)

1 ≤ ∑
Oo∈R∪H

Lwo ≤ TO, ∀Ww ∈W (20)

∑
Ww∈W

Lwo ≤ 1, ∀Oo ∈ R∪H (21)

FS(Ub
ini, `), FP(Ub

ter, `), FS(Uu, `), FP(Uu, `), F(R∪H, Uu, `) 6= ∅,
∀Bb ∈ B(`) and ∀Uu ∈ Ub(`) ∩ I(`) (22)
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Zb, Gbυ, Xuwot, Lwo, Yuu′ , REuor ∈ {0, 1} (23)

Formula (15) defines the set of all selected tasks, and Formula (16) defines the com-
pletion time of each selected task. Formulae (17) and (18) define the value ranges of task
completion time and processing time, respectively. Formula (19) ensures that the values
of Xuwot and Lwo remain consistent. Formula (20) states that the number of operators
permitted to allocate to a workstation is between 1 and TO. Formula (21) specifies that each
selected operator can only be allocated one workstation. Formula (22) ensures that at least
one feasible solution exists in the model. Finally, Formula (23) defines the value range of
each decision variable.

5. Transfer Learning-Assisted Dynamic Evolutionary Algorithm

Jiang et al. [46] proposed a transfer learning-based dynamic multiobjective optimisa-
tion algorithm. This approach exploits the transfer learning technique as a tool to generate
an effective initial population pool by reusing past experience to speed up the evolutionary
process. In the D-HRDLB problem, the feasible region and the POS in the decision space and
the POF in the objective space vary with changing environments. To address these issues,
we propose a feature-based transfer learning-assisted dynamic evolutionary algorithm
called B-DMOEA. The target of B-DMOEA is to generate an excellent initial population in a
new environment by reusing historical POSs, thereby accelerating the evolutionary process
to track the movement of the dynamic POS. If the POSs and the POFs of the D-HRDLB
problem under different environments are correlated, the good solutions in the historical
POSs will bring significant benefits to tracking the POS in the new environment. Figure 4
shows the logic flow chart for B-DMOEA. Algorithm 1 shows the procedure of B-DMOEA,
in which an initial population is constructed randomly. Then, the POS and the POF of the
D-HRDLB problem under the initial environment (` = 0) are determined by using a multiob-
jective evolutionary algorithm (MOEA). If a new environment is detected, the environment
index ` is updated as ` = ` + 1. Then, an initial population generation method (B-IPG)
based on transfer learning with balanced distribution adaptation (BDA) [13] is utilised to
generate an excellent initial population that can be used by the MOEA to search for the
POF in the new environment. In the following sections, each component of B-DMOEA
will be presented in detail. Note that any population-based MOEA can be embedded
in B-DMOEA.
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Algorithm 1 B-DMOEA

Input: D-HRDLB problem in the `th environment (FC`, ` = 0, 1 . . . ); a MOEA; kernel function κ.
Output: The POFs of the D-HRDLB problem.
1: Initialise the environment index ` = 0;
2: Initialise randomly a population init_pop with population size N;
3: Output POF0 ←MOEA(init_pop, FC0);
4: If (the environment has changed) Then
5: ` = ` + 1;
6: init_pop← B-IPG(POF0, . . . , POF`−1, FC0, . . . , FC`, κ);
7: Output POF` ←MOEA(init_pop, FC`);
8: End If
9: If (the stopping criterion is satisfied) Then Stop; Else Go to Line 4;

5.1. Transfer Learning-Assisted Initial Population Generation

We take the objective space in the current environment as the target domain, and then
we select the objective space in the historical environments with the slightest discrepancy
in the marginal and conditional distributions from the target domain as the source domain.
Our idea is to use BDA to find an optimal feature transformation so the marginal and
conditional distribution discrepancies between domains are as small as possible in the latent
space obtained by the transformation. Furthermore, each nondominated solution in the
POF of the source domain is re-represented in the latent space. Therefore, the corresponding
solution found in the target domain can be as close to it as possible after being transferred
to the latent space. These solutions are used to construct the initial population.

The diversity of samples in the source and target domains is important to reduce the
probability of negative transfer and improve the quality of the initial population. Therefore,
unlike traditional random sampling, we perform sample presearch based on MOEAs to
increase the diversity of the samples. The sample distribution can represent the actual
distribution of domains as much as possible [47]. BDA is adopted to learn the feature
transformation once the domain sampling is completed, inspired by Jiang et al. [46]. In the
D-HRDLB problem, the source and target domains have different marginal and conditional
distributions, but the distributions between the domains are correlated. In addition, the
marginal and conditional distributions are not equally important for knowledge transfer.
Our goal is to find an optimal feature transformation that makes the difference in the
interdomain weighted distribution based on the marginal and conditional distributions
as small as possible. A nonparametric distance estimation method called maximum mean
discrepancy (MMD) differentiates distributions in the reproducing kernel Hilbert space
(RKHS). The weighted distribution discrepancy based on MMD is defined as follows.

MMD(Ds, Dt)
.
= (1− µ) ·

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m ∑
xi∈Ds

φ(xi)− 1
n ∑

xj∈Dt

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

H

+ µ ·
1
∑

c=0

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

mc ∑
xi∈Dc

s

φ(xi)− 1
nc ∑

xj∈Dc
t

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

H

(24)

where φ(.) : D → H represents the mapping from the objective space (D) to the RKHS (H);
m and n represent the number of samples in the sample sets of the source domain (Ds =
{x1, . . . , xm}) and the target domain (Dt = {x1, . . . , xn}), respectively; c ∈ {0, 1} represents
the category of solutions, where class 0 and class 1 represent promising solutions and
wrong solutions, respectively; Dc

s is the sample set belonging to class c in Ds; Dc
t is the

sample set belonging to class c in Dt; mc and nc denote the number of samples in Dc
s and

Dc
t , respectively; and µ ∈ [0, 1] denotes a balance factor that adjusts the importance of the

marginal and conditional distributions. In Formula (24), the first and second terms represent
the marginal distribution discrepancy and the conditional distribution discrepancy between
the domains, respectively.
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By further taking advantage of the kernel method and matrix transformation,
Formula (24) can be rewritten as:

MMD(Ds, Dt)
.
= tr

(
WTK

(
(1− µ)M0 + µ

1

∑
c=0

Mc

)
KTW

)
(25)

where tr(.) refers to the matrix trace; W denotes the transformation matrix; K = φ(X)T

φ(X) ∈ R(m+n)×(m+n) represents the kernel matrix; X denotes the data matrix composed
of source and the target domain samples; and M0 and Mc are MMD matrices, and their
definitions can be found in Wang et al. [13].

Based on Formula (25), finding the optimal feature transformation can be formalised
as the following optimisation problem:

arg min
W

MMD(Ds, Dt) + λ · tr(WTW)

s.t. WTKHKTW = I, 0 ≤ µ ≤ 1
(26)

In the optimisation problem (26), the second term of the objective function is a regulari-
sation term. The first constraint limits the scatter matrix to maintain the data characteristics
of the source and the target domain sample sets. H is the centring matrix, and I is the
identity matrix.

Problem (26) can be solved by generalised eigenvalue decomposition, and the obtained
optimal transformation matrix W is composed of the first d smallest eigenvectors of the
result matrix R. R is given by Formula (27).

R = (K

(
(1− µ)M0 + µ

1

∑
c=0

Mc

)
KT + λ · I)−1KHKT (27)

The details of the feature transformation learning are shown in Algorithm 2.

Algorithm 2 K-BDA

Input: Source and target sample set Ds and Dt; kernel function κ.
Output: Feature transformation matrix W.
1: Obtain the class labels of the sampled data in Ds and Dt by using the hierarchical Pareto
nondominated sorting method;
2: Construct K, M0, Mc, H, and I;
3: Build W by using the d smallest eigenvectors of R;
4: return W;

Furthermore, we use the knowledge contained in the POF of the source domain to find
some solutions expected to perform well in the target domain in the latent space, which
is used to construct the initial population of the subsequent evolutionary algorithm. The
process of knowledge transfer is as follows: first, the mapping set in the latent space corre-
sponding to the POF of the source domain is calculated. A single-objective evolutionary
algorithm is used to find a solution in the target domain for each mapping solution in the
mapping set so that it is closest to the mapping solution in the latent space. Next, the initial
population is constructed based on the solutions found and the target domain sample set
Dt. The details of the initial population generation are shown in Algorithm 3.

Algorithm 3 differs from Jiang et al. [46] in two aspects. First, the D-HRDLB problem
is a combinatorial optimisation problem with an irregular POF, and the quality of the
sample set has a significant impact on subsequent transfer learning. Therefore, different
from the latter random sampling, an MOEA-based sampling approach is adopted in our
study. Second, the latter does not consider the influence of the conditional distribution of
the samples on transfer learning. When the environmental change is small and the source
and target domain sample sets are relatively similar, the conditional distribution is more
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critical for transfer learning. Therefore, this study considers the marginal and conditional
distributions in the sample set simultaneously.

Algorithm 3 B-IPG

Input: The historical POFs of D-HRDLB problem POF0 . . . , POF`−1; D-HRDLB problem FC0 . . . ,
FC`; kernel function κ.
Output: An initial population init_pop in the `th environment (` = 1, 2 . . . ).
1: Presearch to obtain a sample set D(`) of the objective space in the `th environment;
2: Load the sample sets Dh = {D(0) . . . , D(`−1)} of all historical objective spaces;
3: Select a sample set D(`*) ∈ Dh with the smallest MMD from D(`);
4: Ds ← D(`*); Dt ← D(`); Dh ← Dh∪{D(`)};
5: W← K-BDA(Ds, Dt, κ);
6: Obtain the set of the mapped samples (M) of POF`* in the latent space by using W and κ;
7: For (m ∈M) Do
8: Compute such a solution x in the objective space in the `th environment, which is the closest
to m in the latent space;
9: init_pop← init_pop∪{x};
10: End For
11: Randomly pick the solutions in D(`) to fill init_pop;
12: return init_pop;

5.2. Solution for the D-HRDLB Problem
5.2.1. Solution Encoding and Decoding

To better adapt to the various existing MOEAs, a real number-based encoding scheme
is used to encode solutions to the D-HRDLB problem. The encoding scheme is shown in
Figure 5, and the coding sequence in Figure 5 contains five parts. The first part is used
to select a feasible disassembly tree for each product at the operation layer of TD-TAOG,
with a length of |B(`)|. In the first part, α(Bb) refers to the probabilistic priority of each
disassembly operation Bb (normal node) to be performed, and its value is set to a real
number in the range [0, 1]. The selection process of operations for each product based on
the first part (the decoding process) is as follows: for each product, the algorithm traverses
all normal nodes and artificial nodes from the artificial root node in the operation layer of
its TD-TAOG. For each selected artificial node, the algorithm receives α(Bb) of each normal
successor Bb from the first part and selects the normal successor with the largest α and all
its artificial successors. This process is iterated towards the leaf nodes to obtain all feasible
disassembly trees for all products. Example 1 in Figure 5 shows the feasible disassembly
tree for one of the products.

The second part of the coding sequence is used to select a feasible task sequence for
each selected disassembly operation Bb (normal node) at the task layer of TD-TAOG. The
length of the second part is |U(`)|, where β(Uu) represents the probabilistic priority of
the corresponding task Uu being selected, and its value is set to an actual number in the
range [0, 1]. The task selection process based on the second part is as follows: for each
selected disassembly operation, the algorithm traverses all feasible unit nodes in the current
environment from the initial node in the corresponding task graph. For each feasible unit
node selected, the algorithm obtains β(Uu) of each succeeding feasible unit node Uu from
the second part and selects the feasible unit node with the largest β. This process is iterated
towards the terminal nodes to obtain feasible task sequences for all selected disassembly
operations. Example 2 in Figure 5 shows the feasible task sequence [U2, U5, U7] required to
complete the selected disassembly operation B9.

The third part of the coding sequence determines the correspondence between worksta-
tions and operators, i.e., if and only if bγ(Oo)·|W|c = O, where γ(Oo) refers to a real number in
the range [0, 1]. The length of the third part is |R| + |H|. For each idle operator not assigned
to the workstation, its corresponding γ in the third part is set to 1. In example 3 in Figure 5, the
third part shows that O1, O4, O7, and O9 should be assigned to workstation W1.
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The fourth part of the coding sequence determines the correspondence between the
selected tasks and operators. Its length is |U(`)|, and ε(Uu) is a real number in the
range between [0, 1). If task Uu is selected, it will be assigned to the operator with index
bε(Uu)·(|R| + |H|)c to perform, and the operator must be assigned to a workstation. In
example 4 in Figure 5, the fourth part shows that U23, U40, and U59 should be assigned to
the ninth operator (robot 9) to perform.

The last part of the coding sequence determines the probabilistic priority of tasks that
are performed by the same operator and have no precedence constraint between them.
The length of the last part is |U(`)|. η(Uu) represents the probabilistic priority of the
corresponding task Uu, and its value is set to a real number in the range [0, 1]. In example 5
in Figure 5, U23, U40, and U59 are assigned to robot 9 to perform, and there is no precedence
constraint between them. Since η(U23) > η(U40) > η(U59), robot 9 will perform U23 first,
then U40, and finally U59.

5.2.2. Solution Initialisation and Variation

Due to the real number-based encoding scheme, the solution initialisation can start
from the random sampling of each element of the coding sequence in its corresponding
range. The crossover and mutation operators also use the classic simulated binary crossover
(SBX) and polynomial mutation (PM) [48], respectively. However, the obtained solutions
are likely to be infeasible due to the close connection between the various parts of the
coding sequence and multiple constraints, such as precedence constraints, in the D-HRDLB
problem. Therefore, solution initialisation and variation need to follow some rules and
perform some repair operations to ensure the feasibility of solutions.

(1) The values α of all succeeding normal nodes of each artificial node in a TD-TAOG are
not equal.

(2) The values β of all succeeding unit nodes in the same state of each initial node or unit
node are not equal.
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(3) For any disassembly operation, at least one feasible task sequence can complete it in
any state.

(4) The range between the number of operators assigned to any workstation is [1, TO].
(5) Each selected task can only be assigned to one operator in its feasible operation.
(6) Operators needed to perform tasks must be assigned to workstations.
(7) All selected tasks belonging to the same disassembly operation should be performed

in the same workstation, and the operators performing these tasks should be assigned
to the same workstation.

(8) For any two selected tasks Uu and Uu ′ , if the disassembly operation to which Uu
belongs is the predecessor of the disassembly operation to which Uu ′ belongs, the op-
erator performing Uu is either at the same workstation as the operator performing Uu’
or at the previous workstation of the workstation where the operator who performs
Uu ′ is located.

(9) The values η of the tasks performed by the same operator without precedence con-
straint are not equal.

6. Computational Experiments
6.1. Experimental Settings

The TD-TAOG and the D-HRDLB problem are studied for the first time in this paper,
so it is necessary to generate new problem instances for algorithm comparison. By adding
a task graph for each normal node in the TAOGs of six realistic EOL products from the
literature, six new TD-TAOGs are generated. They are named TD-TAOG 1 [7], TD-TAOG
2 [49], TD-TAOG 3 [45], TD-TAOG 4 [50], TD-TAOG 5 [51], and TD-TAOG 6 [51]. These six
products are disassembled on a human-robot collaborative disassembly line. The number
of workstations is set to three, and the number of optional robots and humans is set to 24
and 10, respectively. The range of the number of robots and humans that can be allocated
in each workstation is [1, 4] and [1, 3], respectively. The processing times of tasks by robots
and humans are randomly generated in [0.7·tub, 1.3·tub] and [0.4·tub, 0.6·tub], respectively,
where tub is the referenced task processing time.

In this section, we build dynamic disassembly environments based on the first uncer-
tainty, which is the uncertain product quality. Specifically, uncertain product quality may
change the states of some disassembly operations, which may cause the corresponding
task sequences to be infeasible. Therefore, it is necessary to reselect feasible task sequences
for these operations. Table 4 describes this dynamic factor. In Table 4, the disassembly
operations that may be in a damaged or missing state in each TD-TAOG are given. For
example, in the first environment (` = 0), disassembly operation nine in TD-TAOG 1 is
damaged, while operations 20 and 21 are missing, and the remaining operations are in a
normal state. In the second environment (` = 1), operation nine in TD-TAOG 1 is missing,
while operations 21 and 23 are damaged, and the rest of the operations are normal. We set
up eight different environments (` = 0, . . . , 7) for each D-HRDLB problem instance. The
disassembly operations in a damaged or missing state in each environment are randomly
determined based on Table 4. A set of D-HRDLB problem instances, including small-scale
and large-scale instances, are generated based on the above settings. In the set, 15 small-
scale instances are composed of any two of the six TD-TAOGs, and 24 large-scale instances
are composed of any three to four TD-TAOGs. The details of the 39 instances are shown
in Table 5.

The proposed B-DMOEA is an evolutionary dynamic optimisation algorithm that is
assisted by feature-based transfer learning. In fact, any population-based metaheuristic,
including evolutionary approaches, such as genetic algorithms and swarm intelligence-
based methods (including particle swarm optimisation algorithms), can be embedded in
the B-DMOEA. However, this study mainly focuses on the design of the evolutionary
dynamic optimisation method. Therefore, three representative MOEAs, including NSGA-
II [48], RVEA-iGNG [52], and IBEA [53], are selected, leading the evolution via the Pareto
criterion, decomposition-based criterion, and indicator-based criterion, respectively. These
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three MOEAs are embedded in the Tr-DMOEA proposed by Jiang et al. [46] and our B-
DMOEA to analyse the performance difference between B-DMOEA and Tr-DMOEA in
solving the D-HRDLB problem. The three algorithms embedded in Tr-DMOEA are called
Tr-NSGA-II, Tr-REVA-i, and Tr-IBEA, respectively, and the three algorithms embedded
in B-DMOEA are called B-NSGA-II, B-REVA-i, and B-IBEA, respectively. It should be
noted that few evolutionary dynamic optimisation algorithms are assisted by feature-based
transfer learning, such as Tr-DMOEA and B-DMOEA. Therefore, Tr-DMOEA is chosen as
the competitor of B-DMOEA in this study.

Table 4. Disassembly operations that may be in the damaged or missing state.

Models Uncertain Disassembly Operations

TD-TAOG 1 9
TD-TAOG 2 20, 21, 22, 23
TD-TAOG 3 6, 11
TD-TAOG 4 7, 11
TD-TAOG 5 9, 10, 11
TD-TAOG 6 6, 7, 17, 18, 19, 30

Table 5. Details of the 39 instances.

Problem Scale Products Tasks Problem Scale Products Tasks

S1 Small 1, 2 241 L6 Large 1, 3, 5 375
S2 Small 1, 3 217 L7 Large 1, 3, 6 435
S3 Small 1, 4 164 L8 Large 1, 4, 5 322
S4 Small 1, 5 232 L9 Large 1, 4, 6 382
S5 Small 1, 6 292 L10 Large 1, 5, 6 450
S6 Small 2, 3 310 L11 Large 2, 3, 4 400
S7 Small 2, 4 257 L12 Large 2, 3, 5 468
S8 Small 2, 5 325 L13 Large 2, 3, 6 528
S9 Small 2, 6 385 L14 Large 2, 4, 5 415
S10 Small 3, 4 233 L15 Large 2, 4, 6 475
S11 Small 3, 5 301 L16 Large 2, 5, 6 543
S12 Small 3, 6 361 L17 Large 3, 4, 5 391
S13 Small 4, 5 248 L18 Large 3, 4, 6 451
S14 Small 4, 6 308 L19 Large 3, 5, 6 519
S15 Small 5, 6 376 L20 Large 4, 5, 6 466
L1 Large 1, 2, 3 384 L21 Large 1, 2, 3, 4 474
L2 Large 1, 2, 4 331 L22 Large 1, 2, 3, 5 542
L3 Large 1, 2, 5 399 L23 Large 1, 2, 4, 5 489
L4 Large 1, 2, 6 459 L24 Large 1, 2, 4, 6 549
L5 Large 1, 3, 4 307

Our previous work shows that the POFs of combinatorial optimisation problems, such
as the D-HRDLB problem, are generally irregular [5]. Traditional decomposition-based
evolutionary algorithms, such as MOEA/D [54], assume that the distribution of reference
vectors can be predefined. However, the distribution of reference vectors may not match
the irregular POFs, resulting in wasted vectors that have no reasonable solutions nearby
and bad vectors that may bias the search direction. Therefore, we choose the adaptive
reference vector-guided RVEA-iGNG instead of MOEA/D as a representative algorithm
for decomposition-based MOEAs. In addition, the fine performance of NSGA-II and IBEA
in solving DLBPs has been proven by Fang et al. [5]. Consequently, choosing these three
MOEAs can strengthen the confidence level of the experimental results.

In this paper, MIGD and MHV are used to quantify the performance of B-DMOEA.
They are variants of IGD [55] and HV [53] for dynamic multiobjective optimisation algo-
rithms. MIGD is defined as the average value of the IGD values in all environments [46].
MHV is defined as the average value of the HV values in all environments. Note that the
exact Pareto font of the D-HRDLB problem is unknown. Therefore, we use a collection of
all the solutions, which we obtained by executing all the runs for all the algorithms and
picking the nondominated solutions from the collection as the ideal solution set to obtain
the approximate Pareto front. We normalise the solution set obtained by each algorithm
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with the approximate Pareto front and calculate the corresponding MIGD and MHV based
on these normalised values. The reference point is set to 1.1 times the nadir point of the
approximate Pareto front.

For each problem instance, each algorithm is executed with ten independent runs to
obtain the mean and standard deviation values of each metric that evaluates the algorithm.
The size of the population in all the algorithms is set to 150. In each environment, the
presearch, single-objective search, and multiobjective search are repeated for 3, 3, and
30 generations, respectively. The kernel function in Tr-DMOEA and B-DMOEA selects
the linear kernel function, while the dimensionality is set to 100, and the weight λ of the
regularisation term is set to 0.1. Other parameters are set according to the suggestions
given by the developers.

6.2. Experimental Results and Discussion
6.2.1. Parameter Sensitivity

The value of µ in the B-DMOEA determines the importance of the marginal and con-
ditional distributions in the knowledge transfer. In this section, we analyse the relationship
between µ and problem instances to guide the setting of the optimal value of µ. We select
three problem instances of different scales and analyse the MIGD and MHV of B-NSGA-II,
B-REVA-i and the B-IBEA on these three problem instances when µ takes different values
(µ ∈ {0, 0.1, . . . , 1.0}). The experimental results are shown in Figure 6.
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Figure 6 shows that when µ = 0, that is, when only the marginal distributions are
considered, the three algorithms cannot obtain the optimal MIGD and MHV values on
the three problem instances, indicating the importance of considering both marginal and
conditional distributions in our B-DMOEA. Moreover, Figure 6 shows that the optimal µ
varies on different problem instances. For example, in Figure 6b, when µ = 0.5, B-NSGA-II
can obtain the optimal MHV on both problem instances S2 and L6, which shows that
marginal and conditional distributions contribute equally to the discrepancy. In contrast,
when µ = 0.3, B-NSGA-II can obtain the optimal MHV on the problem instance L21, which
means the marginal distributions contribute more to the discrepancy than the conditional
distributions, and the performance of transfer learning depends more on the marginal
distributions. The observations indicate the importance of balancing the marginal and
conditional distributions based on the characteristics of the problem instances. In the other
subfigures in Figure 6, the observations are similar. Therefore, B-DMOEA is more likely
to achieve a better performance than Tr-DMOEA. Note that Figure 6 indicates that the
values of µ need to be adjusted for problem instances. However, the experiments in this
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paper mainly aim to prove the importance of both marginal and conditional distributions
between domains in feature-based transfer learning approaches. Moreover, it can also
be seen from Figure 6 that when µ = 0.5, B-DMOEA can perform better in most cases.
Therefore, in subsequent experiments, µ is uniformly set to 0.5 without adjusting to different
problem instances.

In addition, Figure 6 shows that decomposition-based algorithms, such as B-REVA-
I, are more unstable than B-NSGA-II and B-IBEA, proving that decomposition-based
algorithms have difficulty solving real-world problems (e.g., D-HRDLB) in which the
Pareto front geometry is often irregular. This finding is consistent with the results of our
previous work [5].

6.2.2. Performance Evaluation of B-DMOEA

This section analyses the performance differences between the B-DMOEA and each
competitor in solving the D-HRDLB problem. Tables 6 and 7 provide the MIGD results
(mean and standard deviation) for the three groups of paired algorithms, including Tr-
NSGA-II versus B-NSGA-II, Tr-RVEA-i versus B-RVEA-i, and Tr-IBEA versus B-IBEA,
on small-scale and large-scale problem instances. The better mean for each instance is
highlighted in boldface.

Table 6. Mean and standard deviation values of the MIGD metric obtained by comparing algorithms
for small-scale instances.

Problems Tr-NSGA-II B-NSGA-II Tr-RVEA-i B-RVEA-i Tr-IBEA B-IBEA

S1 2.4452 × 10−1 [1.4 × 10−2] 1.8438× 10−1 [1.4× 10−2] 2.9134 × 10−1 [3.0 × 10−2] 2.8346× 10−1 [3.5× 10−2] 2.4248× 10−1 [2.7× 10−2 ] 2.6209 × 10−1 [1.9 × 10−2]
S2 2.3724 × 10−1 [1.0 × 10−2] 2.2995× 10−1 [1.9× 10−2] 3.0424 × 10−1 [3.2 × 10−2] 2.7740× 10−1 [2.4× 10−2] 2.4383 × 10−1 [2.1 × 10−2] 1.7722× 10−1 [1.1× 10−2]
S3 2.2963 × 10−1 [2.4 × 10−2] 2.1814× 10−1 [1.1× 10−2] 3.0019× 10−1 [2.7× 10−2] 3.0060 × 10−1 [3.3 × 10−2] 2.3418 × 10−1 [3.8 × 10−2] 2.2536× 10−1 [2.1× 10−2]
S4 2.1752× 10−1 [1.1× 10−2] 2.1784 × 10−1 [1.3 × 10−2] 2.7443× 10−1 [2.8× 10−2] 2.8932 × 10−1 [3.5 × 10−2] 2.3339 × 10−1 [1.7 × 10−2] 2.3077× 10−1 [1.8× 10−2]
S5 2.3844 × 10−1 [1.1 × 10−2] 2.3323× 10−1 [1.7× 10−2] 2.9138 × 10−1 [2.3 × 10−2] 2.8994× 10−1 [1.4× 10−2] 2.6316 × 10−1 [3.1 × 10−2] 2.5113× 10−1 [4.9× 10−2]
S6 2.3010 × 10−1 [1.9 × 10−2] 2.1976× 10−1 [1.4× 10−2] 2.8260 × 10−1 [3.2 × 10−2] 2.5600× 10−1 [2.2× 10−2] 2.3648 × 10−1 [1.7 × 10−2] 1.8782× 10−1 [9.1× 10−3]
S7 2.2801 × 10−1 [2.3 × 10−2] 2.1860× 10−1 [1.3× 10−2] 2.7257 × 10−1 [2.40 × 10−2] 2.5558× 10−1 [2.3× 10−2] 2.3089 × 10−1 [1.4 × 10−2] 2.1843× 10−1 [1.6× 10−2]
S8 1.9563 × 10−1 [5.8 × 10−3] 1.8677× 10−1 [1.8× 10−2] 2.5834 × 10−1 [2.2 × 10−2] 2.5619× 10−1 [2.2× 10−2] 1.9090 × 10−1 [1.1 × 10−2] 1.8166× 10−1 [7.5× 10−3]
S9 2.3783 × 10−1 [2.2 × 10−2] 2.2976× 10−1 [1.3× 10−2] 2.8184× 10−1 [2.1× 10−2] 2.8756 × 10−1 [1.7 × 10−2] 2.4074 × 10−1 [1.4 × 10−2] 2.2255× 10−1 [1.7× 10−2]

S10 2.4093 × 10−1 [1.4 × 10−2] 2.2855× 10−1 [1.4× 10−2] 2.8324× 10−1 [1.8× 10−2] 2.9758 × 10−1 [2.2 × 10−2] 2.4034 × 10−1 [1.8 × 10−2] 2.3150× 10−1 [1.1× 10−2]
S11 2.1666× 10−1 [1.7× 10−2] 2.2573 × 10−1 [1.3 × 10−2] 2.7445 × 10−1 [1.6 × 10−2] 2.6756× 10−1 [1.6× 10−2] 2.2533 × 10−1 [2.1 × 10−2] 2.2233× 10−1 [2.1× 10−2]
S12 2.5712 × 10−1 [1.8 × 10−2] 2.3898× 10−1 [1.5× 10−2] 2.8810× 10−1 [3.20× 10−2 ] 2.9191 × 10−1 [2.6 × 10−2] 2.4306 × 10−1 [2.6 × 10−2] 2.3886× 10−1 [1.5× 10−2]
S13 2.2702 × 10−1 [1.8 × 10−2] 2.1672× 10−1 [1.1× 10−2] 2.7059 × 10−1 [1.9 × 10−2] 2.5719× 10−1 [1.8× 10−2] 2.3363 × 10−1 [1.7 × 10−2] 2.2914× 10−1 [2.1× 10−2]
S14 2.4190 × 10−1 [1.6 × 10−2] 2.1207× 10−1 [1.2× 10−2] 2.9200× 10−1 [2.4× 10−2] 2.9462 × 10−1 [1.8 × 10−2] 2.4505 × 10−1 [2.8 × 10−2] 2.1807× 10−1 [2.4× 10−2]
S15 2.5624 × 10−1 [2.0 × 10−2] 2.4114× 10−1 [1.5× 10−2] 3.1559 × 10−1 [2.4 × 10−2] 2.9914× 10−1 [2.7× 10−2] 2.3386 × 10−1 [1.9 × 10−2] 2.3033× 10−1 [2.7× 10−2]

The better mean for each instance is highlighted in boldface.

Table 7. Mean and standard deviation values of the MIGD metric obtained by comparing algorithms
for large-scale instances.

Problems Tr-NSGA-II B-NSGA-II Tr-RVEA-i B-RVEA-i Tr-IBEA B-IBEA

L1 2.3935 × 10−1 [1.2 × 10−2] 2.3063× 10−1 [6.2× 10−3 ] 2.9619 × 10−1 [3.0 × 10−2] 2.7113× 10−1 [3.4× 10−2] 2.5128 × 10−1 [2.6 × 10−2] 2.4689× 10−1 [1.9× 10−2]
L2 2.3537× 10−1 [1.8× 10−2] 2.3924 × 10−1 [2.4 × 10−2] 2.8540 × 10−1 [3.5 × 10−2] 2.7994× 10−1 [2.5× 10−2] 2.5117 × 10−1 [3.8 × 10−2] 2.3892× 10−1 [2.0× 10−2]
L3 2.3213× 10−1 [1.8× 10−2] 2.4014 × 10−1 [2.4 × 10−2] 2.8749 × 10−1 [3.5 × 10−2] 2.7015× 10−1 [2.5× 10−2] 2.4205× 10−1 [3.8× 10−2] 2.6396 × 10−1 [2.0 × 10−2]
L4 2.4273 × 10−1 [1.3 × 10−2] 2.3039× 10−1 [2.0× 10−2] 2.8185× 10−1 [2.2× 10−2] 2.9387 × 10−1 [4.2 × 10−2] 2.6632 × 10−1 [2.8 × 10−2] 2.4615× 10−1 [3.2× 10−2]
L5 2.4366 × 10−1 [1.9 × 10−2] 2.3203× 10−1 [1.9× 10−2] 2.7817 × 10−1 [2.0 × 10−2] 2.7550× 10−1 [1.8× 10−2] 2.3752× 10−1 [2.8× 10−2] 2.4015 × 10−1 [1.5 × 10−2]
L6 2.4881 × 10−1 [2.5 × 10−2] 2.4405× 10−1 [1.3× 10−2] 2.7308 × 10−1 [2.8 × 10−2] 2.7005× 10−1 [1.3× 10−2] 2.4742 × 10−1 [2.0 × 10−2] 2.3097× 10−1 [1.8× 10−2]
L7 2.6642 × 10−1 [2.8 × 10−2] 2.5105× 10−1 [1.6× 10−2] 2.8990 × 10−1 [3.2 × 10−2] 2.8106× 10−1 [2.5× 10−2] 2.5246 × 10−1 [1.5 × 10−2] 2.4094× 10−1 [1.8× 10−2]
L8 2.3601 × 10−1 [1.9 × 10−2] 2.2650× 10−1 [1.4× 10−2] 2.5279× 10−1 [2.1× 10−2] 2.6524 × 10−1 [3.2 × 10−2] 2.4003 × 10−1 [2.9 × 10−2] 2.3166× 10−1 [2.4× 10−2]
L9 2.4765 × 10−1 [2.8 × 10−2] 2.4503× 10−1 [3.2× 10−2] 2.8767 × 10−1 [3.1 × 10−2] 2.7025× 10−1 [2.2× 10−2] 2.6361× 10−1 [3.2× 10−2] 2.6835 × 10−1 [4.9 × 10−2]
L10 2.7371 × 10−1 [2.8 × 10−2] 2.5823× 10−1 [2.2× 10−2] 2.7792 × 10−1 [2.2 × 10−2] 2.7048× 10−1 [2.5× 10−2] 2.6016 × 10−1 [2.2 × 10−2] 2.5412× 10−1 [2.0× 10−2]
L11 2.3321× 10−1 [1.9× 10−2] 2.4112 × 10−1 [3.2 × 10−2] 2.6612× 10−1 [1.2× 10−2] 2.7659 × 10−1 [1.6 × 10−2] 2.3368× 10−1 [3.0× 10−2] 2.3919 × 10−1 [3.0 × 10−2]
L12 2.4280 × 10−1 [1.8 × 10−2] 2.3355× 10−1 [1.6× 10−2] 2.8230 × 10−1 [3.1 × 10−2] 2.7953× 10−1 [1.2× 10−2] 2.5248 × 10−1 [1.3 × 10−2] 2.4538× 10−1 [3.1× 10−2]
L13 2.2932× 10−1 [2.6× 10−2] 2.4035 × 10−1 [1.5 × 10−2] 2.7526 × 10−1 [3.1 × 10−2] 2.7454× 10−1 [2.4× 10−2] 2.2399× 10−1 [1.9× 10−2] 2.2590 × 10−1 [1.4 × 10−2]
L14 2.3022 × 10−1 [2.7 × 10−2] 2.2218× 10−1 [1.3× 10−2] 2.7224 × 10−1 [2.2 × 10−2] 2.6957× 10−1 [2.2× 10−2] 2.4100 × 10−1 [2.9 × 10−2] 2.2163× 10−1 [2.0× 10−2]
L15 2.3626× 10−1 [2.0× 10−2] 2.4052 × 10−1 [2.9 × 10−2] 2.9041 × 10−1 [2.4 × 10−2] 2.8585× 10−1 [1.9× 10−2] 2.3801× 10−1 [1.3× 10−2] 2.4372 × 10−1 [2.4 × 10−2]
L16 2.4780 × 10−1 [2.7 × 10−2] 2.3091× 10−1 [1.6× 10−2] 2.8216 × 10−1 [2.7 × 10−2] 2.7861× 10−1 [1.8× 10−2] 2.4878× 10−1 [1.5× 10−2] 2.5932 × 10−1 [4.0 × 10−2]
L17 2.2096 × 10−1 [2.4 × 10−2] 2.2051× 10−1 [1.7× 10−2] 2.5461× 10−1 [2.5× 10−1] 2.6527 × 10−1 [1.3 × 10−2] 2.2753× 10−1 [2.3× 10−1] 2.3158 × 10−1 [2.3 × 10−1]
L18 2.3247 × 10−1 [2.7 × 10−2] 2.3100× 10−1 [1.2× 10−2] 2.7617 × 10−1 [1.9 × 10−2] 2.7364× 10−1 [2.3× 10−2] 2.4562 × 10−1 [2.2 × 10−2] 2.2186× 10−1 [1.6× 10−2]
L19 2.3837× 10−1 [2.4× 10−2] 2.4017 × 10−1 [2.1 × 10−2] 2.8926× 10−1 [2.6× 10−2] 2.8989 × 10−1 [3.2 × 10−2] 2.4037× 10−1 [2.3× 10−2] 2.5577 × 10−1 [3.8 × 10−2]
L20 2.5089 × 10−1 [2.0 × 10−2] 2.4525× 10−1 [1.1× 10−2] 2.8957× 10−1 [2.5× 10−2] 2.9935 × 10−1 [2.8 × 10−2] 2.6209 × 10−1 [4.3 × 10−2] 2.5611× 10−1 [3.5× 10−2]
L21 2.4511 × 10−1 [2.3 × 10−2] 2.4499× 10−1 [2.1× 10−2] 2.6704 × 10−1 [1.8 × 10−2] 2.5905× 10−1 [2.1× 10−2] 2.4263 × 10−1 [1.6 × 10−2] 2.3891× 10−1 [2.0× 10−2]
L22 2.7039 × 10−1 [2.8 × 10−2] 2.5806× 10−1 [1.4× 10−2] 2.7736× 10−1 [2.3× 10−2] 2.7794 × 10−1 [2.0 × 10−2] 2.5850 × 10−1 [2.0 × 10−2] 2.4672× 10−1 [2.8× 10−2]
L23 2.5855 × 10−1 [1.3 × 10−2] 2.4295× 10−1 [2.0× 10−2] 2.7430 × 10−1 [1.9 × 10−2] 2.6308× 10−1 [2.0× 10−2] 2.4715 × 10−1 [1.2 × 10−2] 2.3413× 10−1 [1.4× 10−2]
L24 2.4900 × 10−1 [1.5 × 10−2] 2.4247× 10−1 [2.4× 10−2] 2.7597× 10−1 [1.8× 10−2] 2.9069 × 10−1 [1.9 × 10−2] 2.4801× 10−1 [2.7× 10−2] 2.4963 × 10−1 [2.8 × 10−2]

The better mean for each instance is highlighted in boldface.

As shown in Tables 6 and 7, the three B-DMOEA algorithms generally perform better
than their competitors. Specifically, B-NSGA-II, B-RVEA-i, and B-IBEA obtain better MIGD
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values in 13, 9, and 14 of the 15 small-scale instances, respectively. The proportions of
the large-scale instances where the three B-DMOEA algorithms, including B-NSGA-II, B-
RVEA-i, and B-IBEA, outperform their competitors are 18/24, 16/24, and 14/24 for MIGD,
respectively. To intuitively describe the distribution of solutions in three-dimensional
objective space, we use D-HRDLB problem S2 as an illustration. Figure 7 plots the final
of the six evolutionary algorithms. Figure 7a,b) plot the final solutions of Tr-NSGA-II and
B-NSGA-II, respectively. As shown in Figure 7c, we merge the solutions in (a) and (b) to
find the nondominated solutions among them. B-NSGA-II can find more nondominated so-
lutions, which means that B-NSGA-II can cover the Pareto front better. From the remaining
subplots, we can draw similar conclusions.
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(h) B-IBEA; (i) Tr-IBEA and B-IBEA. 
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Figure 7. Normalised nondominated solution set of problem S2. (a) Tr-NSGA-II; (b) B-NSGA-II;
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(h) B-IBEA; (i) Tr-IBEA and B-IBEA.
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Tables 8 and 9 give the MHV results for all six algorithms on small-scale and large-
scale problem instances. Similarly, the three B-DMOEA algorithms outperform their
corresponding competitors on most test instances. B-NSGA-II, B-RVEA-i, and B-IBEA
achieve better MHV values than their competitors in 13, 13, and 14 of the 15 small-scale
instances. Additionally, for large-scale instances, the winning ratio of the three B-DMOEA
algorithms B-NSGA-II, B-RVEA-i, and B-IBEA against their competitors is 21 to 3, 18 to 6,
and 20 to 4 in the 24 comparisons, respectively.

Table 8. Mean and standard deviation values of the MHV metric obtained by comparing algorithms
for small-scale instances.

Problems Tr-NSGA-II B-NSGA-II Tr-RVEA-i B-RVEA-i Tr-IBEA B-IBEA

S1 8.8137 × 10−1 [5.2 × 10−2] 1.0172× 10+00 [2.0× 10−2] 7.6992 × 10−1 [7.4 × 10−2] 7.7664× 10−1 [7.3× 10−2] 9.1173× 10−1 [2.9× 10−2 ] 8.9558 × 10−1 [4.1 × 10−2]
S2 8.7458 × 10−1 [3.5 × 10−2] 9.3420× 10−1 [3.0× 10−2] 7.5336 × 10−1 [6.7 × 10−2] 7.7190× 10−1 [5.4× 10−2] 8.8512 × 10−1 [5.4 × 10−2] 1.0468× 10+00 [2.5× 10−2]
S3 8.6021 × 10−1 [4.6 × 10−2] 8.8963× 10−1 [2.4× 10−2] 7.7463 × 10−1 [6.0 × 10−2] 7.8602× 10−1 [2.7× 10−2] 8.7914 × 10−1 [6.8 × 10−2] 9.0052× 10−1 [4.2× 10−2]
S4 9.0583× 10−1 [2.8× 10−2] 9.0107 × 10−1 [2.1 × 10−2] 7.8558 × 10−1 [7.1 × 10−2] 7.9593× 10−1 [4.9× 10−2] 9.0266 × 10−1 [3.6 × 10−2] 9.1661× 10−1 [3.5× 10−2]
S5 8.6359 × 10−1 [4.0 × 10−2] 8.9617× 10−1 [3.8× 10−2] 7.8506 × 10−1 [4.9 × 10−2] 8.3523× 10−1 [5.1× 10−2] 8.6735 × 10−1 [7.7 × 10−2] 8.8879× 10−1 [5.5× 10−2]
S6 8.9213 × 10−1 [4.8 × 10−2] 9.2073× 10−1 [4.4× 10−2] 7.9493 × 10−1 [6.8 × 10−2] 8.1352× 10−1 [5.9× 10−2] 9.5057 × 10−1 [3.9 × 10−2] 1.0468× 10+00 [2.5× 10−2]
S7 8.4645 × 10−1 [6.3 × 10−2] 8.5654× 10−1 [3.3× 10−2] 7.7372 × 10−1 [4.3 × 10−2] 7.9620× 10−1 [4.9× 10−2] 8.5199 × 10−1 [5.6 × 10−2] 8.5667× 10−1 [3.4× 10−2]
S8 8.9229 × 10−1 [3.4 × 10−2] 8.9895× 10−1 [3.3× 10−2] 7.7718 × 10−1 [4.6 × 10−2] 7.8784× 10−1 [5.4× 10−2] 9.1101 × 10−1 [4.5 × 10−2] 9.1815× 10−1 [2.7× 10−2]
S9 9.0327 × 10−1 [3.8 × 10−2] 9.6682× 10−1 [3.3× 10−2] 7.8916× 10−1 [4.4× 10−2] 7.7399 × 10−1 [5.9 × 10−2] 9.3416 × 10−1 [3.1 × 10−2] 9.6207× 10−1 [2.1× 10−2]

S10 8.9399 × 10−1 [4.7 × 10−2] 9.1839× 10−1 [3.8× 10−2] 8.1651× 10−1 [4.6× 10−2] 7.7583 × 10−1 [5.5 × 10−2] 9.2889 × 10−1 [3.3 × 10−2] 9.3775× 10−1 [3.2× 10−2]
S11 9.1715× 10−1 [4.1× 10−2] 9.0983 × 10−1 [3.6 × 10−2] 7.8974 × 10−1 [4.0 × 10−2] 8.1380× 10−1 [5.4× 10−2] 9.3708 × 10−1 [2.6 × 10−2] 9.4471× 10−1 [4.5× 10−2]
S12 9.0279 × 10−1 [6.2 × 10−2] 9.4832× 10−1 [3.9× 10−2] 8.0320 × 10−1 [5.4 × 10−2] 8.0803× 10−1 [6.5× 10−2] 9.2235 × 10−1 [4.1 × 10−2] 9.5697× 10−1 [4.6× 10−2]
S13 9.0533 × 10−1 [4.4 × 10−2] 9.2646× 10−1 [3.8× 10−2] 8.0787 × 10−1 [4.5 × 10−2] 8.2723× 10−1 [2.9× 10−2] 8.7862 × 10−1 [4.8 × 10−2] 9.0766× 10−1 [3.8× 10−2]
S14 9.0159 × 10−1 [4.3 × 10−2] 9.4480× 10−1 [4.3× 10−2] 7.8224 × 10−1 [5.2 × 10−2] 7.9015× 10−1 [4.7× 10−2] 8.7288 × 10−1 [5.2 × 10−2] 9.5582× 10−1 [3.3× 10−2]
S15 9.0623 × 10−1 [5.2 × 10−2] 9.4391× 10−1 [2.6× 10−2] 7.8049 × 10−1 [3.9 × 10−2] 8.0042× 10−1 [3.8× 10−2] 9.4948 × 10−1 [4.4 × 10−2] 9.6361× 10−1 [4.3× 10−2]

The better mean for each instance is highlighted in boldface.

Table 9. Mean and standard deviation values of the MHV metric obtained by comparing algorithms
for large-scale instances.

Problems Tr-NSGA-II B-NSGA-II Tr-RVEA-i B-RVEA-i Tr-IBEA B-IBEA

L1 9.0036 × 10−1 [3.5 × 10−2] 9.1018× 10−1 [2.2× 10−2 ] 7.6746 × 10−1 [6.0 × 10−2] 8.2244× 10−1 [6.9× 10−2] 8.8050 × 10−1 [4.5 × 10−2] 9.0750× 10−1 [3.7× 10−2]
L2 9.0271× 10−1 [2.7× 10−2] 8.9514 × 10−1 [5.4 × 10−2] 7.8644 × 10−1 [6.2 × 10−2] 8.0711× 10−1 [5.6× 10−2] 8.8747 × 10−1 [7.9 × 10−2] 9.0314× 10−1 [5.0× 10−2]
L3 9.1960× 10−1 [3.4× 10−2] 8.7439 × 10−1 [4.2 × 10−2] 8.1990× 10−1 [5.0× 10−2] 8.0815 × 10−1 [4.8 × 10−2] 9.2754× 10−1 [4.9× 10−2] 8.9086 × 10−1 [5.8 × 10−2]
L4 9.0131 × 10−1 [5.1 × 10−2] 9.0945× 10−1 [8.0× 10−2] 8.2961× 10−1 [2.5× 10−2] 8.0492 × 10−1 [6.5 × 10−2] 8.9199 × 10−1 [5.6 × 10−2] 8.9785× 10−1 [5.4× 10−2]
L5 8.9207 × 10−1 [6.4 × 10−2] 9.0436× 10−1 [5.1× 10−2] 8.0022 × 10−1 [6.5 × 10−2] 8.0652× 10−1 [4.9× 10−2] 9.0361 × 10−1 [5.4 × 10−2] 9.0530× 10−1 [3.5× 10−2]
L6 8.8144 × 10−1 [6.5 × 10−2] 9.0795× 10−1 [2.6× 10−2] 7.9694 × 10−1 [6.4 × 10−2] 8.2378× 10−1 [4.0× 10−2] 8.9411 × 10−1 [5.1 × 10−2] 9.2053× 10−1 [2.5× 10−2]
L7 8.8145 × 10−1 [5.8 × 10−2] 8.9781× 10−1 [3.4× 10−2] 7.8760 × 10−1 [1.1 × 10−1] 8.2209× 10−1 [7.8× 10−2] 8.9717 × 10−1 [4.4 × 10−2] 9.2491× 10−1 [3.0× 10−2]
L8 8.5915 × 10−1 [4.1 × 10−2] 8.8811× 10−1 [4.0× 10−2] 8.2064× 10−1 [5.1× 10−2] 8.0646 × 10−1 [5.9 × 10−2] 8.7540 × 10−1 [5.0 × 10−2] 8.9641× 10−1 [4.1× 10−2]
L9 8.7632 × 10−1 [4.4 × 10−2] 9.0017× 10−1 [1.9× 10−2] 7.9540 × 10−1 [7.8 × 10−2] 8.2099× 10−1 [6.6× 10−2] 8.5812 × 10−1 [7.8 × 10−2] 8.8288× 10−1 [7.0× 10−2]
L10 8.6768 × 10−1 [5.8 × 10−2] 8.7925× 10−1 [3.6× 10−2] 8.1317 × 10−1 [5.4 × 10−2] 8.2274× 10−1 [4.6× 10−2] 9.0848 × 10−1 [5.8 × 10−2] 9.0875× 10−1 [3.6× 10−2]
L11 8.9713× 10−1 [2.5× 10−2] 8.8994 × 10−1 [4.9 × 10−2] 8.2921× 10−1 [3.9× 10−2] 8.1423 × 10−1 [4.3 × 10−2] 9.2999× 10−1 [5.5× 10−2] 9.0812 × 10−1 [6.5 × 10−2]
L12 9.0475 × 10−1 [4.7 × 10−2] 9.0880× 10−1 [2.4× 10−2] 8.1330 × 10−1 [7.4 × 10−2] 8.4537× 10−1 [3.3× 10−2] 8.9468 × 10−1 [4.2 × 10−2] 9.2687× 10−1 [3.9× 10−2]
L13 9.0550 × 10−1 [5.3 × 10−2] 9.2308× 10−1 [3.0× 10−2] 8.2124 × 10−1 [7.1 × 10−2] 8.2749× 10−1 [4.4× 10−2] 9.0963 × 10−1 [7.0 × 10−2] 9.3389× 10−1 [3.5× 10−2]
L14 8.9452 × 10−1 [3.1 × 10−2] 9.0445× 10−1 [2.4× 10−2] 8.0014 × 10−1 [5.4 × 10−2] 8.1013× 10−1 [5.8× 10−2] 9.0709 × 10−1 [4.3 × 10−2] 9.4785× 10−1 [3.7× 10−2]
L15 8.9159 × 10−1 [5.9 × 10−2] 9.1480× 10−1 [3.9× 10−2] 7.8091 × 10−1 [5.0 × 10−2] 8.1870× 10−1 [6.2× 10−2] 9.1601 × 10−1 [4.1 × 10−2] 9.3450× 10−1 [3.2× 10−2]
L16 8.8373 × 10−1 [5.3 × 10−2] 9.2835× 10−1 [4.4× 10−2] 8.1387 × 10−1 [6.5 × 10−2] 9.0778× 10−1 [4.8× 10−2] 9.0778× 10−1 [4.8× 10−2] 8.8873 × 10−1 [5.9 × 10−2]
L17 9.0005 × 10−1 [4.4 × 10−2] 9.0100× 10−1 [4.1× 10−2] 8.0976 × 10−1 [4.4 × 10−2] 8.1575× 10−1 [4.1× 10−2] 9.1786 × 10−1 [3.8 × 10−2] 9.2020× 10−1 [4.0× 10−2]
L18 9.0482 × 10−1 [4.7 × 10−2] 9.3028× 10−1 [3.0× 10−2] 8.2526 × 10−1 [3.6 × 10−2] 8.4592× 10−1 [5.4× 10−2] 9.3418 × 10−1 [4.2 × 10−2] 9.5725× 10−1 [3.5× 10−2]
L19 9.1043 × 10−1 [5.5 × 10−2] 9.1367× 10−1 [4.0× 10−2] 8.0992 × 10−1 [4.9 × 10−2] 8.2194× 10−1 [4.8× 10−2] 9.4361× 10−1 [3.5× 10−2] 8.9129 × 10−1 [5.7 × 10−2]
L20 8.8647 × 10−1 [4.4 × 10−2] 9.0433× 10−1 [4.6× 10−2] 8.2320× 10−1 [4.2× 10−2] 8.0300 × 10−1 [5.7 × 10−2] 8.9220 × 10−1 [8.4 × 10−2] 9.1475× 10−1 [6.4× 10−2]
L21 8.5629 × 10−1 [6.7 × 10−2] 8.8725× 10−1 [5.1× 10−2] 8.1573 × 10−1 [8.2 × 10−2] 8.2549× 10−1 [4.9× 10−2] 9.2198 × 10−1 [3.6 × 10−2] 9.2877× 10−1 [3.8× 10−2]
L22 8.0581 × 10−1 [6.0 × 10−2] 8.4296× 10−1 [5.3× 10−2] 7.7601 × 10−1 [4.6 × 10−2] 8.3737× 10−1 [6.5× 10−2] 9.1162 × 10−1 [5.7 × 10−2] 9.3818× 10−1 [6.3× 10−2]
L23 8.4144 × 10−1 [4.0 × 10−2] 8.9131× 10−1 [3.9× 10−2] 7.8913 × 10−1 [4.4 × 10−2] 8.1356× 10−1 [3.6× 10−2] 9.1316 × 10−1 [5.8 × 10−2] 9.2955× 10−1 [4.5× 10−2]
L24 8.6985 × 10−1 [5.5 × 10−2] 8.8090× 10−1 [5.0× 10−2] 8.0074× 10−1 [5.2× 10−2] 7.3800 × 10−1 [5.3 × 10−2] 8.9682 × 10−1 [5.5 × 10−2] 8.9945× 10−1 [4.2× 10−2]

The better mean for each instance is highlighted in boldface.

These experimental results demonstrate that B-DMOEA can perform better than Tr-
DMOEA. B-DMOEA combines the marginal and conditional distributions to learn the
common features between the domains, making knowledge transfer more effective and
further improving the performance of MOEAs compared with Tr-DMOEA. In addition,
whether in small-scale or large-scale problem instances, the three B-DMOEA algorithms
can win most of the comparisons. However, the results also show that the advantages of
the three B-DMOEA algorithms are more evident in small-scale instances. One important
reason for this occurrence is that in some large-scale instances, due to the relatively signifi-
cant difference in product quality, the distribution differences between domains are more
manifested in the marginal distributions. In contrast to the small-scale instances, the condi-
tional distributions should be given more attention due to the minor differences in product
quality. In this case, B-DMEOA, considering the conditional distribution, performs better.
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7. Conclusions

This paper studied a new dynamic human-robot collaborative disassembly line bal-
ancing problem, D-HRDLB, in which multiple humans and robots can perform multiple
disassembly operations collaboratively in any workstation of the disassembly line. Various
dynamic factors in the disassembly environment, especially uncertain product quality,
can be responded to promptly. Therefore, D-HRDLB is closer to the actual disassembly
environment in remanufacturing enterprises than the existing DLBPs. Since the existing
disassembly process models cannot describe the human-robot collaborative mode and
the time-varying environment, a new task-based dynamic disassembly process model,
TD-TAOG, was proposed. Then, a formal definition of the model was illustrated.

Compared with existing static or quasi-static disassembly process models such as
TAOG, the unique features of TD-TAOG are manifested in two aspects: (i) in the selection
of basic elements, TAOG chooses the disassembly operation, while TD-TAOG chooses a
more fine-grained disassembly task; and (ii) TAOG can only be used to describe products
of definite quality, whereas TD-TAOG can characterise the time-varying properties of tasks
affected by uncertain product quality. Furthermore, based on TD-TAOG, we formalised
the decision variables, the objective functions, and the constraints in D-HRDLB, and we
established a multiobjective optimisation model for D-HRDLB. Compared with existing
nondeterministic optimisation models for DLBPs, this model is a dynamic optimisation
model that can better resolve various uncertain factors. Since D-HRDLB has been identified
as NP-hard, a tracking multiobjective dynamic evolutionary algorithm B-DMOEA based
on evolutionary dynamic optimisation and feature-based transfer learning was proposed
to track and respond to dynamic factors. We analysed the algorithm framework, the
initial population generation assisted by transfer learning, the solution encoding and
decoding, and the solution variation. In B-DMOEA, the initial population generation is
inspired by Tr-DMOEA. However, B-DMOEA differs from Tr-DMOEA in three aspects:
(i) B-DMOEA adopts a presearch strategy based on MOEAs, which can improve the
authenticity of the sample distribution; (ii) unlike Tr-DMOEA, which selects the previous
historical environment as the source domain, B-DMOEA selects the environment that is
most similar to the current environment in the historical environment as the source domain
of knowledge transfer; and (iii) B-DMOEA considers the marginal distribution and the
conditional distribution of the sample sets, and it can adjust the weights of these two
distributions according to the distribution difference between the domains. Tr-DMOEA
only considers the marginal distribution of the sample set. These properties of B-DMOEA
can effectively reduce the probability of negative transfer.

To investigate the behaviour of B-DMOEA on D-HRDLB, a set of D-HRDLB problem
instances containing small-scale and large-scale instances were generated as the benchmark.
Fifteen small-scale instances showed relatively small environmental changes in the set, and
24 large-scale instances displayed relatively significant environmental changes. Based on
the generated instance set, we selected three representative MOEAs, including NSGA-II,
RVEA-i, and IBEA, incorporated them into Tr-DMOEA and B-DMOEA, respectively, and
compared the performance of these obtained algorithms through experiments. Experimen-
tal results show, first, that in B-DMOEA, the value µ has a significant impact on the quality
of the initial population. Regarding most small-scale instances, because the environment
has not changed much, the influence of the conditional distribution on the effect of transfer
learning is more significant. In contrast, considering most large-scale instances, due to
significant environmental changes, the marginal distribution has a more significant impact
on the effect of transfer learning. Second, B-DMOEA can perform better than Tr-DMOEA.

The various environmental uncertainties in remanufacturing enterprises are obstacles
to the practical application related to DLBPs. One area for further investigation is to
develop dynamic disassembly line balancing optimisation models that characterise more
dynamic factors. In addition, more transfer learning methods, such as sample transfer,
model transfer, and relationship transfer, can be combined with evolutionary dynamic
optimisation to develop more effective algorithms for D-HRDLB.
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