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Abstract: The demand for a conversational system with digital humans has increased with the
development of artificial intelligence. Latency can occur in such conversational systems because of
natural language processing and network issues, which can deteriorate the user’s performance and
the availability of the systems. There have been attempts to mitigate user-perceived latency by using
conversational fillers in human–agent interaction and human–robot interaction. However, non-verbal
cues, such as gestures, have received less attention in such attempts, despite their essential roles in
communication. Therefore, we designed gestural fillers for the digital humans. This study examined
the effects of whether the conversation type and gesture filler matched or not. We also compared the
effects of the gestural fillers with conversational fillers. The results showed that the gestural fillers
mitigate user-perceived latency and affect the willingness, impression, competence, and discomfort
in conversations with digital humans.

Keywords: virtual reality; virtual human; digital human; conversational filler; gestural filler; latency;
embodied conversational agent

1. Introduction

The term digital human is generally used to refer to a computer-generated human-like
entity. It is often interchangeably used with virtual human (VH) or, with the popularity
of the terms metaverse and artificial intelligence (AI), is also called meta-human or AI
beings [1]. While the latter two terms arose recently, VH has been used for decades in
the virtual reality (VR) community and still is an active research topic [2–5]. In VR, like
those other virtual objects, the VH is comprised of computer graphics; however, VHs
incorporated with physical body parts (e.g., with mannequins or robots) have also been
proposed in the past couple of decades [6–8]. Nevertheless, 3D computer graphics had
remained an essential characteristic of VHs when it came to their appearance. On the other
hand, in the AI community, instead of 3D modeling and rendering, research on synthesizing
human-like entities directly on 2D image or video has been produced [9]. Deep-neural-
network-based models not only generate photo-realistic human images, but also synthesize
voice, lip sync motion, and gestures [10–12]. Thus, the notion of the VH, which implicates
3D computer graphics, became insufficient to cover those AI-based synthesized humans.
To cover both AI-based and 3D-modeled synthesized humans, we use the term digital
human throughout this article.

When facing digital humans, users might expect the same social interaction as they
would with real humans (RHs), which has been widely investigated with the concept
of social presence [13,14]. Making social interaction directly relates to the intelligence of
digital humans. Of course, achieving the human level of social interaction is still far from
reality. However, in VR, digital humans, i.e., VHs, can be inhabited by users and interact
socially with other VHs [15]. Those types of VHs are called avatars, contrary to the agents
that are controlled by a computer program. When agents can make conversation with RHs,
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they are categorized as conversational agents [16]; furthermore, with the manifestation in
the form of a human shape, they are called embodied conversational agents (ECAs) [17].
The digital transformation we are undergoing in the era of Industry 4.0 has enabled the
accumulation of big data, and with big data, deep-neural-network-based AI models are
widely adopted and improved, making agents rapidly intelligent. In the meantime, such
digital transformation also have affected and improved the systems and processes of our
society and industry, now demanding the paradigm shift from efficiency- and productivity-
centric to human-centric in the upcoming Industry 5.0 and Society 5.0. In Society 5.0, digital
humans are expected to co-exist with RHs and be socially more engaging in the form of
cobots and/or human digital twins [18,19].

With the recent development of AI models and natural language processing (NLP),
the demand for a conversational system with a digital human has increased. There have
been attempts to utilize digital humans in various fields, such as health care, psychological
consultation, and education [20–22]. Furthermore, researchers have studied ECAs to mimic
conversation with an RH [23,24]. These systems often consist of voice processing models,
e.g., text-to-speech (TTS) and speech-to-text (STT), and dialogue-generation models. For
example, users’ utterances are converted into text through an STT model and then analyzed
with NLP. Agents then generate responses in text with simple keywords and a sentence-
matching-based answer generation [25,26] or a pre-trained language model [27,28], which
then is converted into synthesized voice through a TTS model. Some conversational sys-
tems with digital humans also include models for generating natural behavior, such as lip
sync and gestures [17,24,29–31]. Usually, conversational systems utilize the server–client
model. On the client side, a digital human appears on a screen or in a virtual environment,
verbalizing the generated sentences and exhibiting gestures. The computationally intensive
procedures, e.g., NLP and speech/gesture generations, are processed on the server side and
then sent back to the client. Through these processes, the inevitable latency occurs between
the user’s question and the answer of the digital human [32]. In addition, language models
such as GPT3 [33] have limitations in that they can generate ethically inappropriate re-
sponses in the given circumstances or answers irrelevant to the user’s questions. Therefore,
if necessary, a real person has to intervene to provide an appropriate answer to the user’s
question. Of course, an inevitable time delay occurs in that process of intervention.

The time delay during the conversation with a digital human can reduce the usability
of the system and users’ satisfaction [34]. While we are unaware of psychophysical experi-
ments investigating the detailed latency requirements in conversation with digital humans,
the two-second rule was proposed in man–computer conversational transactions [35], as
well as in human–robot interaction; the satisfaction and naturalness decreased after 1 s [36],
which is in line with a similar study reporting 0.9 s [37]. Such a short latency allowance
seems complicated to achieve considering the current limitations on inference times of
TTS, gesture generation, and conversation generation models, even in the case where a
computationally powerful server processes all the models and streams the rendered digital
humans through a 5G network [38].

Previous studies [39–41] attempted to mitigate user-perceived latency using various
conversational fillers, such as “Uhm” or “Wait a minute”. However, when it comes to
everyday face-to-face communication, people rely not only on verbal cues, but also on
nonverbal cues, such as gestures and facial expressions [42–44]; gestures, in particular,
have been overlooked. This study, thus, examined whether the gestural filler for digital
humans can mitigate user-perceived latency in conversation with a digital human. We
compared the effect of conversational fillers and gestural fillers on the user’s perception
of two conversation types: informative and casual conversation. Considering that speech–
gesture match can affect the user’s perception [45,46], we also explored the effect of whether
the conversation types and gesture fillers matched or not.

In short, this paper addresses the following research questions:

RQ1: Can gestures of digital humans, i.e., gestural fillers, reduce perceived latency
in conversation?
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RQ2: Does the gesture to reduce perceived latency vary by conversation type?
RQ3: How do gestural and conversational fillers affect users’ perception of digital humans

when delays occur during the conversation?

The rest of the paper is organized as follows: in Section 2, we summarize previous
research on ECAs, the effects of latency in conversation with ECAs, as well as fillers—
techniques devised to reduce perceived latency—and the importance of non-verbal cues;
in Section 3, we describe the experimental setup and the conversational digital human
system we used for the following two studies; in Section 4, we detail the first experiment
performed to investigate the correlation between gestural fillers and conversation types;
then, in Section 5, we report the second experiment exploring the effects of gestural fillers
compared to the conversational fillers; finally, Section 6 concludes the paper and discusses
future research directions.

2. Related Work

To the best of our knowledge, we are unaware of prior works examining the gestures
of digital humans as a means to reduce perceived latency in conversation. While a study
investigating a gesture accompanied by a conversational filler has been reported [40], it is
unclear if gestures alone could have similar effects. In this section, we present some areas
of research that are relevant in various ways.

2.1. Embodied Conversational Agents

Text-based chatbots have been developed for various purposes. From simply re-
sponding to customers of an online shop to consulting on a financial product to invest
in, companies have introduced and applied text-based chatbots for their services. While
those chatbots are mainly designed to give information based on users’ requests, some are
more engaging with users. For example, Woebot [20] detects and diagnoses the depression
of users by have intimate conversations with them. Harlie [21] uses the user’s speech to
diagnose Parkinson’s disease. SERMO [22] communicates with users about their emotions
and events of daily life through text messages. These chatbot systems are cost-effective and
have no constraints on time and space. However, text-based communication is not enough
to give the users the same feeling one receives during an actual consultation. Therefore,
research on ECAs has increased to compensate for this deficiency.

ECAs have been used as human surrogates and can communicate with users verbally
and non-verbally. REA is an embodied virtual real estate agent that responds to users with
speech and gestures [24]. In a user study with REA, participants felt more engagement
and availability with a responsive agent than with an unresponsive agent. In teaching
children about emotions, researchers compared a chatbot using text and an ECA using
facial expressions and gestures [29]. The participants chose ECA over the chatbot because
it displayed more natural facial expressions, was intelligent and had a personality. Fur-
thermore, learning efficiency was evaluated positively with the ECA. In the SIMSENSEI
system [23], users can interact with a virtual human face-to-face for psychological counsel-
ing. Furthermore, researchers found that veterans answered more honestly and talked more
about their post-traumatic stress disorder (PTSD) symptoms in conditions communicating
with virtual humans than with actual counselors [47]. Moreover, having an appearance
imposes additional benefits of using ECAs, that is to say, recognizing each as an individual.
In a classroom management training system, trainees were exposed to a classroom with
multiple VH students [48]. Each of the VHs had a different appearance and voice, thus
giving the trainees the feeling of interacting with multiple people, when in fact, a single
person controlled all of them [15].

2.2. Reducing Perceived Latency in Conversation

Latency in conversation refers to the gap between the question and the answer. Delay
is often used interchangeably with latency. Research has been conducted on the effect of
latency on user perception in human–agent and human–robot interactions. Yang et al. [49]
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reported that the frustration and anger of the user increased when a time delay occurred
during a task-solving situation with robots. Similarly, the time delay reduced the users’
satisfaction and willingness to use the system in the future [34]. Furthermore, researchers
compared the effect of time delay (0, 1, 2, and 3 s) in human–robot interaction [36] and
found that users considered a delay of 1 s more natural than no delay.

Attempts to mitigate the negative effects of time delay in conversation with digital hu-
mans have been continually conducted. The researchers in [39] studied the conversational
fillers (CFs) of a robot controlled with the Wizard of Oz method and compared non-CF and
CF conditions in open-ended conversation. The users evaluated robots with CF conditions
as more alive, human-like, and likable than robots with non-CF conditions. Furthermore,
lexical CFs such as “Let me think” were rated higher than non-lexical CFs such as “Hmm.”
or “Aha.”. The researchers in [41] compared uncontextualized and contextualized fillers.
With uncontextualized fillers, the digital human says, “Hold on a minute,” regardless of
the context. With contextualized fillers, the digital human recognizes and reflects on the
user’s questions to determine what he or she says. For example, if the user asked about the
amount of an ingredient, the digital human would say, “Let’s see how much you need”. In
the results, contextualized fillers could mitigate the user-perceived latency more effectively
than uncontextualized fillers. Researchers also examined a filler that accompanied both
verbal and gestures [50]. In the study, participants watched videos of two digital humans
having conversations, in which momentary silents were included. In one condition, digital
humans said “Ummm” and touched their own chin during the silence, while exhibiting
nothing in another condition. The participants evaluated the silences as less embarrassing
when the filler was used.

2.3. Non-Verbal Cues in the Conversation

Non-verbal cues, such as eye gaze, facial expressions, gestures, and postures, signifi-
cantly influence real communication [42]. Not only verbal cues, but also non-verbal cues,
including leaning over, nodding gestures, and smiling expressions, could effectively build
rapport during communication [43]. Furthermore, gestures of understanding could build a
sense of a bond and rapport between clinicians and patients [44].

In some cases, facial expressions and gestures are more effective at delivering in-
formation compared to verbal cues. For example, in a study performed by Rogers [51],
participants watched videos in which speakers described objects or concepts and were
asked to rate their comprehension of the videos. He compared three video representation
conditions: audiovisual with lip and facial cues, audiovisual without lip and facial cues,
and audio alone. The result demonstrated that visual cues could significantly improve the
participants’ comprehension and that, with more noise, there was more dependency on
visual cues.

Likewise, non-verbal cues play important roles in human–agent and human–robot
interaction. Researchers have found that the embodied conversational agent’s nodding and
glancing influenced the avatar’s lifelikeness and fluidity of interaction [30]. Furthermore,
users felt more emotional connection and reliability with a virtual human who mimicked
the facial expression and intonation of the users [31].

In human–human interaction, speech and the corresponding behaviors occur simulta-
neously. However, the mismatch between speech and gestures of the speaker can affect the
listener’s perception. Cassell et al. [45] performed a user study comparing speech–gesture
mismatch and match conditions and found that participants considered the inaccuracy
of the conversation higher in the mismatch condition. The omission of information was
also higher in the mismatch condition. They also reported that listeners identified the
fundamental meanings of the utterances through the gestures of the speaker [46].

3. Materials

This section describes the physical setup and conversational digital human system we
used in the experiments.
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We prepared an office-like room consisting of a 65-inch TV, a table, and partitions. A
similar virtual environment was implemented and rendered on the TV screen, to mimic a
natural face-to-face conversation between two people sitting on each side of the table (see
Figures 1 and 2). We used the Unity game engine of version 2019.4.21.f1 (https://unity.com)
to render the virtual environment on the TV screen.

Figure 1. The experimental setup for Study 1.

(a) (b)

Figure 2. The schematics of the experimental space for (a) Study 1 and (b) Study 2.

Regarding digital humans, we used rigged 3D human models. We used Character
Creator 3 (https://www.reallusion.com/character-creator/) to generate the 3D human
models. We first collected photos from lab members and used them as the input reference
images, from which the software generated the 3D human models. From the generated 3D
human models, we modified the appearance of the 3D human models to have different
clothing, hairstyles, skin colors, and facial features, but with similar sizes. A total of eight
3D human models were created, four females and four males (see Figure 3). The 3D human
models were imported and placed behind a table. with a monitor and keyboard. The
monitor and keyboard were placed for one of the gestural fillers used in the experiments.

https://unity.com
https://www.reallusion.com/character-creator/
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Figure 3. The 3D human models used in the studies.

For the conversational ability of the digital human, we exploited the Wizard of Oz
paradigm; in other words, an experimenter behind the scene controlled the digital human
while users were oblivious to the agency. For that, we designed structured conversations
with predetermined question and answer sets, and audio files for the answers were pre-
generated in various voices using Typecast (https://typecast.ai/ko). A separate graphical-
user-interface (GUI)-based control program was implemented for the experimenter to
trigger answers or to change the configuration of the conversational system, including the
appearance of the digital human, gestural fillers to exhibit, and voice. Both the control
program and the Unity-based digital human rendering program were run on the same local
machine to avoid network delay. For natural gaze behavior and lip sync, we used Final IK
(http://root-motion.com/) and SALSA LipSync (https://crazyminnowstudio.com/unity-
3d/lip-sync-salsa/) In addition, we prepared two gesture animations: a thinking gesture
and a typing-a-keyboard gesture (see Figure 4).

(a) (b)

Figure 4. (a) The thinking motion and (b) typing motion.

4. Study 1

In this section, we report our user study performed to investigate the effects of congru-
ency or incongruency between conversation types (informative and casual) and gestural
fillers (typing and thinking) on the user’s perception.

4.1. Method

We used a with-in subjects design with four conditions: two mismatch conditions
(informative conversation with thinking motion (Figure 4a) and casual conversation with
typing motion (Figure 4b)) and two match conditions (informative conversation with typing
motion and casual conversation with thinking motion). Two informative conversation
sets and two casual conversation sets were used. Each conversation set consisted of eight
question–answer turns and did not overlap. Table 1 shows one of the casual and informative
conversation sets. Considering the previous study where participants tended to be annoyed
regardless of the filler when delays occurred every time [41], we set only four delays out of

https://typecast.ai/ko
http://root-motion.com/
https://crazyminnowstudio.com/unity-3d/lip-sync-salsa/
https://crazyminnowstudio.com/unity-3d/lip-sync-salsa/
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eight turns. In every even turns, a latency of 8 seconds occurred, and the digital human
behaved according to the conditions. In the conditions with typing motion, the digital
human turned his or her body toward the computer and exhibited typing on the keyboard
for 8 seconds. After 8 seconds, the digital human turned his or her body back to the user
and answered the question. In the conditions with thinking motion, the digital human
exhibited thinking motion while touching his or her chin for 8 seconds. In every odd
turn without the latency, the digital human answered the question after 0.9 seconds for
naturalness [37].

The participants experienced all four conditions, and the order of conditions was
counterbalanced and randomized. In all conditions, the participants communicated with
four different digital humans (see the first row of Figure 3), and the digital humans’ order
was also randomized with the Latin square method.

Table 1. Conversation examples and the locations of delayed answers.

Conversation Type Delay

Casual Informative Study 1 Study 2

1 What do you do for fun?
How many cafeterias are there

in this campus? non-delay non-delay

2 Do you have any instrument you can play? How much is breakfast? delay

three delays
were randomized

3 Is there any exercise you do regularly? How much is lunch in cafeteria? non-delay

4 How do you handle your stress?
Can you tell me the hours of operation

of the central library? delay

5 Where was your last overseas trip?
How many books can I borrow
at a time in the central library? non-delay

6 Where do you want to travel abroad the most? Where is the central library? delay

7
Where is your favorite

domestic travel destination?
On which floor can I use a laptop

in the library? non-delay

8
Do you have any vacation plans

for next summer?
What application should I use

to take a seat in the library? delay non-delay

4.1.1. Procedure

After a brief explanation, the participant answered a pre-questionnaire using a tablet.
The participant sat 1.3 m away from a 65-inch display with a conversation card consisting
of eight questions based on the experimental condition (Figures 1 and 2a). For a natural
start of the conversation, the digital human stared at a computer first, then turned his or
her body after the participant sat down and said, “Hello, nice to meet you. Ask whatever
you want”.

The participants asked each of the eight questions in order, and the digital human
answered according to the conditions. We used the pre-recorded audio files to eliminate
unintended latency, which might be caused by NLP or network issues. The experimenter
played the appropriate audio file by pressing a button immediately after the participant ver-
balized the question. After each condition, the participants filled out a post-questionnaire.
At the end of the experiment, participants filled out open-ended questions, which included
comments for the study, their preferred conditions, as well as the reasons. The whole
process was recorded, and informed consent was obtained from all participants involved
in the experiment.

4.1.2. Measurements

The pre-questionnaire included questions about demographics, prior experiences
with digital humans, and the Negative Attitudes towards Robots Scale (NARS) [52]. Prior
experiences with digital humans were measured on a 7-point Likert scale (1: not at all, 7:
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everyday), and for the NARS, we chose six items relevant to our studies and measured on
a 5-point Likert scale, from 1: strongly disagree to 5: strongly agree.

In the post-questionnaire, we measured the following constructs on a 5-point Likert
scale (1: strongly disagree to 5: strongly agree) at the end of each condition. The first four
were from the research of Boukaram et al. [41], and the latter two were from the research of
Carpinella et al. [53]:

• User-perceived latency: We measured how appropriate the response time was for
participants in each condition. “The response time of the digital human I just talked to
was appropriate”.

• Behavioral naturalness: The participants measured the perceived behavioral natural-
ness of the digital human during the latency. “The gesture of the digital human I just
talked to was natural”.

• Willingness: The participants evaluated how willing they would be to interact with the
digital humans. “I am willing to talk to the digital human I just talked to next time”.

• Impression: The participants evaluated the impression of the digital human. “I had a
good impression of the digital human I just talked to”.

• Discomfort and competence: We used RoSAS [53] to measure these constructs. Each
included three questions, and we averaged the ratings per each construct. The dis-
comfort questions asked about the awkwardness, scariness, and strangeness of the
digital human. Questions for competence were about the reliability, competence, and
interactiveness of the digital human.

4.2. Participants

We recruited 14 participants (10 males and 4 females) from a local university who speak
Korean as their native language. The average age of the participants was 25.1 (SD = 4.43).
The participants had little experience in conversations with digital humans (M = 1.39,
SD = 0.86). The participants’ majors were diverse, including computer engineering, French,
and Philosophy.

4.3. Hypotheses

Based on the literature review, we formulated the following hypotheses:

H1 In the casual conversation type, the participants will evaluate the digital human with
thinking motion more positively compared to one with typing motion.

H2 In the informative conversation type, the participants will evaluate the digital human
with typing motion more positively compared to one with thinking motion.

4.4. Results

For discomfort and competence, we used the averaged scores of the ratings for three
questions, respectively (Cronhach’s α = 0.753 and 0.829). Considering our study design and
the ordinal scales of the measures, we performed Friedman tests for each construct and
Wilcoxon signed-rank tests for the pairwise comparisons with Bonferroni adjustment, both
with a significance level of 0.05. Our main findings are summarized in Figure 5 and Table 2.

We found statistically significant main effects of the conditions on user-perceived
latency, behavioral naturalness, and competence. Pairwise comparisons revealed that
participants felt thinking gestures were more natural than typing gestures for casual
conversation (p = 0.012) and that informative conversation with typing gestures was more
natural than casual conversation with typing gestures (p = 0.006). Regarding digital humans’
competence, participants gave higher scores for the digital humans who exhibited typing
gestures for informative conversation compared to those who exhibited typing gestures
during casual conversation (p = 0.002). While a significant main effect of the conditions
on user-perceived latency was reported, the post hoc test did not find any differences
between conditions.

We further analyzed the data by grouping them over the match and mismatch con-
ditions. Casual thinking and informative typing were considered as match conditions
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and the other two as mismatch conditions. Wilcoxon signed-rank tests were performed
on the measures at a 5% significant level. The results showed that there were statistically
significant differences between match and mismatch conditions on user-perceived latency
(p = 0.004) and behavioral naturalness (p = 0.004).

Regarding the NARS, we averaged the ratings (Cronhach’s α = 0.671) and performed
Pearson correlation tests between the NARS score and each construct; however, we did not
find any significant correlations.

(a) (b) (c)

Figure 5. The results of (a) user-perceived latency, (b) behavioral naturalness, and (c) competence.
(*: p < 0.05, **: p < 0.01)

Table 2. Summary of the Friedman test results.

χ2 p-Value

User-perceived latency 9.246 0.026

Behavioral naturalness 13.720 0.003

Willingness 1.316 0.725

Impression 0.721 0.868

Competence 13.925 0.003

Discomfort 1.250 0.741

4.5. Discussion

Overall, our results indicate whether conversation and gesture types are matched or
not has a strong effect on the perception of latency in conversation with digital humans.
Participants were more tolerant of the delays towards digital humans who exhibited appro-
priate gestures. However, the appropriateness of the gesture varied by the conversation.

In this study, we divided question–answer types of conversation into two groups:
informative and casual. In the casual category, questions were related to one’s own informa-
tion, thoughts, or past experiences; in contrast, questions in the informative conversation
type were related to objective facts, such as bus fare or a library’s closing time. In other
words, if the answerer were an actual human, answers for casual conversation could be
obtained by thinking, and for informative conversation, answers could be acquired by
searching external sources, such as the Internet. Interestingly, participants, in general,
expected similar behavior from digital humans (Figure 5b, Table 2). In casual conversation,
participants felt digital humans exhibiting the thinking gesture were more natural than ones
with typing, i.e., searching the Internet gesture (partially supporting H1). However, the dif-
ferences between the gestures in perceived naturalness were not significant in informative
conversation. This might be related to how participants considered digital humans, i.e.,
whether they thought of digital humans as social beings or mere technology. Participant
P1’s comment, “I thought that the digital human has all of the information, so he pretends to
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think”, is in line with this speculation. Similar to P1, some participants might think that the
digital human knows everything, thus retrieving the information internally might seem
better. Therefore, for them, the digital being using the Internet, i.e., external sources, to find
information might seem awkward.

Regarding user-perceived latency, the mismatch between conversation and gesture
might have triggered the recognition of the delays and/or reassessment of digital humans
(Figure 5a, Table 2). As sensorimotor incongruency leads to breaks in presence in immersive
virtual environments, inappropriate gestures could have led to breaks in social presence
with digital humans, therefore reducing their tolerance of delays. It could have made
participants focus—otherwise distracted—on the delay moments. While we are oblivious
to the reasons yet, our results strongly indicate that participants felt less delay when digital
humans exhibited appropriate gestures, i.e., matched with the context.

In the competence of the digital human, regardless of the gestural filler, the informative
conversation type had a higher score than the casual conversation type (Figure 5c, Table 2).
The reason seems to be that the informative conversation type is based on objective facts,
contrary to the casual conversation type.

5. Study 2

In this section, we present our second study performed to compare the effects of
conversational and gestural fillers on users’ perception of the digital human and the latency
in conversation. We again used two conversation types: informative and casual, and
chose the appropriate gestural filler per each conversation type based on the results of
Study 1. The filler types compared in this study were non-filler, conversational filler only,
gestural filler only, and gestural filler accompanied by conversational filler (NF, CF, GF, and
GCF, respectively).

5.1. Method

We used a with-in subjects design with two independent variables: conversation type
and filler type. Each participant experienced a total of eight conditions (two conversation
types × four filler types). We used the typing and thinking motions as gestural fillers for
informative and casual conversation, respectively. Considering that the lexical conversa-
tional filler was better than the non-lexical conversational filler at mitigating user-perceived
latency [39], we used “I am searching for information” and “Please wait a minute” as the
conversational fillers for informative and casual conversation, respectively. The duration
of the utterances for each sentence was approximately the same (2 s) in Korean. The
conversational fillers were initiated three seconds after the participants’ utterances ended
(Figure 6).

Figure 6. Experimental conditions (NF, CF, GF, and GCF).

Four informative conversation sets and four casual conversation sets were used. Each
conversation set consisted of eight question–answer turns and did not overlap. To prevent
participants from recognizing patterns of latency occurrence, the order of delay and non-
delay turns was randomized. We set the first and last turns to be non-delay turns, and in
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between, we randomly assigned three delay turns, but not three consecutive times. In the
non-delay turns, the digital human answered the question after 0.9 s for naturalness [37].
In the delay turns, the digital human exhibited gestures according to the condition for eight
seconds. The participants experienced all eight conditions, and in each condition, they
interacted with different digital humans (Figure 3). The orders of conditions and digital
humans were counter-balanced and randomized with the Latin square method.

5.1.1. Procedure

In Study 1, we observed that some participants kept looking downward, where they
held the conversation card, instead of looking at the digital human and that some lost track
of the order of questions. To address these issues, we placed a table on the participants’
side and let them hold a tablet PC above the table. The tablet PC displayed one question at
a time (Figures 2b and 7).

The rest of the procedure was the same as in Study 1 (cf. Section 4.1.1).

Figure 7. The experimental setup.

5.1.2. Measurements

We used the same pre- and post-questionnaires used in Study 1 (cf. Section 4.1.2). In
addition, we analyzed how much the participants looked at the digital human during the
eight seconds of latency from the recorded videos.

5.2. Participants

A total of 32 participants (10 males and 22 females) recruited from a local university
volunteered in this study (mean age: 21.88, SD = 2.56). All of them speak Korean as their
mother tongue, and they had little or no prior experience in conversation with digital
humans (M = 1.17, SD = 0.57). We excluded those who participated in Study 1.

5.3. Hypotheses

Based on the literature review and our study design, we formulated the following
hypotheses:

H1 The CF, GF, and GCF conditions will receive higher scores than NF for user-perceived
latency.

H2 The GF and GCF conditions will receive higher scores than CF and NF for behavioral
naturalness.

H3 The CF and GCF conditions will receive higher scores than GF and NF for willingness
and impression.

H4 The GCF and GF conditions will receive higher scores than CF and NF for discomfort.

5.4. Results

For discomfort and competence, we used the averaged scores of the ratings for three
questions, respectively (Cronhach’s α = 0.733 and 0.780). To compare the effects of fillers,
we used mean ratings over conversation types per filler condition per participant in this
analysis. We performed Friedman tests on each subjective measure and used Wilcoxon
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signed-rank tests for pairwise comparisons with Bonferroni adjustment applied to the
p-values. The significance level was set to 0.05 for all statistical analyses. Our results are
summarized in Table 3 and Figure 8.

We found statistically significant main effects of filler types on all measures. We
present the summarized results of pairwise comparisons in connection with the hypotheses
in the following itemized list:

• User-perceived latency : There were significant differences between NF and other
fillers (CF, GF, and GCF > NF, in all p < 0.001), supporting H1. We also found a
significant difference between CF and GCF (p = 0.036). However, the results did not
reveal any statistical differences between GF and GCF and between GF and CF (See
Figure 8a and Table 3).

• Behavioral naturalness : Pairwise comparisons revealed that there were statistically
significant differences between NF and GF (p < 0.001), NF and GCF (p < 0.001), CF and
GF (p < 0.001), and CF and GCF (p < 0.001), supporting H2. No statistical differences
were found between NF and CF and GF and GCF (See Figure 8b and Table 3).

• Willingness : We found significant differences between NF and other conditions
(p = 0.025, p < 0.001, p < 0.001, respectively, in the order of CF, GF, GCF), between CF
and GF (p = 0.004), and between CF and GCF (p = 0.021). There was no statistical
difference between GF and GCF. These results contradict our hypothesis H3 (See
Figure 8c and Table 3).

• Impression : Our post hoc tests indicated statistically significant differences between
NF and GF (p < 0.001), NF and GCF (p < 0.001), CF and GF (p < 0.001), and CF and
GCF (p = 0.011). We, however, did not find differences between NF and CF and GF and
GCF. The results for impression also do not support H3 (See Figure 8d and Table 3).

• Discomfort : Statistically significant differences were found between NF and GF
(p < 0.001), NF and GCF (p = 0.031), and CF and GF (p = 0.001). In general, NF and CF
received higher scores compared to GF and GCF, partially supporting H4. We did not
find any statistically significant differences between NF and CF, CF and GCF, and GF
and GCF (See Figure 8e and Table 3).

• Competence : Although we did not set any hypotheses on competence with regard
to filler conditions, our results revealed statistically significant differences between
NF and GF (p < 0.001), NF and GCF (p < 0.001), CF and GF (p = 0.004), and CF and
GCF (p = 0.022). In general, participants considered digital humans competent for the
conditions accompanying gestural fillers (See Figure 8f and Table 3).

With regard to the participants’ gaze behavior during the delayed responses, one of
the experimenters went over the recordings frame by frame and calculated the average
time looking at the digital human per each filler condition. Although the nature of the time
is an interval, our data failed to pass the Shapiro–Wilk normality test; thus, we decided to
perform a non-parametric Friedman test for the gaze behavior. The Friedman test revealed
a statistically significant main effect of filler types on gaze behavior (χ2 = 28.809, p < 0.001).
The Wilcoxon signed-rank test with Bonferroni correction performed on each pair showed
statistically significant differences between NF and GF (p < 0.001), NF and GCF (p < 0.001),
CF and GF (p = 0.004), and CF and GCF (p = 0.017). However, statistically significant
differences between NF and CF and GF and GCF were not found (see Figure 9).

No statistically significant correlations were found between the NARS and measures;
however, there was a slight tendency for discomfort (Pearson’s r = 0.338, p = 0.058). Partici-
pants with higher NARS scores tended to rate higher discomfort for digital humans.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Results of the subjective measures: (a) user-perceived latency, (b) behavioral naturalness,
(c) willingness, (d) impression, (e) discomfort, and (f) competence. (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Table 3. Summary of the Friedman test results.

χ2 p-Value

User-perceived latency 59.477 <0.001

Behavioral naturalness 66.031 <0.001

Willingness 50.109 <0.001

Impression 42.301 <0.001

Discomfort 22.510 <0.001

Competence 40.208 <0.001

Figure 9. Results of the gaze time during the delayed responses. (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

5.5. Discussion

Our results show that CF, GF, and GCF can mitigate user-perceived latency more than
NF (supporting H1). In the previous study, there were attempts to reduce the perception of
latency using conversational fillers of digital humans [39,41]. We found that the gestural
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filler can also effectively mitigate user-perceived latency (Figure 8a, Table 3). Even though
the latency was eight seconds in all conditions, the participants felt the length of latency
differently. For the NF condition, participant P17 commented “The response time was so slow
that I didn’t feel like a real conversation.”. Regarding GF condition, participant P22 mentioned

“I think the answer time was faster than other digital humans.”. In the delay situations, the digital
human acting dormant, could lead to breaks in social presence of the participants, therefore
increasing their perceived latency.

According to behavioral naturalness, our results statistically support H2 (Figure 8b,
Table 3). For CF condition, P13 said, “When the digital human says, “Please wait a minute.”
I was a little distant. It would be more natural with a gesture or facial expression”. Similar to
P13, some participants for NF commented that they felt awkward and that it would be
better for digital humans to take some action than just staring ahead. Furthermore, some
participants for the CF and GCF conditions commented that it would be more natural
if the digital human says things like “Hmm..” instead of “Please wait a minute” or “I am
looking for information”. These comments differ from previous studies’ results that the lexical
conversational filler is better than the non-lexical conversation filler [41]. It seems that more
research related to the conversation filler of digital humans is needed.

For willingness, the GF and GCF conditions received statistically higher scores than
NF and CF (Figure 8c, Table 3). The participants evaluated that they would like to talk
more with digital humans using the gestural filler in the future. Participant P29 for GCF
commented “I felt like I was having a real conversation. I want to talk to her more”. It seems that
gesture fillers can improve the usability of digital humans.

Regarding impression, the GF and GCF conditions received significantly higher evalu-
ation than NF and CF (Figure 8d, Table 3). The participants had a good impression of the
digital humans with gestural fillers. Participant P20 for the NF condition said “Unlike other
digital humans, it was a little scary to say nothing and blink when the delay occurred”. However,
P20 and P31 for the GCF condition commented “I felt like he was likable and friendly.” and “I
felt like I was talking about a vacation plan with my real friend.”, respectively. This is in line with
the previous study that non-verbal cues play an important role in building rapport and
bonding during the conversation [43,44]. Furthermore, it is one of the main advantages of
embodied conversational agents that they can utilize their bodies like actual humans.

Our results partially support H4. The participants felt more discomfort with digital
humans in the NF than the GF and GCF conditions (Figure 8e, Table 3). In the NF con-
dition, the participants could have experienced breaks in social presence due to digital
humans who did not take any action during the latency, unlike real people. Participant P15
commented “I felt uncomfortable when he stared at me doing nothing”.

The participants evaluated the digital humans using the gestural filler as more compe-
tent (Figure 8f, Table 3). In the informative conversation type, it seems that the participants
considered the digital humans smart enough to use a computer. Participant P4 said “I
think she did not understand me because she did not take any action saying, “I am looking for
information.” I felt a little repulse.” for the CF condition. The participants were confused
about whether the digital human understood their question when only conversational
fillers were provided.

The participants focused visually on the digital human for GF and GCF more than NF
and CF (Figure 9). It can be assumed that the gestural filler, in which the digital human
takes specific actions, drew the participant’s visual focus, rather than the conversational
filler or non-filler, in which the digital human does nothing outwardly. However, there was
no significant difference between the questionnaires and the gaze time of each participant.

6. Conclusions

In this paper, we demonstrated the potential of gestural fillers when latency occurs
in the conversation with embodied conversational agents, i.e., digital humans. In Study 1,
we examined whether the congruency between the gestural fillers and conversation types
affects the user’s perception of the embodied conversational agent. In two congruency
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conditions (informative conversation with typing motion and casual conversation with
thinking motion), the participants evaluated the digital humans as more natural, as well as
felt less latency, addressing RQ2. Furthermore, in Study 2, we further compared the effects
of conversational and gestural fillers on the user’s perception and gaze behavior, which
gave answers to our RQ1 and RQ3. Our results indicated that gestural fillers could mitigate
user-perceived latency more effectively than conversational fillers and make digital humans’
behavior more natural. In addition, the gestural fillers positively affected users’ willingness
to talk to and impression of the digital humans, as well as their perceived competence,
while reducing the discomfort the users felt. It goes without saying that gestural fillers
were more effective in drawing users’ attention than conversational fillers.

While several interesting findings were drawn, there also are a few limitations to be
noted. First, the digital human repeatedly exhibited the same gestural and conversational
fillers per condition. For example, we used thinking motion with “Wait a minute” in the
casual conversation type and typing motion with “I am searching for information” in the
informative conversation type. Some participants pointed out that, “The digital human
acted with the same pattern in three out of eight turn-takings.” and she/he also stated “It
was a little boring.” and “If the digital human made various motions or used different words,
the conversation would be less boring.”. To address this issue, we plan to build a gesture-
generation model to generate appropriate gestural fillers based on the given conversation
and context. Furthermore, the participants pointed out that the digital humans’ intonation,
gestures, and facial expressions were unnatural compared to real people.

Those unnatural intonations, gestures, and facial cues might have been more sub-
stantial than latency; thus, further comparison studies should be conducted for better
usability of conversational digital humans. Regarding latency, we utilized pre-determined
scripts and pre-recorded audio files to exclude unintended latency factors, e.g., networking,
inference time, etc. Those omitted factors should be mathematically modeled to determine
when to initiate fillers in practice. Finally, all participants were Koreans; thus, the cultural
diversity of the participants was limited. The gestures and utterances used in this study
can be perceived differently outside Korea, similar to the meaning of nodding one’s head in
India differs from most other countries. Therefore, future work should consider including
participants from various cultural backgrounds.
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