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Abstract: Coherent plane-wave compounding (CPWC) enables high-frame-rate ultrasound imaging,
but the imaging quality is mainly determined by the beamforming method. Covariance-matrix-based
statistical beamforming (CMSB) was previously proposed for synthetic aperture ultrasound imaging,
which provides notable improvements in resolution and contrast over conventional delay-and-sum
(DAS). However, the speckle quality is inadequate in the phantom experiment, and there exists
a tradeoff between the contrast and speckle preservation of CMSB due to the constant diagonal
reducing factor. In this paper, we applied CMSB in CPWC ultrasound imaging and propose an
enhanced CMSB approach for CPWC to enhance the image quality. First, we introduced lag-one
coherence (LOC) as an adaptive weighting factor for CMSB to suppress incoherent noise. Then, we
propose adaptive diagonal reducing for CMSB using the coherence factor and amplitude standard
deviation, with the aim to further improve the speckle quality. Finally, the combination of LOC
weighting and adaptive diagonal reducing is proposed for CMSB to simultaneously improve the
contrast and speckle quality. A simulation, experiments, and carotid studies were used to validate
the imaging performance of the proposed methods. Results from the experiments show that LOC-
weighted CMSB (LOCw-CMSB) with adaptive diagonal reducing improves the average contrast,
generalized contrast-to-noise ratio (gCNR), and speckle signal-to-noise ratio (sSNR) by 59.9%, 53.6%,
and 77.7%, respectively, in comparison with DMAS. The contrast and sSNR of the LOCw-CMSB with
adaptive diagonal reducing were improved by 32.3% and 33.1%, respectively, compared to CMSB. In
addition, LOCw-CMSB with adaptive diagonal reducing improves the contrast by 176.6% compared
with SLSC in the in vivo carotid study, while it obtains a comparable gCNR. These results demonstrate
that the proposed methods are effective in improving the image quality of CPWC imaging.

Keywords: ultrasound imaging; beamforming; high frame rate; clutter; coherence

1. Introduction

Ultrasound plane-wave imaging (PWI) can significantly increase the frame rate and
thus realize ultrafast imaging (>1000 frames per second) [1]. It has been widely studied
because of the increasing need for high frame rates in medical ultrasound imaging over the
past several decades [2,3]. Nevertheless, the absence of transmit focusing leads to a low
signal-to-noise ratio (SNR) of echo signals and thus causes a poor image quality. To address
this problem, Montaldo et al. [4] proposed coherent plane-wave compounding (CPWC)
ultrasound imaging, which improves the resolution and contrast without compromising
the high frame rate. It can achieve at least a similar image quality to conventional focused
imaging with dynamic receive focusing [5–8], and it has been implemented in many ad-
vanced ultrasound applications, such as shear wave elastography [9], ultrafast micro-vessel
imaging [10], and super-resolution ultrasound localization microscopy [11]. However,
CPWC images reconstructed using data-independent delay-and-sum (DAS) suffer from a
low quality due to broadened mainlobes and granting lobes [12].
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In the past several decades, adaptive beamforming has been studied in depth to gen-
erate high-quality ultrasound images. Dual apodization with cross-correlation (DAX) [13]
uses dual apodization, which is effective in removing clutter, to determine the contributions
from the mainlobe and clutter in radio-frequency (RF) signals, and significantly improves
the contrast-to-noise ratio (CNR). The minimum variance (MV) beamformer, which was first
introduced by Capon [14], can significantly reduce the off-axis interference and sidelobes,
and thus it can improve the resolution performance [15,16]. The eigenspace-based MV (ES-
BMV) [17] was then proposed by decomposing echo signals to desired signal and incoherent
noise subspaces with the aim to improve the contrast of MV. In addition, short-lag spatial
coherence (SLSC) imaging [18], the delay-multiply-and-sum (DMAS) beamformer [19], and
the convolutional beamforming algorithm (COBA) [20] have enabled state-of-art image
reconstruction with noisy data in ultrasound imaging [21–24]. Nevertheless, ESBMV, SLSC,
DMAS, and COBA tend to introduce dark-region artifacts beside hyperechoic targets in
ultrasound imaging [25]. Yan et al. [26] proposed regional-lag signed DMAS for CPWC
imaging to overcome the tradeoff between speckle preservation and resolution.

In addition, pixel-based adaptive weighting, which enables an enhanced image quality,
has also been investigated. The coherence-derived coherence factor (CF) [27] estimates the
ratio of coherent energy to incoherent energy and directly weights the DAS beamformed
data to reduce sidelobes. It can reduce the effects of phase aberration and reverberation and
thus reduce artifacts from weakly coherent off-axis scatter and the granting lobe. However,
a major problem of CF is the over-suppression of speckle signals, which leads to degraded
speckle statistics with dark-region artifacts and a low speckle intensity. To this end, some
promising solutions to overcome this problem have been developed, including generalized
CF (GCF) using low-frequency energy [28], scaled CF (scCF) depending on the SNR [29],
and spatio-temporally smoothed CF (StS-CF) [30]. These methods can preserve speckle
signals to some extent, but possibly at the expense of the resolution advantage of CF. Long
et al. [31] proposed lag-one coherence adaptive normalization (LoSCAN), which is derived
from lag-one coherence (LOC) [32] and CF, to suppress incoherent clutter, leading to an
improved contrast with no dark-region artifacts.

Recently, the amplitude standard deviation (ASD) of echo signals, which can differenti-
ate clutter, has also been studied to suppress clutter. The signal mean-to-standard-deviation
factor (SMSF) [33] estimates the ratio of mean and ASD to significantly improve the resolu-
tion and contrast. The signal-to-noise-ratio (SNR) factor [34] was then proposed using the
variance, which is the power of ASD, to generate an ultrasound image with an improved
resolution and contrast. The dynamic CF (DCF) based on the ASD [35] has been pro-
posed for CPWC imaging, showing overall improvements in image quality over CF. The
delay-multiply-and-standard-deviation (DMASD) factor based on the delay and standard
deviation (DASD) beamforming [36], which uses the ASD of echo signals, was introduced
to enhance the image contrast [37]. In addition, the ASD has also been studied to reduce
the dark-region artifacts introduced by ESBMV in CPWC imaging [38].

Our previous work proposed a novel adaptive beamformer named the covariance-
matrix statistical beamforming (CMSB) [39], which estimates adaptive weights based on
the ratio between the mean and ASD [40] of a modified covariance matrix. It has been
demonstrated that CMSB obtains an improved image resolution and contrast, as well as a
maintained speckle quality. However, CMSB obtains a good speckle quality at the expense
of contrast degradation. One possibility to improve the contrast is to apply an adaptive
weighting technique. Another possibility to further improve the speckle quality of CMSB is
to adaptively determine the diagonal reducing factor for different imaging targets.

Hereto, we propose enhanced CMSB methods based on LOC weighting and adaptive
diagonal reducing in this study to enhance the resolution and contrast of CPWC imaging
quality, as well as lesion detectability. To the best of our knowledge, LOC has not been
studied as adaptive weighting for ultrasound beamforming. The goal of this paper is to
enhance the noise reduction of CMSB by adaptive weighting and overcome the tradeoff
between speckle statistics and contrast by adaptive diagonal reducing. The proposed
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methods were validated with simulation, phantom experiments, and in vivo experiments
in CPWC ultrasound imaging, and compared with DAS, DMAS, SLSC, and CMSB. We also
considered the effects of the channel noise level, kernel size, and number of transmit angles
on the imaging performance when applying the proposed methods.

This paper is organized as follows. In Section 2, CPWC imaging, DMAS, SLSC, CMSB,
and the proposed methods are introduced. Experimental setups as well as evaluating
metrics are presented in Section 3. Section 4 presents the results, and Section 5 discusses
the imaging performance of the proposed methods. A conclusion is drawn in Section 6.

2. Methods
2.1. Coherent Plane-Wave Compounding (CPWC)

In CPWC imaging, steered plane-waves at a number of angles are transmitted to
improve SNR. Consider an M-elements linear array emitting plane waves with N different
steering angles, and the sound of speed is c. When the n-th plane-wave steered at the
angle of θn is emitted, the time-of-flight (TOF) consists of the time taken to propagate to
an imaging point (i.e., image pixel) p(xp, zp) and the time taken to propagate back to the
receive element located at (xm, 0). The TOF τ(p) is given by:

τ(p) =
xpsinθn + zpcosθn

c
+

√
(xp − xm)2 + z2

p

c
, (1)

The beamformed output for imaging point p at angle θn obtained by DAS is given as

yn(p) =
M

∑
m=1

w0(m)sn,m(τ(p)), (2)

where sn,m represents the signal received by the mth element located at (xm, 0), and
w0 = [w0(1), w0(2), ..., w0(M)] represents the receive apodization window.

By compounding the beamformed outputs along N directions, the CPWC output
obtained by DAS is expressed as the following:

VDAS(p) =
1
N

N

∑
n=1

yn(p). (3)

To reconstruct CPWC images, ultrasound beamformers can be involved across dif-
ferent transmit angles, and it can also be involved in the receiving aperture through each
transmit event. In this study, the proposed methods were implemented across different
transmit apertures after the receive aperture data were synthesized using DAS.

2.2. Delay Multiply and Sum (DMAS)

The DMAS [19], which is a nonlinear beamforming method, can significantly improve
the resolution and contrast over DAS. In DMAS, the signals are combinatorially coupled
and multiplied before summing across the aperture. The unfiltered DMAS output is
calculated as

VDMAS(p) =
N−1

∑
i=1

N

∑
j=i+1

ỹi(p)ỹj(p), (4)

where ỹi(t) = sign(yi(p)) ·
√
|yi(p)|. A bandpass filter centered at 2 f0 with a bandwidth of

f0 is then used to pass the second harmonic component and attenuate other components to
generate the DMAS output, where f0 is the center frequency of the emitted signals.

2.3. Short-Lag Spatial Coherence (SLSC)

The SLSC estimates spatial correlations of echo signals, and sums the spatial correla-
tions estimated at various lags. Different from brightness mode, SLSC directly displays
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the image in [0, 1] without log-compression. The SLSC has demonstrated superior lesion
detectability. The normalized spatial coherence calculated at lag m is

Rsc(m) =
1

N −m

N−m

∑
i=1

∑
p2
p=p1 yi(p)yi+m(p)√

∑
p2
p=p1 y2

i (p)∑
p2
p=p1 y2

i+m(p)
, (5)

where p2 − p1 + 1 is the kernel size.
By summing the normalized spatial coherence estimated at M0 lags (i.e., 1,2, ..., M0)

using (5), the SLSC output is obtained as

VSLSC(p) =
M0

∑
m=1

Rsc(m). (6)

2.4. Covariance Matrix-Based Statistical Beamforming (CMSB)

The CMSB [39] is implemented by estimating adaptive weights using the ratio between
the mean and standard deviation of a covariance matrix through rotary averaging and
diagonal reducing. The normalized reciprocals of ASD from all imaging points are used to
dynamically select the subarray length for each imaging point.

The normalized reciprocals of the ASD from all imaging points are σ′ =
√
q(1/σ),

where σ is the ASD from all imaging points, and q(·) is the normalization operation. The

ASD at imaging point p is σ(p) =
√

1
N ∑N

n=1 (yn(p)− ȳ(p))2, where ȳ(p) = 1
N ∑N

n=1 yn(p).
The selected subarray length L(p) for imaging point p is

L(p) = bσ′(p) · Lmaxc, (7)

where b·c is the rounding operation and Lmax is the maximum subarray length. When
L(p) ≤ 2, the dynamic subarray length L(p) is set to 2.

The covariance matrix is then estimated based on L(p) as

R(p) =
1

N − L(p) + 1

N−L(p)+1

∑
l=1

ŷl(p)ŷH
l (p), (8)

where ŷl(p) = [yl(p), yl+1(p), ..., yl+L(p)−1(p)]T .
The rotary averaging and diagonal reducing are then applied on R(p) using the

following (9) and (10), respectively, to form a modified covariance matrix,

R̂(p) =
1
4
(R(p) + JRT(p) + JR(p)J + RT(p)J), (9)

R̃(p) = R̂(p)− δR̂(p) · I, (10)

where J and I are the reversal matrix and identity matrix of size L(p)× L(p), respectively,
and the constant δ > 0 is the user-defined diagonal reducing factor.

Then, the weight vector of CMSB is obtained by calculating the mean-to-standard-
deviation ratio (MSR) of each row vector R̃i(p), where i ∈ [1, L(p)] is the row index. The
adaptive weight is calculated as

wi(p) =
1

L(p) ∑
L(p)
n=1 R̃i,n(p)√

1
L(p) ∑

L(p)
n=1 (R̃i,n(p)− 1

N ∑
L(p)
n=1 R̃i,n(p))2

, (11)
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The output of CMSB estimated with the weight vector w(p) = [w1(p), w2(p), ..., wL(p)(p)]T

is finally obtained as

VCMSB(p) =
1

N − L(p) + 1

N−L(p)+1

∑
l=1

wH(p)ŷl(p)
L(p)

. (12)

CMSB has demonstrated a notably improved resolution and contrast over DAS. Addi-
tionally, CMSB can enhance the border visualization in rat mammary tumor imaging and
human heart imaging with reduced off-axis clutter and smoothed tissue texture [39].

2.5. Proposed Methods
2.5.1. Lag-One Coherence Weighting for CMSB

For ultrasound beamforming methods, the speckle quality (i.e., smoothness and
intensity) is an important characteristic of reconstructed images. CMSB obtains a good
speckle quality when δ is large, but the contrast decreases notably. Nevertheless, pixel-
based adaptive weighting (e.g., CF, GCF, and SLSC) can effectively improve the contrast,
which inevitably causes degradation in speckle statistics in CPWC imaging [35,41].

The speckle texture generated by SLSC tends to be smoothed when the short-lag
value is small [18]. As the normalized spatial coherence with a lag of one (i.e., single-lag
spatial coherence in SLSC), lag-one coherence (LOC) estimates the correlation between
backscattered echoes from pairs of neighboring array elements [32]. It has been studied to
adaptively select frequency in real-time [42], as a metric to differentiate solid and fluid-filled
mass [32], and to quantify the impact of breast density [43]. However, to the best of our
knowledge, LOC has not been studied as adaptive weighting for ultrasound beamforming.
Thus, we hypothesize that LOC weighting can enhance the contrast performance of CMSB
while preserving the speckle statistics.

The LOC with a kernel size of p2 − p1 is estimated as

LOC(p) =
1

N − 1

N−1

∑
n=1

∑
p2
p=p1 yn(p)yn+1(p)√

∑
p2
p=p1 y2

n(p)∑
p2
p=p1 y2

n+1(p)
, (13)

Taking LOC as an adaptive weighting for CMSB, the LOC-weighted CMSB (LOCw-
CMSB) output is obtained as

VLOCw−CMSB(p) = LOC(p)×VCMSB(p) (14)

The LOCw-CMSB has the potential to enhance the noise reduction of CMSB while
retaining speckle statistics to some extent. Note that the speckle quality of LOCw-CMSB
will improve with the increasing kernel size, while the contrast might decrease.

2.5.2. Adaptive Diagonal Reducing for CMSB

The user-defined constant diagonal reducing factor δ in CMSB has an influence on
the imaging performance. The contrast of CMSB improves with the decreasing δ while
the speckle quality degrades [39]. The speckle quality of CMSB is insufficient in phantom
experiments. In other words, a tradeoff exists between contrast and lesion detectability
in CMSB due to the constant δ. Therefore, an accurate selection of δ for different imaging
targets has the potential to overcome this problem. Here, we introduce adaptively choosing
δ for diagonal reducing in CMSB by combining CF and the normalized reciprocal of ASD
to maintain a balanced imaging performance with an improved speckle quality.

As an adaptive weighting, CF combined with synthetic aperture focusing has been
applied in intravascular ultrasound imaging, showing an improved image quality [44,45].
The CF is calculated as the ratio of coherent to incoherent energy of echo signals,
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CF(p) =
|∑N

n=1 yn(p)|2

N ∑N
n=1 |yn(p)|2

, (15)

When signals are perfectly coherent, the CF value equals 1, while, in the case of
incoherent noise, it falls to 0. CF has the ability to reduce clutter and noise effectively;
however, it often degrades the speckle statistics [25].

Nevertheless, the speckle statistics of CF can be improved by adjustment using the
normalized reciprocal of ASD (i.e., σ′). The adaptive diagonal reducing factor selected
using the aperture coherence (i.e., CF(p) and σ′(p)) for imaging point p is defined as

δac(p) = CF(p)σ′(p) × δmax, (16)

where δmax is the maximum diagonal reducing factor. According to (16), the value of
δac(p) is in the range from 0 to δmax. The diagonal reducing factor selected for coherent
signals is slightly larger than that for speckle signals, which is much larger than that for
incoherent noise.

According to (10), the covariance matrix through the pixel-based adaptive diagonal
reducing is obtained as

R̃(p) = R̂(p)− δac(p)R̂(p) · I, (17)

Then, the weight w̃i(p) of CMSB with adaptive diagonal reducing is calculated accord-
ing to (11) as

w̃i(p) =
1

L(p) ∑
L(p)
n=1 R̃i,n(p)√

1
L(p) ∑

L(p)
n=1 (R̃i,n(p)− 1

L(p) ∑
L(p)
n=1 R̃i,n(p))2

, (18)

where i ∈ [1, L(p)] is the row index.
The weights estimated from incoherent noise are always very low under different

δ [39]. In addition, the weights estimated from speckle signals and coherent signals are
more close due to the reason that the δ for speckle signals is slightly smaller than that for
coherent signals. As a result, this will lead to an enhanced speckle intensity and smoothness
in the CMSB image.

The output of CMSB with adaptive diagonal reducing factor δac(p), referred to as
CMSB (δ = δac), is obtained as

VCMSB(δ=δac)(p) =
1

N − L(p) + 1

N−L(p)+1

∑
l=1

w̃H(p)ŷl(p)
L(p)

, (19)

where w̃(p) = [w̃1(p), w̃2(p), ..., w̃L(p)(p)]T, and ŷl(p) = [yl(p), yl+1(p), ..., yl+L(p)−1(p)]T.

2.5.3. LOC-Weighted CMSB with Adaptive Diagonal Reducing

As mentioned above, LOC weighting and adaptive diagonal reducing have the po-
tential to contribute to improvements in the contrast and speckle quality, respectively.
We exploit the benefits of combining LOC weighting and adaptive diagonal reducing for
CMSB, and propose LOC-weighted CMSB with adaptive diagonal reducing, referred to as
LOCw-CMSB (δ = δac).

The output of LOCw-CMSB (δ = δac) is then obtained using (13) and (19) as

VLOCw−CMSB(δ=δac)(p) = LOC(p)×VCMSB(δ=δac)(p). (20)

By combining LOC weighting and adaptive diagonal reducing, the image quality
obtained by CMSB will be enhanced thoroughly. The workflow for CMSB-based methods
is shown in Figure 1. First, the receive aperture synthesized data are used to calculate the
CF, LOC, and the normalized reciprocal of ASD. Second, the data are used to estimate
the covariance matrix, with the dynamic subarray length determined by the normalized
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reciprocal of ASD using (8). Third, the covariance matrix is rotary averaged and then
diagonally reduced with adaptive diagonal reducing factor δac. Finally, the CMSB with
adaptive diagonal reducing is obtained through MSR estimation and subarray averaging
using (19), and the LOC-weighted CMSB with adaptive diagonal reducing is obtained
using (20).

Receive

 aperture 

synthesized

 data

Calculation of

reciprocal of ASD

Covariance 

estimation

Diagonal

reducing

MSR

estimate

Normalization and

      square root

  Rotary

averaging

Average over

 subarrays
LOC estimation

CF estimation

Figure 1. Workflow for CMSB-based beamformers, including CMSB, and the proposed LOCw-CMSB,
CMSB (δ = δac), and LOCw-CMSB (δ = δac).

3. Simulation and Experimental Setups
3.1. Simulated Tissue-Mimicking Phantom Study

We first used Field II [46,47] to generate the simulation data. The simulated phantom
consists of a cyst target with a radius of 3.5 mm, and twelve point targets, including two
laterally and two axially closely spaced points. The scatters used to simulate the phantom
were randomly distributed and the amplitude was random. The density was 20 scatters
in a resolution cell. The linear transducer had 128 elements and the pitch was 0.30 mm.
The fractional bandwidth of the transducer was 67%, and the transmitted pulse had 2.5
cycles. The center frequency was 5.208 MHz and the sampling frequency was 20.832 MHz.
In the simulation, 75 plane-waves were transmitted at angles of −16◦ to 16◦ with an angle
spacing of 0.43◦. The parameters were set the same as those used in experiments.

3.2. Experimental Phantom and In Vivo Carotid Studies

In addition to simulation, we tested our methods on the publicity available CPWC
data [48]. The experimental datasets were collected using a Verasonics Vantage 256 research
scanner and a L11-4v linear array probe (Verasonics Inc., Redmond, WA, USA). The specific
parameters for the scanner and the acquisition system are listed in Table 1.

Table 1. Parameter settings of acquisition system for simulation and experiment.

Parameters Value

Number of elements 128
Element pitch 0.30 mm
Element width 0.27 mm

Center frequency 5.208 MHz
Sampling frequency 20.832 MHz

Pulse bandwidth 67%
Excitation 2.5 cycles

Number of transmit angles 75
Transmit angles [−16◦, 16◦]
Angle spacing 0.43◦
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The proposed methods were compared with DAS, DMAS, SLSC, and CMSB. A tapered
25% Tukey window with an F-number of 1.75 was implemented in the receive aperture in
DAS method. The M0 was set to 23 in SLSC to obtain a high contrast performance, and the
kernel size was set to λ. In simulation and phantom experimental studies, the δ was set to
1.3 in LOCw-CMSB, and δmax was set to 1.3 in CMSB (δ = δac) and LOCw-CMSB (δ = δac).
In the in vivo carotid study, δ was set to 0.5 in LOCw-CMSB, and δmax was set to 0.5 in
CMSB (δ = δac) and LOCw-CMSB (δ = δac). Additionally, the maximum subarray length
Lmax was set to N/2 in all CMSB-based methods to achieve a balanced performance. The
kernel size in LOC was set to 5λ to keep a good speckle, where λ is the wave length. We
added a Gaussian distributed noise with an SNR of 20 dB to the in phase/quadrature (IQ)
channel data prior to beamforming. All reconstructed ultrasound images are shown in a
60 dB dynamic range, except for SLSC images, which are displayed in [0, 1].

3.3. Image Quality Metrics

The lateral resolution was measured by the lateral full-width at half-maximum (FWHM,
−6 dB beam width) of a point target. The contrast ratio (CR) was calculated as

CR = 20log10(
µcyst

µbck
), (21)

where µcyst and µbck are mean values of pixel values before log-compression in selected
cyst and background speckle regions, respectively.

The generalized contrast-to-noise ratio (gCNR) [49], which can evaluate the lesion
detectability, is defined as

gCNR = 1−
∫

min{pcyst(x), pbck(x)} dx, (22)

where pcyst(x) and pbck(x) are the probability density functions of pixel intensity inside
cyst and speckle regions, respectively.

The speckle signal-to-noise ratio (sSNR), which can evaluate the speckle quality, is
estimated as

sSNR =
µbck
σbck

. (23)

where σbck is the standard deviation of pixel values in the selected background speckle region.

4. Results
4.1. Simulation

Figure 2 displays simulated images obtained by different methods. Regions indicated
by the circle and box in Figure 2a were selected to calculate image quality metrics, the
regions indicated by the cyan dashed lines were used to plot the lateral variations, and
the point targets indicated by two cyan boxes were used to calculate FWHM values. The
DMAS image shows an improved contrast over the DAS image; however, the background
speckle brightness decreases. It can be seen from the SLSC image that the background
speckle texture and the lesion detectability are enhanced; however, the point resolution is
poor, and dark-region artifacts appears beside point targets. CMSB-based images show
narrowed point targets compared with DMAS images. The CMSB (δ = δac) image shows
a brighter speckle compared with the CMSB image. LOCw-CMSB reduces noise in the
cyst target significantly in comparison with CMSB. In comparison with CMSB images,
the LOCw-CMSB (δ = δac) image shows a smoothed speckle texture and higher bright-
ness simultaneously. Note that the two axially closely spaced point targets cannot be
distinguished by CMSB-based methods.
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Figure 2. Simulated images reconstructed by (a) DAS, (b) DMAS, (c) SLSC, (d) CMSB (δ = 0.7),
(e) CMSB (δ = 1.3), (f) LOCw-CMSB, (g) CMSB (δ = δac), and (h) LOCw-CMSB (δ = δac).

Figure 3 plots the lateral variations through point targets indicated by cyan boxes and
the cyst target indicted by the cyan dashed line. As can be seen, CMSB-based methods all
obtain a narrowed mainlobe compared with DAS and DMAS as seen from Figure 3a. In
addition, CMSB methods can distinguish the two closely spaced point targets as seen from
Figure 3b. From Figure 3c, we can see that CMSB-based methods, as well as DMAS, obtain
the lowest noise level in the cyst target. Additionally, LOCw-CMSB and LOCw-CMSB
(δ = δac) obtain the best cyst edge resolution.
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Figure 3. Lateral variations through point targets at the depth of (a) 23.1 mm and (b) 27 mm, and
(c) the cyst target in simulated tissue-mimicking images.

Table 2 lists image quality metrics of simulated tissue-mimicking images. Note that the
resolution of the SLSC is not calculated because the image is not log-compressed. Compared
with DAS, SLSC obtains a degradation of 9.1 dB in contrast, but it obtains the highest gCNR
and sSNR. CMSB (δ = 1.3) improves the resolution by 52.7% and 40.9% over DAS and
DMAS, respectively. The proposed methods maintain the resolution performance of CMSB
(δ = 1.3). In addition, LOCw-CMSB improves the CR by 5.8% and 14.7% compared to CMSB
(δ = 0.7) and CMSB (δ = 1.3), respectively, whereas the gCNR and sSNR are slightly higher
than that of CMSB (δ = 0.7). The gCNR and sSNR obtained by CMSB (δ = δac) are 4.3%
and 40.6% larger than that of CMSB (δ = 1.3), whereas CR decreases by 2.0%. Furthermore,
LOCw-CMSB (δ = δac) leads to improvements of 12.4%, 4.3%, and 36.6% in CR, gCNR, and
sSNR over CMSB (δ = 1.3).
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Table 2. Image quality metrics in terms of full-width and half-maximum (FWHM), contrast ratio (CR),
generalized contrast-to-noise ratio (gCNR), and speckle signal-to-noise ratio (sSNR) of simulated
tissue-mimicking images formed using different methods.

Methods FWHM (mm) CR (dB) gCNR sSNR

DAS 0.55 −36.2 0.86 1.92
DMAS 0.44 −55.3 0.62 1.34
SLSC - −27.1 0.98 3.35

CMSB (δ = 0.7) 0.29 −74.6 0.92 1.69
CMSB (δ = 1.3) 0.26 −68.8 0.94 1.75
LOCw-CMSB 0.26 −78.9 0.93 1.71
CMSB (δ = δac) 0.26 −67.4 0.98 2.46
LOCw-CMSB

(δ = δac) 0.26 −77.3 0.98 2.39

4.2. Experimental Point Phantom

Figure 4 shows the experimental point phantom images. The three point targets
indicated by cyan boxes in Figure 4a were used to calculate the FWHM. We can see that
DMAS slightly narrows the point width compared to DAS and generates a darkened
speckle pattern. The SLSC image shows a poor resolution and dark-region artifacts beside
the point targets. CMSB-based images show visually narrowed points in comparison with
the DAS image. The LOCw-CMSB (δ = δac) image shows a smoothed speckle pattern and
improved overall speckle brightness compared with CMSB images. It is noted that the
artifacts under the point at a 9.6 mm depth are amplified in LOCw-CMSB and LOCw-CMSB
(δ = δac) images.
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Figure 4. Experimental point images reconstructed by (a) DAS, (b) DMAS, (c) SLSC, (d) CMSB
(δ = 0.7), (e) CMSB (δ = 1.3), (f) LOCw-CMSB, (g) CMSB (δ = δac), and (h) LOCw-CMSB (δ = δac).

Figure 5 plots the lateral variations through three point targets at depths of 9.6 mm,
28.1 mm, and 47 mm indicated by cyan boxes, and Table 3 lists FWHM values at different
depths. Note that the resolution of the SLSC is not calculated because the image is not
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log-compressed. We can see that DMAS narrows the mainlobe over DAS at different
depths, resulting in an average resolution improvement of 20.2%. CMSB methods obtain an
improved resolution over DMAS at depths of 9.6 mm and 28.1 mm, but a worse resolution
at the depth of 47 mm. Specifically, CMSB (δ = 0.7) and CMSB (δ = 1.3) have average
resolution improvements of 16.4% and 26.9% over DMAS, respectively. In addition, LOCw-
CMSB preserves the resolution performance of CMSB at different depths. Although CMSB
(δ = δac) and LOCw-CMSB (δ = δac) preserve the resolution of CMSB (δ = 1.3) at depths of
9.6 mm and 28.1 mm, the obtained FWHM at the depth of 47 mm decreases by 14.3%.
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Figure 5. Lateral variations through three points at the depth of (a) 9.6 mm, (b) 28.1 mm, and
(c) 47 mm in the experimental point images.

Table 3. Lateral FWHM at three different depths in the experimental point images.

Methods FWHM (mm) at Depths of
9.6 mm 28.1 mm 47 mm

DAS 0.55 0.56 0.57
DMAS 0.44 0.44 0.46

CMSB (δ = 0.7) 0.29 0.32 0.51
CMSB (δ = 1.3) 0.23 0.26 0.49
LOCw-CMSB 0.23 0.26 0.49
CMSB (δ = δac) 0.23 0.27 0.56

LOCw-CMSB (δ = δac) 0.23 0.27 0.56

4.3. Experimental Cyst Phantom

Figure 6 shows the experimental cyst images. Regions indicated by two circles and
boxes were selected to calculate the image quality metrics, the regions indicated by the cyan
dashed lines were used to plot the lateral variations, and the point target indicated by the
cyan box was used to calculate the FWHM. DMAS obtains an improved contrast over DAS,
but degrades the background intensity significantly. The SLSC image shows enhanced
lesion detection, but the point resolution is poor and some dark-region artifacts appears
beside the point. CMSB images show an improved contrast and improved background
intensity. In addition, LOCw-CMSB suppresses noises in the cyst at 42.9 mm depth com-
pared with CMSB (δ = 1.3), and also removes noise in the cyst at 15 mm depth compared
with CMSB, with δ equal to 0.7 and 1.3. This indicates that LOC weighting can effectively
improve the contrast performance of CMSB. In addition, CMSB (δ = δac) improves the
speckle smoothness and intensity over CMSB (δ = 1.3).
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Figure 6. Experimental cyst phantom images reconstructed by (a) DAS, (b) DMAS, (c) SLSC, (d) CMSB
(δ = 0.7), (e) CMSB (δ = 1.3), (f) LOCw-CMSB, (g) CMSB (δ = δac), and (h) LOCw-CMSB (δ = δac).

Figure 7 plots the lateral variations through the point target indicated by the cyan
box, and the two cyst targets are indicated by cyan dashed lines in the experimental cyst
images. As can be seen, CMSB (δ = 0.7) obtains a narrower mainlobe compared with
DMAS, and other CMSB-based methods all obtain the narrowest mainlobe. This indicates
the maintained resolution performance of enhanced CMSB methods. In addition, LOCw-
CMSB and LOCw-CMSB (δ = δac) obtain the lowest noise level in cyst targets, which is
lower than that of DMAS, and have the best edge resolution according to Figure 7b,c.
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Figure 7. Lateral variations through (a) the point target at (x,z) = (9.1 mm, 37.6 mm), and (b,c) two
anechoic cysts in experimental cyst images.

Table 4 lists image quality metrics of experimental cyst phantom images. The point
targets at (x,z) = (8 mm, 38 mm) were used to calculate FWHM. Note that the resolution
of the SLSC is not calculated because the image is not log-compressed. SLSC obtains a
lower contrast at a shallow depth but a higher contrast at a large depth compared with
DAS, and SLSC obtains the highest gCNR and sSNR. The proposed methods preserve
the resolution of CMSB (δ = 1.3), which is a 41.3% improvement compared with DMAS.
According to Table 4, CMSB obtains an improved CR, gCNR, and sSNR over DAS and
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DMAS. LOCw-CMSB improves the CR by 27.7% and 34.4% compared with CMSB (δ = 0.7)
and CMSB (δ = 1.3), respectively. In addition, the gCNR and sSNR of LOCw-CMSB are
almost equal to that of CMSB (δ = 1.3) at the shallower depth, whereas they are 0.07 and
0.17 lower than that of (δ = 1.3) in the deep region. CMSB (δ = δac) obtains improvements of
2.1% and 42.7% in gCNR and sSNR over that of CMSB (δ = 1.3), while the CR decreases by
2.5%. In addition, LOCw-CMSB (δ = δac) leads to improvements of 32.3%, 0.5%, and 33.1%
in CR, gCNR, and sSNR over CMSB (δ = 1.3).

Table 4. Image metrics of experimental cyst images.

Methods FWHM (mm) Cyst at 15 mm Depth Cyst at 42.9 mm Depth
CR (dB) gCNR sSNR CR (dB) gCNR sSNR

DAS 0.59 −32.7 0.98 1.99 −22.0 0.61 1.90
DMAS 0.46 −50.3 0.86 1.48 −35.8 0.39 1.30
SLSC - −29.0 1.00 4.97 −32.3 1.00 2.83
CMSB

(δ = 0.7) 0.33 −62.5 1.00 2.01 −47.3 0.88 1.65

CMSB
(δ = 1.3) 0.27 −59.5 1.00 2.01 −44.8 0.92 1.71

LOCw-
CMSB 0.27 −74.1 1.00 1.98 −66.1 0.85 1.54

CMSB
(δ = δac) 0.27 −56.8 1.00 2.95 −44.9 0.96 2.36

LOCw-
CMSB

(δ = δac)
0.27 −72.0 1.00 2.86 −66.0 0.93 2.09

4.4. In Vivo Carotid

Figure 8 shows the in vivo cross section carotid images reconstructed by different
methods. Regions indicated by the circle and box were selected to calculate image metrics.
We can see that SLSC reduces clutter and noise; however, the tissue intensity degrades
at a large depth. CMSB images show an improved contrast compared with the DAS
image and an improved tissue intensity compared with DAS and DMAS images. In
comparison with CMSB (δ = 0.5), LOCw-CMSB reduces noise in the carotid artery and
CMSB (δ = δac) improves the tissue smoothness, respectively. LOCw-CMSB (δ = δac) obtains
a better performance inside the carotid artery and the anatomical structures are more
distinguishable in comparison with CMSB (δ = 0.5).

Table 5 lists image quality metrics of carotid images. Compared with DAS, DMAS and
SLSC obtain an improvement and degradation of 51.9% and 23.0% in contrast, respectively.
CMSB-based methods obtain an improved CR, gCNR, and sSNR over DAS and DMAS.
LOCw-CMSB improves the CR by 9.0% and 15.7% compared with CMSB (δ = 0.3) and
CMSB (δ = 0.5), respectively, and the gCNR and sSNR of LOCw-CMSB are slightly higher
than that of CMSB (δ = 0.5). The gCNR and sSNR of CMSB (δ = δac) are 7.2% and 17.3%
larger than that of CMSB (δ = 0.5), whereas CR is almost preserved. In addition, LOCw-
CMSB (δ = δac) leads to improvements of 14.7%, 6.0%, and 13.3% in CR, gCNR, and sSNR
over CMSB (δ = 0.5). This demonstrates the high image quality of LOCw-CMSB (δ = δac)
when imaging soft tissues.
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Figure 8. In vivo cross section view of carotid images reconstructed by (a) DAS, (b) DMAS, (c) SLSC,
(d) CMSB (δ = 0.7), (e) CMSB (δ = 1.3), (f) LOCw-CMSB, (g) CMSB (δ = δac), and (h) LOCw-CMSB
(δ = δac).

Table 5. Image quality metrics of in vivo carotid images obtained by different methods.

Methods CR (dB) gCNR sSNR

DAS −32.2 0.54 1.50
DMAS −48.9 0.35 1.00
SLSC −24.8 0.91 2.06

CMSB (δ = 0.3) −63.5 0.79 1.43
CMSB (δ = 0.5) −59.8 0.83 1.50
LOCw-CMSB −69.2 0.81 1.46
CMSB (δ = δac) −59.7 0.89 1.76

LOCw-CMSB (δ = δac) −68.6 0.88 1.70

5. Discussion
5.1. Explanation of Results

From the results of all studies, it is clear that CMSB-based methods achieve improve-
ments in resolution, contrast, and lesion detectability over DAS in CPWC ultrasound
imaging. In addition, the proposed methods substantially increase the contrast and speckle
quality over CMSB. The average contrast improvements obtained by LOCw-CMSB in the
simulation and experiment over CMSB (δ = 0.7) are 14.7% and 34.4%, respectively. The
average gCNR and sSNR improvements obtained by CMSB (δ = δac) in the simulation and
experiment over CMSB (δ = 0.7) are 3.2% and 41.7%, respectively. Owing to the combination
of LOC weighting and adaptive diagonal reducing, LOCw-CMSB (δ = δac) improves the
average CR, gCNR, and sSNR by 22.3%, 2.4%, and 39.8% over CMSB (δ = 1.3) in the simu-
lation and experiment. This demonstrates the improvements in the contrast and speckle
quality of the proposed methods over CMSB.

The preliminary study of CMSB did not consider the separability of closely spaced
point targets and cyst edge resolution [39], which are also important metrics for adaptive
beamformers [50]. In this study, the separability of closely spaced point targets and the cyst
edge resolution of different methods were evaluated. As seen from Figure 3b, CMSB-based
methods can distinguish the two laterally closely spaced point targets, while DAS and
DMAS cannot distinguish the two point targets. In addition, CMSB (δ = δac) obtains the
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best cyst edge resolution as seen from Figures 3 and 7. This demonstrates the resolution
improvement of LOCw-CMSB and LOCw-CMSB (δ = δac). Note that LOC weighting and
adaptive diagonal reducing scarcely have influence on the resolution performance of CMSB
according to Tables 2–4.

In comparison with CMSB (δ = 1.3), CMSB (δ = δac) generally has a slight contrast
degradation as seen in Tables 2 and 4. However, CMSB (δ = δac) obtains an improved
contrast over CMSB (δ = 1.3) at the deep region in the experimental cyst study according
to Table 4. This is likely because the dynamic diagonal reducing preserves the speckle at
larger depths.

5.2. Robustness to Channel Noise

The imaging performance of all methods under different channel SNRs in the sim-
ulation was studied to evaluate the robustness to channel noise. As seen in Figure 9,
CMSB-based methods all obtain an improved resolution, contrast, gCNR, and sSNR under
different channel SNRs compared with DMAS. In addition, the contrast, gCNR, and sSNR
obtained by CMSB-based methods degrade with the decreasing channel SNR, whereas the
resolution increases. This is because the subarray lengths selected for speckle signals and
clutter decrease as the channel SNR decreases, which results in contrast degradation and
mainlobe interference rejection. Under the channel SNR of 5 dB, the contrast and sSNR ob-
tained by LOCw-CMSB (δ = δac) are both much higher than that of DMAS and CMSB. This
indicates that the contrast performance of LOCw-CMSB (δ = δac) is less susceptible to the
channel noise, and the speckle quality can be preserved under a high level of channel noise.
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Figure 9. Full-width and half-maximum (FWHM), contrast ratio (CR), generalized contrast-to-noise
ratio (gCNR), and speckle signal-to-noise ratio (sSNR) of all methods under different channel SNRs
in the simulation.

5.3. Impact of the Kernel Size

The kernel size for LOC estimation has an influence on the imaging performance of
LOC-weighted methods. We evaluated the CR, gCNR, and sSNR obtained by LOCw-CMSB
and LOCw-CMSB (δ = δac) in the cyst phantom experiment as a function of the kernel size.
Note that the lateral resolution of LOC-weighted methods is not affected by the kernel size.
The cyst target in the deeper region and the corresponding speckle region at the same depth
were used to calculate the CR, gCNR, and sSNR. Figure 10 shows the measured CR, gCNR,
and sSNR as a function of the kernel size. As can be seen, LOCw-CMSB and LOCw-CMSB
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(δ = δac) improve gCNR and sSNR as the kernel size increases, but the contrast degrades.
In addition, the computational efficiency of LOC estimation decreases with the increasing
kernel size. Hence, the kernel size in the range of 3λ to 7λ is appropriate for LOC weighting
to obtain a high contrast while preserving the speckle quality to some extent, as well as
avoiding a high computational load.
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Figure 10. CR, gCNR, and sSNR of LOC-weighted methods as a function of the kernel size in the
cyst phantom experiment.

5.4. Influence of the Number of Transmit Angles

The imaging performance of different beamformers under different numbers of trans-
mit angles was evaluated. Since the number of transmit angles determines the size of
the covariance matrix in CMSB, the minimum number of transmit angles was set to 23 to
evaluate the imaging performance. The selected transmit angles are symmetrical around
0◦. The corresponding results in the simulation and experiment are shown in Figure 11a,b,
respectively.

As can be seen in Figure 11, the resolution of DAS and DMAS improves with an
increasing number of angles when the number of angles is larger than 38. CMSB methods
always achieve a higher resolution performance compared with DAS and DMAS. Addi-
tionally, the contrast of all methods improves as the number of angle increases. CMSB
obtains an improved contrast compared with DMAS, and LOCw-CMSB (δ = δac) obtains
an improved contrast over CMSB under different numbers of transmit angles in both the
simulation and experiment. In addition, CMSB obtains an improved gCNR over DAS and
DMAS under different numbers of transmit angles. Owing to adaptive diagonal reducing,
CMSB (δ = δac) and LOCw-CMSB (δ = δac) both obtain an improved gCNR over CMSB. In
addition, the sSNR obtained by CMSB is slightly lower than that of DAS, but higher than
that of DMAS. Compared with CMSB, CMSB (δ = δac) and LOCw-CMSB (δ = δac) obtain
a significantly improved sSNR under different numbers of transmit angles. This demon-
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strates that the proposed CMSB (δ = δac) and LOCw-CMSB (δ = δac) can be implemented
with a lower number of transmissions to improve the image resolution and contrast, and to
simultaneously improve the speckle quality and lesion detectability.
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Figure 11. Image quality metrics of different methods as a function of the number of transmit angles
in (a) simulation, and (b) experiment.

5.5. Limitations and Future Works

Despite a high resolution in the simulation, CMSB-based methods provide a poor
resolution performance in the deeper region in the point phantom experiment compared
with DMAS. This is mainly because of the low SNR in the deeper region, which results in
undistinguishable strong off-axis clutter beside the point target. In addition, CMSB (δ = δac)
obtains a worse resolution performance in the deeper region compared with CMSB (δ = 1.3)
as illustrated in Table 3. The resolution of CMSB in the deeper region is insufficient, and
this is left for future work.

The speckle regions at the left and right bottom of CMSB-based methods show visually
black-spot artifacts as seen from Figures 4 and 6. One possible reason for this is that the
speckle intensity in the shallow region is improved, and thus incoherent components-
dominated speckle signals (bottom left and right) are suppressed. However, a smaller
maximum subarray length Lmax might solve this problem at the expense of contrast. In
addition, it can be seen from Figures 4 and 6 that black-spot artifacts appear at the deeper
region (bottom left and right) in LOC-weighted CMSB images. This is because LOC
estimated from the channel signals of the homogeneous speckle region is sensitive to local
SNR levels [31].

In addition, the resolution of CMSB-based methods is worse than DAS when the
number of transmit angles decreases to 23 in the simulation and 37 in the experiment as
illustrated in Figure 11. This is likely because the channel SNR decreases notably when
transmitting a small number of plane-waves, and thus the amplitude standard deviations
for desired targets and incoherent noise are close. This limits the imaging performance
of CMSB-based methods in higher-frame-rate CPWC imaging with a smaller number
of transmit angles. One possible way to address this problem is to set the maximum
subarray length Lmax to the total number of transmit angles rather than half the total
number of transmit angles in this study. This might improve the resolution performance
of CMSB-based methods at the expense of the speckle quality. Furthermore, the signal
sparse representation [51] and coded excitation technique [52] used to enhance SNR and
the tensor completion (TC) to achieve the same image quality using 20% of a total angle of
75 [53] can be utilized to improve the imaging performance of CMSB-based methods when
using a much lower number of transmit plane-waves.
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6. Conclusions

In this paper, we applied CMSB in CPWC imaging and introduced LOC weighting
and adaptive diagonal reducing to CMSB to further reduce spatially incoherent noise and
preserve speckle signals. The proposed methods were validated through a simulation and
experimental and carotid studies. The results from all studies show that LOCw-CMSB pro-
vides an obviously enhanced contrast without sacrificing the speckle quality of CMSB, and
CMSB (δ = δac) effectively improves the speckle SNR of CMSB. In addition, LOCw-CMSB
(δ = δac) provides an improved contrast, gCNR, and sSNR over CMSB. When applied to
human carotid imaging, LOCw-CMSB (δ = δac) effectively enhances the contrast, lesion
detectability, and tissue smoothness compared with CMSB, showing an improved diagnos-
tic value. To summarize, the proposed beamformers can be useful image reconstruction
methods for CPWC ultrasound imaging.
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