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Abstract: Several cancers are induced by microbial infections or chronic inflammation. Ptaeroxylon
obliquum is traditionally used to treat various infections characterized by inflammation. The in vitro
antiproliferative and antioxidant activity of P. obliquum leaf extracts, fractions and isolated compounds
were determined. Antiproliferative activity was assessed against normal Vero cells, and several
cancerous human cells, including human breast cancer (MCF-7), hepatocarcinoma (HepG2), lung
adenocarcinoma (A549) and human cervical cancer cells (HeLa) using a colorimetric tetrazolium
bromide assay. Radical scavenging activity was tested using the 2,2-diphenyl-1-instrpicrylhydrazyl
(DPPH) and 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Obliquumol, O-
methylalloptaeroxylin and a mixture of lupeol and β-amyrin were isolated from the chloroform
fraction using silica gel open column chromatography. Acetone extracts were toxic to HepG2 cells
with IC50 values from 8 to 200 µg/mL but were less toxic to other cells with selectivity index as high
as 14. Aqueous extracts and fractions were non-toxic at concentrations tested against all the cell lines
(IC50 > 100 µg/mL). Isolated compounds had IC50 values ranging from 52 to 539 µg/mL and 189
to 247 µg/mL against HepG2 and HeLa cells, respectively. Light microscopy showing changes in
HepG2 and HeLa cell morphology supported the cytotoxicity of the acetone extracts. Water extracts
scavenged ABTS and DPPH radicals with IC50 values as low as 29.06 µg/mL and 43.4 µg/mL. P.
obliquum extracts may be useful as sources of anticancer therapy, as they have selective cytotoxicity
against cancer cell lines.

Keywords: Ptaeroxylon obliquum; cancer; antiproliferative; Vero; HepG2; HeLa

1. Introduction

Cancer is an unusual formation of cells caused by various changes in gene expression
leading to dysregulated balance of cell proliferation and cell death [1]. This finally leads
to a population of cells that invade tissues and then metastasize to distant sites, causing
significant morbidity, and if not treated, mortality [2]. Cancer is initiated by mutations in
DNA that activate oncogenes and inactivate tumour suppressors; it thrives when changes
occur in the host metabolism and cell structure [3,4]. The development process of normal,
healthy cells turning into cancer cells is termed carcinogenesis and this process takes place
in three stages, namely initiation, promotion and progression [2].

One of the leading causes of death globally is cancer, which has a 20% mortality rate
estimated at 18.1 million under non-communicable diseases, with a 33% increase in newly
diagnosed cases estimated at 9.6 million between 2015 and 2018 [5–7]. The World Health
Organization (WHO) projections indicate that by 2040, these numbers will have increased
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to 29.5 million of new cancer diagnoses and 16.5 million cancer-related deaths yearly across
the globe [5–7]. In South Africa, cancer is emerging as a critical public health problem with
an estimated 107,467 new reported cancer cases and a total of 57,373 deaths occurring in
2018 [8,9]. The incidence rate of breast cancer is the highest (14,097 cases, 13.1%), followed
by cervical (12,983 cases, 12.1%) and prostate cancers (12,452 cases, 11.6%) and the incidence
of lung cancer was reported at 7.7%, ranking fourth among all the cancers, which gives it
the highest mortality rate of 13.5%. Lung and prostate cancers are the most predominant
types in males while breast and cervical cancers are the predominant types in females [9,10].

Treatment options for cancer include chemotherapy, radiation, hormone and gene
therapy; however, they all have various negative side effects such as fatigue, nausea,
vomiting, weight loss and bleeding [11]. Chemotherapy is one of the most commonly
used anticancer treatments, but some cancers are resistant to cytotoxic/chemotherapeutic
agents, which poses a major threat to anticancer therapy. The limitation in the efficacy
of the therapeutic agents leads to non-satisfactory treatment outcomes and eventually
death [12]. Cancer cells may be resistant by evading potential apoptotic mechanisms, such
as down-regulated pro-apoptotic signals, up-regulated anti-apoptotic signals, and faulty
apoptosis initiation and implementation.

There is a need to seek alternative anticancer therapeutics such as phytochemicals, as
there is increasing evidence that suggest they could exhibit anticancer effects. Scientific
evidence suggests that phytochemicals have substantial anticancer potential that may be
considered for drug development [13]. Modern medicine has embraced plants used in
traditional medicine as potential leads for the development of therapeutic drugs. South
Africa has a large variety of plant species, which are yet to be investigated for their po-
tential in treating cancer. Natural products obtained from plants, marine organisms and
microorganisms, account for approximately 60% of the currently used anticancer agents, of
which about 25% have been sourced from plants [14].

Approximately 20% of cancers are induced by chronic inflammation or other infec-
tions [15]. During chronic inflammation, reactive oxygen/nitrogen species (ROS/RNS) are
produced from inflammatory cells and epithelial cells [15]. ROS/RNS cause DNA damage
in organs during inflammation, leading to cancer development. A biological system is
under oxidative stress when there is an imbalance between the synthesis and expression
of reactive oxygen species and its ability to quickly detoxify the reactive intermediates or
to repair the resultant damage re [1]. Oxidative stress is closely linked to every aspect of
cancer, including prevention, tumor development and therapy [16]. Numerous studies
have shown that oxidative stress and human pathophysiological disorders may be fun-
damentally related [17]. Specifically, it is well recognized that oxidative stress affects the
DNA molecule, changes signaling pathways, and controls the development of a variety of
cancers, including those of the breast, lung, liver, colon, prostate, ovary and brain [13,18].

Ptaeroxylon obliquum (Thunb.) Radlk. (Rutaceae), also known as the sneezewood tree,
is used in traditional medicine to treat many infections, including inflammatory-related
diseases in South Africa [19]. Animal and human illnesses have long been treated using
sneezewood. In Portugal, the bark is used to cure fevers, arthritis, and rheumatism [20]. The
Xhosa people snuff the powdered bark material as a recreational and therapeutic remedy
for headache relief [21]. The plant’s wood is used as a therapy for anthrax, rheumatism,
heart conditions, lupus, warts, sinusitis, the treatment of individuals who experience fits,
as a tick repellent for cattle, and in ritual sacrifices to ancestor spirits. Wooden pegs are
frequently used as lighting protection [22]. To keep moths and other insects away from
cupboards, wood pieces are still used. Its ability to deter insects made it a popular wood
for bedsteads [23].

Therefore, the present study was aimed at investigating the antiproliferative and
antioxidant properties of P. obliquum extracts, fractions, and isolated compounds against
different cancer cell lines. Leaf samples were gathered from a variety of geographic regions
since regional diversity may have some effects on the concentration of bioactive compounds
in plants of the same species [24].
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2. Materials and Methods
2.1. Plant Collection

P. obliquum leaves used in this study were collected during the summer of 2019 from
trees growing at the Hatfield Campus (University of Pretoria), National Botanical Gardens
of the South African National Biodiversity Institute (SANBI) in Pretoria, the Lowveld
Botanic Gardens (Nelspruit, Mpumalanga) and Walter Sisulu National Botanical Garden
(Roodepoort). Leaves were collected in open weave nylon bags, dried in the shade at room
temperature, and powdered using a grinder. The powders were stored in closed containers
in the dark until needed. Voucher specimens (PRU130509, PRU130510, PRU130628 and
PRU130627) were prepared and kept at the HGWJ Schweickerdt Herbarium, University of
Pretoria. Bulk plant material for isolation could only be collected at SANBI and Nelspruit
due to limited availability.

2.2. Preparation of Extracts

Exactly 5 g of the powder was extracted using 50 mL acetone and distilled water (hot
and cold) separately. The mixture was placed in an airtight container on a shaker and left
for 24 h, after which the supernatant was filtered through Whatman No. 1 filter paper and
placed into a pre-weighed honey jar. The process was repeated three times for each solvent.
Then the supernatants for each solvent were combined in a single pre-weighed honey jar
and dried under a stream of cold air.

2.3. Fractionation and Isolation of Bioactive Compounds from P. obliquum

P. obliquum leaf powder (500 g) from SANBI and Nelspruit were extracted separately
with 5L of acetone and vigorously shaken for 8 h on a Labotec shaking machine. A Büchner
funnel was used to filter the supernatant through Whatman No. 1 filter paper, and a
Büchi Rotavapor R-114 (Labotec) was used to evaporate the solvent under vacuum. The
concentrated extract was then transferred to a pre-weighed beaker. The same technique
was carried out again on the plant material. The extracted mass was then measured after
the extract had been allowed to dry at room temperature, yielding 36.6 g (Nelspruit) and
42.17 g (SANBI). The solvent–solvent extraction/fractionation of plant extracts protocol
was developed by the National Cancer Institute, modified by eliminating the carbon
tetrachloride extraction step. Five solvent–solvent fractions containing compounds with
different polarities from P. obliquum acetone leaf extract were then obtained [25,26]. To
obtain the initial CHCl3 and H2O fractions, the acetone extract was reconstituted in 500 mL
of CHCl3: H2O (1:1) in a separatory funnel and the two layers were partitioned. The
H2O and n-BuOH fractions were then obtained by combining the H2O fraction with an
equivalent volume of n-BuOH. The n-hexane fraction was obtained by extracting the initial
CHCl3 fraction with an equal volume of n-hexane and a 10% H2O-methanol mixture after
the initial CHCl3 fraction had been dried in a vacuum rotary evaporator. To create the
35% H2O-MeOH fraction and the CHCl3 fraction, the 10% H2O-MeOH fraction was first
diluted to 35% H2O-MeOH. Therefore, five fractions were obtained: H2O, n-BuOH, 35%
H2O-MeOH, CHCl3, and n-hexane fractions.

Column chromatography was used to isolate the bioactive chemicals from the SANBI
CHCl3 fraction, with silica gel serving as the stationary phase. A uniform slurry made
from about 1000 g of silica gel (Merck) and n-hexane was then loaded into a glass column
with the dimensions of 40 cm in height and 4.5 cm in diameter. The dried CHCl3 fraction
(36.47 g) was combined with 50 g of silica gel prior to the addition of 100 mL of acetone,
before drying for approximately 2–3 h at room temperature. The column bed was then
overlaid with the dried CHCl3 fraction. n-Hexane with ethyl acetate (EtOAc) was added in
increasing percentages (5%) to 100% to yield various fractions that were collected.

After the fractions had dried, white precipitates were observed in some honey jars from
70% to 60% n-hexane fractions and were then washed with acetone to remove impurities
and yielded 50 mg of pure white crystals of obliquumol.
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By constantly purifying the dried fractions collected at n-hexane concentrations rang-
ing from 95 to 85% with EtOAc, a 140 mg combination of a mixture of lupeol and β-amyrin
was obtained.

Fractions collected from 30–5% hexane were combined, since they contained similar
compounds based on TLC finger printing. The 1.2 g yield from the combined fractions
from the first column was dissolved in acetone, combined with 1 g of silica gel, and allowed
to dry at room temperature. The sample was then deposited into a silica gel bed with
dimensions of 40 cm in height by 2.5 cm in diameter, and it was eluted using a solution
of 70% to 30% EtOAc and n-hexane. About 50 mg of O-methylalloptaeroxylin was then
isolated. Nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography–
mass spectrometry (LC-MS) were used to analyse the samples and the structures of the
isolated compounds were elucidated. The 1-dimensional (1D) NMR (1H, 13C, and dept-135)
and 2-dimensional (2D) NMR (COSY, HMBC, HSQC, and NOESY) spectra were used. The
data was also compared with the literature to conclusively interpret the structures.

2.4. In Vitro Cytotoxicity Assay
2.4.1. Cell Cultures

Human liver hepatocarcinoma cells (HepG2), human breast adenocarcinoma cells
(MCF-7), human cervical cancer cells (HeLa), human lung adenocarcinoma (A549) and
African green monkey kidney cells (Vero) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) and minimum essential medium (MEM), supplemented with 10% foetal
bovine serum (FBS) and 1% gentamicin solution. The cells were grown in 5% CO2 at 37 ºC
in a humidified atmosphere.

2.4.2. The 3-(4,5-Dimethyltetrazolium Bromide) (MTT) Reduction Assay

Cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide (MTT) reduction assay described by [27], with minor modifications. Cells
(100 µL) were seeded at 1 × 105 cells/mL density in 96-well microtitre plates and incubated
at 37 ◦C in a 5% CO2 incubator for 24 h to allow attachment of the cells. Extracts and frac-
tions were resuspended in acetone to 100 mg/mL and the compounds were resuspended
in DMSO to 20 µg/mL, then serial dilutions of the samples were prepared in DMEM (10%
FBS and 1% gentamicin solution). After the incubation period, 100 µL of each sample were
added to the wells containing cells. Doxorubicin was used as a positive control. Negative
controls with the same volume of solvents were also included, and the plates were further
incubated for 48 h in a CO2 incubator. Following incubation, medium in each well was
removed from the cells, which were then washed with approximately 150 µL of PBS. The
PBS was aspirated, and fresh medium (200 µL) was added to all the wells. Finally, 30 µL of
MTT (5 mg/mL in PBS) was added to each well and the microtitre plates were incubated
at 37ºC for 4 h. Following 4 h incubation, the medium was aspirated from the wells, and
50 µL of DMSO added to solubilize the resulting formazan crystals. The absorbance was
read using a microplate reader (Bio-Tek Synergy, Instruments Inc, Santa Clara, CA, USA)
at 570 nm with a reference wavelength of 630 nm. The IC50 values were calculated as the
concentration of the tested samples, resulting in a 50% reduction of absorbance compared
to untreated cells. The relative safety of each sample was assessed using the selectivity
index, which was calculated as follows:

% viability = (absorbance of sample treated cells/absorbance of control cells) × 100.

All experiments were performed in triplicate and mean values were calculated.

2.4.3. Selectivity Index (SI)

The selectivity index (SI) indicates the degree of cytotoxic selectivity of the tested
sample against cancer cells versus normal cells (Vero) and was calculated by dividing the
IC50 of the tested sample in normal cells by the IC50 of cancer cells.
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The SI values were calculated by applying the formula:

SI = IC50 normal cell/IC50 cancer cell.

2.5. Morphological Study

Morphological alteration of HepG2 and HeLa cell lines after exposure to test sub-
stances was assessed under the microscope. The cells were seeded at a density of
1 × 105 cells/mL in 5 mL medium in a 25 cm3 flask. After 24 h, the medium was removed
and replaced with new medium. Thereafter, HepG2, and HeLa cell lines were treated
with 100 µg/mL, 50 µg/mL and 25 µg/mL of the acetone leaf extracts for 48 h. After the
treatment, the images were captured at 100×magnification, using a phase contrast inverted
microscope (Nikon Eclipse Ti Optical Co., Ltd., Tokyo, Japan). Doxorubicin (12 µg/mL) was
used as a positive control, while the untreated cells were the negative control. The effect of
P. obliquum acetone leaf extracts from two different geographic locations on morphological
changes of HepG2 and HeLa cells was assessed and photographed.

2.6. Antioxidant Activity of P. obliquum Extracts and Fractions
2.6.1. Quantitative 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Free Radical
Scavenging Method

The effects that the extracts and fractions had on the DPPH radical were determined
using a DPPH radical scavenging assay as described by [28], with slight modifications. The
extracts and fractions were re-dissolved to a concentration of 10 mg/mL in methanol. First,
the DPPH solution’s optical density (OD) was calibrated at 517 nm to a range of 0.9 to 1.00.
Then, 160 µg/mL of the DPPH solution were added to 40 µg/mL of various crude extracts
and fractions at various concentrations (3.125–200 µg/mL). Using a microplate reader, the
mixture was incubated in the dark for 30 min to measure the absorbance at 517 nm (Bio-Tek
Epoch spectrophotometer, Instruments Inc, Santa Clara, CA, USA). Higher free radical
scavenging activity was shown by the solution’s lower absorbance. Ascorbic acid and
trolox were used as positive controls, with methanol serving as the negative control. The
experiment was repeated three times. The percentage inhibition was calculated as:

% inhibition = 100−
((

Sample − Control
DPPH

)
× 100

)
The IC50 is the concentration of the sample that can inhibit 50% of the radicals in

the DPPH. The lower the IC50 value of the samples, the more effective is the antioxidant
activity [28].

2.6.2. ABTS Free Radical Scavenging Method

The 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS+) assay
was carried out on all the extracts and fractions. The ABTS stock solution was made
by combining a 2.45 mM potassium persulfate solution with a 7 mM ABTS in methanol
solution, and letting the combination sit at room temperature in a dark area for 12 to
16 h [29]. The extracts and fractions were re-suspended in methanol to a concentration of
10 mg/mL. A volume of 40 µL of the samples were diluted to 50% with methanol and then
serially diluted in a 96-well microplate. The absorbance of the stock ABTS solution was
measured using a spectrophotometer at 734 nm to an absorbance of 0.7–1.0, then 160 µL
was added to all the wells of the microplate. The microplates were then incubated in the
dark at room temperature for 6 min, and then the absorbance was measured. Methanol
was used a negative control. The percentage of inhibition and the IC50 was determined
following the same methods as described in Section 2.6.1.
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3. Results and Discussion
3.1. Structures of the Isolated Compounds

The isolated compounds were identified as obliquumol (12-O-acetylptaeroxylinol
or ptaeroxylinolacetate) [30,31], mixture of lupeol and a minor triterpenoid, possibly β-
amyrin [32,33], and O-methylalloptaeroxylin (Appendix A, Figure A1) [34]. The structures
were assigned on the basis of mass spectrometry and NMR spectroscopy data, which
were in agreement with those already reported for the compounds [31,35]. The molecular
formula of 12-O-acetylptaeroxylinol was confirmed to be C17H16O6 from the HRESIMS
data, which showed a protonated molecular ion peak at m/z 317.1027 [M + H]+ (Cald For
C17H17O6, 317.1025). The MS of the mixture of lupeol and β-amyrin showed the molecular
ion peaks at m/z 427.4 [M + H]+ and 425.3 [M − H]−, in agreement with the proposed
structures. Several studies on O-methylalloptaeroxylin report 1H NMR data only [34,35].
Therefore, the 1H and 13C NMR data of O-methylalloptaeroxylin is provided in Table A1
(Appendix B). The assignment was based on 1D and 2D NMR data. The 1H NMR spectrum
showed two one-proton singlets at δH 5.99 (H-3) and 6.26 (H-6), and two three-proton
singlets at δH 2.28 (CH3-2) and 3.91 (OCH3-5). The signals of the dimethylpyran unit
appeared as two doublets at δH 6.69 (H-1′) and 5.56 (H-2′), and a singlet integrating for six
protons at δH 1.47 ((CH3)2-3′). The 13C and dept-135 NMR spectra showed signals of the 5-
methoxy and 2-methyl substituents at δC 56.3 and 19.7, respectively. Those of the chromone
core appeared at δC 162.6 (C-2), 111.8 (CH-3), 177.6 (C = O, C-4), 108.4 (C-4a), 160.6 (C-5),
96.3 (CH-6), 157.6 (C-7), 102.3 (C-8), 154.2 (C-8a), and the signals of the dimethylpyran
scaffold resonated at δC 115.2 (CH-1′), 127.3 (CH-2′), 77.9 (C-3′) and 28.2 ((CH3)2-3′). The
molecular formula of the compound was confirmed to be C16H16O4 from the HRESIMS
data, which showed a protonated molecular ion peak at m/z 273.1140 (Cald for C16H17O4,
273.1127).

3.2. Cytotoxicity

In categorizing cytotoxicity of plant extracts, the US National Cancer Institute Guide-
lines consider extracts to have noteworthy in vitro anti-proliferative activity against cancer
cells if 50% inhibitory concentration (IC50) value is less than 20 µg/mL, extracts with IC50
ranging from 20 µg/mL to 50 µg/mL are considered moderately toxic while those from
50 µg/mL to 200 µg/mL are less toxic and IC50 above 200 µg/mL are non-toxic [9]. The
acetone crude extracts were more cytotoxic than water extracts and had substantial antipro-
liferative activity with IC50 values ranging from 8 to 374 µg/mL (Table 1). Chloroform
fractions were relatively non-toxic to Vero cells with IC50 values as high as 284 µg/mL
and also had moderate toxicity with IC50 values of 33 µg/mL on HepG2 cells. Acetone
extracts had better antiproliferative activity compared to aqueous extracts and fractions.
Liver and cervical cancer cells showed susceptibility against Hatfield and Walter Sisulu
plant acetone extracts while breast cancer cells were susceptible against SANBI acetone
extracts. However, SANBI acetone extracts were toxic against normal kidney cells, which
questions their safety. These results also corroborated previous studies conducted on Vero
cells [19]. The aqueous extracts had lower cytotoxic activity against normal cell lines tested.
Similar findings were seen in other studies, which is encouraging, because traditional
medicine made from plants is typically prepared as decoctions, infusions, and tinctures
made primarily from water [36]. However, it is important to note that all the aqueous
extracts tested in the study were also not toxic to all the cancer cell lines tested in the study.
The three isolated bioactive compounds were not toxic to the normal cells and the cancer
cell lines tested in the study. Therefore, the isolated compounds from the non-polar fraction
appear to not be those responsible for the low toxicity observed in both the acetone extracts
and the chloroform fraction from which all the compounds were isolated.



Appl. Sci. 2022, 12, 11004 7 of 14

Table 1. Cytotoxicity (IC50 in µg/mL) and selectivity index (SI) of the extracts, fractions, and isolated compounds from P. obliquum.

Extracts IC50 (µg/mL)

MCF7 SI HEPG2 SI A549 SI HELA SI VERO

Walter Sisulu
Acetone 197.3 ± 26.5 0.6 14.5 ± 0.2 8.6 147.4 ± 9.6 0.8 87.2 ± 9.6 1.4 126.1 ± 4.5

H2O (cold) 487.8 ± 11.9 0.9 832.1 ± 42.1 0.5 353.1 ± 59.5 1.3 946.6 ± 104.9 0.5 449.5 ± 0,8
H2O (hot) 418.7 ± 175.4 0.5 455.8 ± 24.1 0.5 830 ± 60.9 0.3 911.6 ± 56.6 0.2 214.3 ± 15.1

UP Hatfield
Acetone 194.7 ± 27.2 0.6 8.6 ± 0.8 14.2 64.1 ± 20.4 1.9 34.8 ± 6.9 3.5 122.1 ± 6.1

H2O (cold) >1000 0.3 754.6 ± 22.2 0.7 >1000 0.2 >1000 0.4 535.3 ± 20.5
H2O (hot) 666.7 ± 109.6 1.5 372.2 ± 8.3 2.74 490.8 ± 117.1 2.1 >1000 1 >1000

Sanbi
Acetone 23.3 ± 6.6 0.7 85.8 ± 6.8 0.2 166.9 ± 20.6 0.0 99.6 ± 4.9 0.2 16.1 ± 0.7

H2O (cold) 764.1 ± 18.9 0.6 >1000 0.5 188.7 ± 12.3 2.6 820.4 ± 169.8 0.6 485.9 ± 121.9
H2O (hot) >1000 0.4 607 ± 146.9 0.8 >1000 0.2 694.5 ± 61 0.7 464.4 ± 90.3

CHCl3 fraction 357.6 ± 11.9 0.0 213.3 ± 18.8 0.1 129.4 ± 25.4 0.2 67.2 ± 5.6 0.5 32.6 ± 3.1
Hexane fraction 167.5 ± 34.6 0.2 295.4 ± 18.1 0.1 250.9 ± 34.9 0.1 971.6 ± 81.3 0.0 37.8 ± 4.2

Nelspruit
Acetone 269.8 ± 33.2 0.4 248.4 ± 38.9 0.40 374.7 ± 8.4 0.27 >1000 0.07 100.3 ± 0.8

H2O (cold) >1000 0.7 246 ± 4.6 3.91 961.5 ± 137.1 1.00 >1000 0.71 961.5 ± 19.2
H2O (hot) 658 ± 162.1 0.5 550.9 ± 70.4 0.59 136.6 ± 17.8 2.4 >1000 0.18 322.5 ± 85.9

CHCl3 fraction 284.2 ± 38.4 1.0 33.5 ± 3 8.5 218.9 ± 9 1.3 824.5 ± 139.1 0.34 284.2 ± 68.1
Hexane fraction 189.2 ± 12.8 1.1 312.4 ± 16.7 0.7 180.4 ± 33.4 1.1 153.1 ± 2 1.3 203.2 ± 2.5

Obliquumol 454.2 ± 57 0.7 52.7 ± 4.8 6 192.7 ± 1.6 1.6 188.5 ± 1.6 1.7 314.8 ± 24.1
Lupeol & β-amyrin 167.8 ± 6.7 0.7 122.6 ± 1.8 1 247.1 ± 49.1 0.5 247.1 ± 2.7 0.5 122.6 ± 5.5

O-methylalloptaeroxylin 248.2 ± 0.1 0.6 364.4 ± 15.7 0.4 279.8 ± 57.6 0.5 212.7 ± 1.8 0.7 151.5 ± 38.7
Doxorubicin 0.18 ± 0.01 55 2.73 ± 0.36 3.6 1.6 ± 0.04 6.3 1.6 ± 0.07 6.3 9.9 ± 1.3
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The main objective of cancer therapy is to use compounds that can specifically target
cancer cells without toxicity against normal cells. Thus, the selective toxicity of extracts,
fractions or compounds against cancer cells must be considered during discovery of leads
for cancer treatment [37]. We therefore determined if P. obliquum acetone extracts, fractions
and isolated compounds had selective activity to cancer cells. Tested samples with SI > 2
were considered to have selective toxicity against the tested cancer cell line [38,39]. Acetone
extract results also had selective cytotoxic activity against HepG2 and HeLa cancer cell lines
with selective index values as high as 14 (Table 1). The Hatfield acetone extract showed the
highest cytotoxic activity with IC50 of 8.4 µg/mL against HepG2 cells, and had the highest
SI value of 14, which means that the extracts were approximately 7 times more toxic to
cancer cells than normal Vero cells.

The plant extracts, which showed significant activity against the tested cancer cells,
were prepared from organic solvent (acetone), and similar results have been observed in
other scientific studies where organic solvents were found to possess more antiproliferative
activity than aqueous extracts [40,41]. The type of solvent used for extraction clearly plays
a crucial role as it determines the class and polarity of compounds which may be isolated.
The extractant used influences the biological activity of P. obliquum extract, particularly
against the normal and cancer cell lines used in the study.

A wide variety of secondary metabolites are produced by plants, typically as a coping
mechanism against attacks from microbes, insects, viruses, herbivores, and other plants [19].
Due to seasonal shifts and geographic location, a plant’s chemical composition can alter
over time [42]. Geographical location appears to have affected the antiproliferative activity
and perhaps phytochemical composition of P. obliquum. It was interesting to note that
SANBI acetone leaf extracts showed some toxicity against normal cell lines tested, while
other acetone leaf extracts collected from different geographical locations were all less toxic.
It is likely that the plant leaf material collected from SANBI had a higher concentration of
toxic compounds compared to plant material collected from other different geographical
locations. Moreover, two acetone extracts from Hatfield and Walter Sisulu, which had the
best anticancer activity against HepG2 and HeLa cells, were less toxic to the normal cell
lines. This further indicates that there was a difference in the phytochemical concentrations
from this plant species based on the geographical location.

3.3. Morphology of HepG2 and HeLa Cells

Figures 1 and 2 show modifications in the morphology of HepG2 and HeLa cells
caused by P. obliquum acetone leaf extracts. Generally, both types of cancer cells were in
a scattered pattern, with most of the cells dead and appearing as floating, rounded cells
when compared to the adherent spindle-shaped live cells. As expected, a concentration-
dependent effect was observed in the morphology of both cell lines tested in the study.
Significant cell death and morphological alterations were observed more on HepG2 cells as
compared to HeLa cells after 48 h treatment with 10 and 25 µg/mL Hatfield and Walter
Sisulu acetone extracts. Compared to the control, both the HepG2 and HeLa cells lost their
typical shape and morphology, became rounded and lost their adherence capacity after the
exposure of 10 and 25 µg/mL of the P. obliquum acetone leaf extracts. It is evident that at
the tested concentrations, the acetone leaf extracts of P. obliquum are effectively cytotoxic
and alter the cell morphology of HepG2 and HeLa cells.
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3.4. Antioxidant Activity of P. obliquum Extracts and Fractions

A molecule or atom that has one or more unpaired electrons and may exist on its own
is referred to as a free radical. The hydroxyl free radical, superoxide free radical anion,
lipid peroxyl, lipid peroxide, and lipid alkoxyl are a few examples of free radicals. Radical
derivatives such as singlet oxygen and hydrogen peroxide are known as reactive oxygen
species (ROS) [43]. The initial line of defense against oxidative stress and damage brought
on by free radicals is comprised of antioxidant enzymes. There is a possibility that a disease
such as cancer could emerge when there is an imbalance between oxidative stress and
antioxidant enzymes [44]. The antioxidant potential of the extracts and fractions from P
obliquum collected from different geographical locations was determined using the DPPH
and ABTS assays, as shown in Table 2. These assays are some of the most commonly used
radical scavenging assays methods for determining antioxidant efficacy of natural products
and functional food materials because they are rapid, inexpensive and reproducible [45]. It
has been proposed that the radical scavenging activity of extracts with IC50 < 100 µg/mL
reflects good antioxidant potential, and extracts with IC50 < 50 µg/mL are considered to be
potent antioxidant agents [46]. The aqueous extract was the most active extract with the
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lowest IC50 of 21.5 µg/mL on ABTS. The aqueous extract had better scavenging activity
against ABTS. Generally, the acetone extract and the two non-polar fractions had less
scavenging activity in all the antioxidant methods used. Oxidative stress plays a role in
various clinical conditions, including cancer. However, given that the acetone extracts
of P. obliquum have extremely little antioxidant activity in the methods utilized in this
investigation, it indicates that the antiproliferative activity exerted by these extracts may
not have been caused by oxidative stress.

Table 2. Antioxidant activities (IC50 µg/mL) of the P. obliquum acetone extracts, aqueous extracts,
and fractions.

DPPH ABTS

Extracts IC50 µg/mL

Walter Sisulu
Acetone 269.1 ± 4.6 251.2 ± 50

H2O (cold) 138.3 ± 17.5 37.5 ± 10
H2O (hot) 43.4 ± 6.1 21.5 ± 0.2

UP Hatfield
Acetone 150.6 ± 12 178.4 ± 17

H2O (cold) 140 ± 9.3 86.1 ± 1.5
H2O (hot) 85.4 ± 6.6 59 ± 0.2

Sanbi
Acetone 275.5 ± 8.9 318.1 ±19.2

H2O (cold) 75.7 ± 2.5 43 ± 1.6
H2O (hot) 46.1 ± 9.5 29.1 ± 0

CHCl3 fraction 423.5 ±54.3 240.4 ±28.8
Hexane fraction 418.5 ± 9.6 143.7 ± 3.3

Nelspruit
Acetone 333.2 ±24.9 268 ± 29.9

H2O (cold) 62.1 ± 6.1 36.6 ± 0.6
H2O (hot) 83.1 ± 3.2 56.4 ± 4.4

CHCl3 fraction 387.4 ± 27.3 214.2 ±13.1
Hexane fraction 236.5 ± 42.1 180.2 ± 2.7

Trolox 2.4 ± 0.8 1.6 ± 0.0
Ascorbic Acid 2.6 ± 0.2 1.4 ± 0.2

4. Conclusions

Since there is growing evidence that some phytochemicals may have anticancer prop-
erties, plants present a useful source of potential alternative anticancer treatments. Many
phytochemicals have a significant anticancer potential and could be used in drug devel-
opment. Traditional medicinal plants have found favour in modern medicine as possible
sources for new therapeutic medications.

Natural products have historically led to the discovery of numerous innovative anti-
cancer medications. Many of these products have demonstrated preliminary anticancer
action in vitro, as evidenced by their ability to be cytotoxic or antiproliferative, as well
as by their impact on mechanisms involved in cancer cell growth. The major goals of
studying crude plant extracts are to either isolate bioactive compounds for use directly as
medications or to find bioactive compounds that can be utilized as lead ingredients in the
development of semi-synthetic pharmaceuticals, thus it is imperative to isolate the cytotoxic
compounds in P. obliquum. These cytotoxic natural products may have a significant role
in treating selected cancers by working in synergy with conventional chemotherapeutic
drugs, possibly by reducing toxicity while improving their efficacy. Antiproliferative agents
such as P. obliquum acetone extracts, that can induce selective cytotoxicity against cancer
cell lines without causing much harm to normal cells, are highly desirable for therapeutic
purposes and may be considered in the development of novel cancer chemotherapeutic
drugs.
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