
Citation: Hsia, C.-H.; Lee, Y.-H.; Lai,

C.-F. An Explainable and Lightweight

Deep Convolutional Neural Network

for Quality Detection of Green Coffee

Beans. Appl. Sci. 2022, 12, 10966.

https://doi.org/10.3390/

app122110966

Academic Editors: Charles Tijus,

Kuei-Shu Hsu, Kuo-Kuang Fan,

Cheng-Chien Kuo, Teen-Hang Meen

and Jih-Fu Tu

Received: 18 September 2022

Accepted: 25 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Explainable and Lightweight Deep Convolutional Neural
Network for Quality Detection of Green Coffee Beans
Chih-Hsien Hsia 1,2,* , Yi-Hsuan Lee 2 and Chin-Feng Lai 2,*

1 Department of Engineering Science, National Cheng Kung University, Tainan City 70101, Taiwan
2 Department of Computer Science and Information Engineering, National Llan University,

Yilan County 26041, Taiwan
* Correspondence: hsiach@niu.edu.tw (C.-H.H.); cinfon@ncku.edu.tw (C.-F.L.)

Abstract: In recent years, the demand for coffee has increased tremendously. During the production
process, green coffee beans are traditionally screened manually for defective beans before they
are packed into coffee bean packages; however, this method is not only time-consuming but also
increases the rate of human error due to fatigue. Therefore, this paper proposed a lightweight deep
convolutional neural network (LDCNN) for a quality detection system of green coffee beans, which
combined depthwise separable convolution (DSC), squeeze-and-excite block (SE block), skip block,
and other frameworks. To avoid the influence of low parameters of the lightweight model caused
by the model training process, rectified Adam (RA), lookahead (LA), and gradient centralization
(GC) were included to improve efficiency; the model was also put into the embedded system. Finally,
the local interpretable model-agnostic explanations (LIME) model was employed to explain the
predictions of the model. The experimental results indicated that the accuracy rate of the model could
reach up to 98.38% and the F1 score could be as high as 98.24% when detecting the quality of green
coffee beans. Hence, it can obtain higher accuracy, lower computing time, and lower parameters.
Moreover, the interpretable model verified that the lightweight model in this work was reliable,
providing the basis for screening personnel to understand the judgment through its interpretability,
thereby improving the classification and prediction of the model.

Keywords: green coffee bean; lightweight framework; deep convolutional neural network; explain-
able model; random optimization

1. Introduction

Coffee is a brewed beverage obtained by extracting in water the soluble components
of the roasted pits of green coffee beans, which is not only flavorful but contains various
levels of antioxidants and nutrients. Inoue et al. [1] conducted a prospective study with
90,452 subjects (including 43,109 men and 47,343 women) and found that hepatitis B and
C virus-positive patients who consume one to two cups of coffee per day have a lower
cirrhosis risk (relative risk = 50%) compared with that of those who almost never consumed
coffee. Additionally, hepatitis B and C virus-positive patients who consume four cups of
coffee per day have a lower cirrhosis and hepatitis risk (relative risk = 25%) compared with
that of those who almost never consumed coffee. According to Loftfield et al. [2], drinking
coffee is beneficial for heart health as caffeine can improve the cell processes in the blood
vessels, especially the proteins in the cells of the elderly. When consumed in moderation,
coffee can help prevent diseases like liver cancer, heart disease, dementia, or stroke. Hence,
coffee has been one of the most widely consumed beverages in the world.

After collection, coffee beans should be handled quickly; otherwise, they will smell
bad. Mature fruits will sink to the bottom of the tank after sun exposure and washing,
while immature or broken beans tend to float on top. Green coffee beans are then picked
out of the coffee fruit. Regardless of previous processing and selection, to remove defective

Appl. Sci. 2022, 12, 10966. https://doi.org/10.3390/app122110966 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110966
https://doi.org/10.3390/app122110966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2665-0821
https://doi.org/10.3390/app122110966
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110966?type=check_update&version=2

Appl. Sci. 2022, 12, 10966 2 of 18

beans, green coffee beans need to be manually selected; the selection process is a difficult
one due to the brewing, mildew, brokerage, or worm damage during the peeling of beans.
If defective beans are present before baking, chemical reactions may occur due to uneven
heating, resulting in chemical toxins which can be harmful to health [3]. Therefore, to
reduce labor costs, improve the quality of coffee, and increase profits, artificial intelligence
(AI) has been introduced to pick out defective beans. The accurate and fast selection of
defective beans using AI is an important automatic detection technology.

Many different algorithms have been applied to detect the quality of green coffee
beans. For example, Santos et al. [4] employed spectroscopy to analyze the correlation
between the quality of green coffee beans and near-infrared rays with a partial least square
regression (PLS) model to predict defective coffee beans. However, the cost of detection
instruments was too expensive; thus, it would be difficult to mass-produce. Oliveira
et al. [5] put green coffee beans into a dark box without external light, captured the image
through high-pixel RGB cameras, and converted RGB space colors to CIELAB. Later, they
used a Bayesian classifier to improve coffee quality prediction. However, the test required a
special environment, and the instrument cost was high. Arboleda et al. [6] extracted coffee
bean features such as area of the bean, perimeter, equivalent diameter, and percentage
of roundness, and employed an artificial neural network (ANN) and K nearest neighbor
(KNN) to automatically categorize the coffee beans. Using ANN, the classification achieved
score was 96.66%, while the classification score using KNN was at 84.12% [7]. Image-
processing techniques were used to control coffee bean quality by extracting RGB color
components based on 105 images of green coffee beans and 75 images of black beans with
high accuracy. However, only 180 green coffee beans were tested [6,7]; this may cause
poor stability during mass production due to the limited amount during testing. Hence,
scholars began to improve stability through deep learning (DL). Pinto et al. [8] developed a
convolutional neural network (CNN) that classified 13,000 green coffee beans images into
six defect types. They sorted defective beans from 72.5% (broken bean) to 98.7% (black
bean) accuracies, and the difference in the accuracy rate of detection in defective beans
led to poor generalization of the model. Wang et al. [9] used a lightweight model with
knowledge distillation (KD) and improved the accuracy of the training method to 91%,
with the model parameters at only 256, 779. Huang et al. [10] extracted 1000 pleasant coffee
beans and 1000 defective coffee beans and used image processing and data augmentation
to deal with the data. Next, they applied YoloV3 to divide good and bad beans which
had a recognition rate of 94.63%. Yang et al. [11] employed the CNN model based on
KD, spatial-wise attention module (SAM), and SpinalNet [12] to achieve an accuracy rate
of 96.54% on the F1 score. The recent progress in AI technology enables the labeling of
data and the use of neural network design to allow the machine to automatically learn the
data and the neural network to predict and make decisions based on the characteristics of
the learned data. Although a deep convolutional neural network (DCNN) can accurately
classify the images, it cannot be easily applied in embedded systems because its large Giga
floating-point operations per second (GFLOPS) is the most popular method for model
compression.

Quantization [13] and pruning technology are the most popular methods for model
compression. Quantization converts the weight of a floating-point type into an integer
type to reduce the amount of model parameters and computing while maintaining the
accuracy of the model. In [14], a model architecture design that reduces the amount of
model parameters and computation and also uses quantization technology and has a good
compression effect while maintaining the accuracy of the model is proposed. However,
there are many pruning-related methods, but they are rarely compared with other methods,
or these methods have better results depending on the dataset. Therefore, in [15], the
effect of different pruning on past research data is measured, as results show that pruning
can sometimes improve the accuracy but the effect is usually not more stable than when
using a better model architecture. Tang et al. [16] proposed an automatic pruning method,
which does not need to set pruning standards and parameters. It is suitable for various

Appl. Sci. 2022, 12, 10966 3 of 18

neural network architectures and compares with other pruning methods that can effectively
improve the compression ratio and reduce FLOPs. In [17], a network pruning method that
can identify structural redundancy in CNNs and prune filters in selected layers with the
most redundancy is proposed.

Generally, accuracy or evaluation indicators are very important for model efficiency
when using DCNN for prediction and decision-making. Furthermore, explainable AI (XAI)
will be lacking when DL technology is utilized. Hence, when using DL in models with high
accuracy, the complexity may be high, while the correlation and hidden information cannot
be explained through accuracy. Thus, scholars usually have difficulty understanding the
correlation between input and output and how the model achieves its purpose. As a result,
the uncertainty remains if people blindly believe in the model’s prediction. To solve this
problem, XAI should be introduced to determine whether the prediction and evaluation of
the decision making of the model based on certain characteristics are reasonable. Only in
this way can the reliability of the model and quality detection be ensured in the future.

To deal with the above issues, this paper proposes a lightweight deep convolutional
neural network (LDCNN) to detect the quality of green coffee beans. First, the features of
defective coffee beans through RGB images were extracted, and the model was employed to
classify the beans. Next, rectified Adam (RA), lookahead (LA), and gradient centralization
(GC) were utilized to train the optimization methods to improve the accuracy of the model,
enabling the model to operate in embedded systems.

2. Fundamental Knowledge
2.1. ResNet

To address the issue of gradient descent in DCNN, ResNet [18] introduced a residual
learning framework, which was named a building block and is shown in Figure 1. By doing
so, the training of deep networks was much easier while the accuracy and rate of the model
remained high.

Appl. Sci. 2022, 12, 10966 3 of 19

effectively improve the compression ratio and reduce FLOPs. In [17], a network pruning

method that can identify structural redundancy in CNNs and prune filters in selected lay-

ers with the most redundancy is proposed.

Generally, accuracy or evaluation indicators are very important for model efficiency

when using DCNN for prediction and decision-making. Furthermore, explainable AI

(XAI) will be lacking when DL technology is utilized. Hence, when using DL in models

with high accuracy, the complexity may be high, while the correlation and hidden infor-

mation cannot be explained through accuracy. Thus, scholars usually have difficulty un-

derstanding the correlation between input and output and how the model achieves its

purpose. As a result, the uncertainty remains if people blindly believe in the model’s pre-

diction. To solve this problem, XAI should be introduced to determine whether the pre-

diction and evaluation of the decision making of the model based on certain characteristics

are reasonable. Only in this way can the reliability of the model and quality detection be

ensured in the future.

To deal with the above issues, this paper proposes a lightweight deep convolutional

neural network (LDCNN) to detect the quality of green coffee beans. First, the features of

defective coffee beans through RGB images were extracted, and the model was employed

to classify the beans. Next, rectified Adam (RA), lookahead (LA), and gradient centraliza-

tion (GC) were utilized to train the optimization methods to improve the accuracy of the

model, enabling the model to operate in embedded systems.

2. Fundamental Knowledge

2.1. ResNet

To address the issue of gradient descent in DCNN, ResNet [18] introduced a residual

learning framework, which was named a building block and is shown in Figure 1. By

doing so, the training of deep networks was much easier while the accuracy and rate of

the model remained high.

Figure 1. Structure of building block.

2.2. MobileNetV3

MobileNetV3 [19] was put forward by Google in 2019 to deal with lightweight, whose

bottleneck block can make the model lightweight and reduce GFLOPS using depthwise

separable convolution (DSC), inverted residual block (IRB)[20], and squeeze-and-excite

block (SE block)[21], as illustrated in Figure 2.

Figure 1. Structure of building block.

2.2. MobileNetV3

MobileNetV3 [19] was put forward by Google in 2019 to deal with lightweight, whose
bottleneck block can make the model lightweight and reduce GFLOPS using depthwise
separable convolution (DSC), inverted residual block (IRB)[20], and squeeze-and-excite
block (SE block)[21], as illustrated in Figure 2.

Appl. Sci. 2022, 12, 10966 4 of 18Appl. Sci. 2022, 12, 10966 4 of 19

Figure 2. Structure of MobilenetV3.

DSC comprises depthwise convolution (DC) and pointwise convolution (PC): the for-

mer aims to compress the channel of images, while the latter improves or reduces the

dimensions of images of 1 × 1 pixel. Compared with an ordinary convolutional layer (CL),

DSC can largely reduce GFLOPS without influencing performance; thus, it is now a

widely used framework in lightweight models. The residual block of ResNet employs the

general convolution layer to enhance dimensions and extract characteristics and connects

two layers of large dimensions with longer GFLOPS. However, IRB connects two layers

of small dimensions and extracts features of images through PC and DC, which can de-

liver high accuracy while reducing GFLOPS (see Figure 3).

Figure 3. Comparison of two frameworks: (a) residual block, (b) IRB.

As a lightweight attention module, the SE block, as shown in Figure 4, involves the

relations among each channel and makes the model learn characteristics through the loss

function. Thus, the weights of effective features increase while the weights of unimportant

features decrease, allowing the model to learn varied importance levels of channel fea-

tures to improve the accuracy.

Figure 2. Structure of MobilenetV3.

DSC comprises depthwise convolution (DC) and pointwise convolution (PC): the
former aims to compress the channel of images, while the latter improves or reduces the
dimensions of images of 1 × 1 pixel. Compared with an ordinary convolutional layer
(CL), DSC can largely reduce GFLOPS without influencing performance; thus, it is now a
widely used framework in lightweight models. The residual block of ResNet employs the
general convolution layer to enhance dimensions and extract characteristics and connects
two layers of large dimensions with longer GFLOPS. However, IRB connects two layers of
small dimensions and extracts features of images through PC and DC, which can deliver
high accuracy while reducing GFLOPS (see Figure 3).

Appl. Sci. 2022, 12, 10966 4 of 19

Figure 2. Structure of MobilenetV3.

DSC comprises depthwise convolution (DC) and pointwise convolution (PC): the for-

mer aims to compress the channel of images, while the latter improves or reduces the

dimensions of images of 1 × 1 pixel. Compared with an ordinary convolutional layer (CL),

DSC can largely reduce GFLOPS without influencing performance; thus, it is now a

widely used framework in lightweight models. The residual block of ResNet employs the

general convolution layer to enhance dimensions and extract characteristics and connects

two layers of large dimensions with longer GFLOPS. However, IRB connects two layers

of small dimensions and extracts features of images through PC and DC, which can de-

liver high accuracy while reducing GFLOPS (see Figure 3).

Figure 3. Comparison of two frameworks: (a) residual block, (b) IRB.

As a lightweight attention module, the SE block, as shown in Figure 4, involves the

relations among each channel and makes the model learn characteristics through the loss

function. Thus, the weights of effective features increase while the weights of unimportant

features decrease, allowing the model to learn varied importance levels of channel fea-

tures to improve the accuracy.

Figure 3. Comparison of two frameworks: (a) residual block, (b) IRB.

As a lightweight attention module, the SE block, as shown in Figure 4, involves the
relations among each channel and makes the model learn characteristics through the loss
function. Thus, the weights of effective features increase while the weights of unimportant
features decrease, allowing the model to learn varied importance levels of channel features
to improve the accuracy.

Appl. Sci. 2022, 12, 10966 5 of 18Appl. Sci. 2022, 12, 10966 5 of 19

Figure 4. Structure of SE block.

2.3. Rectified Adam (RA)

RA [22] employs both the Adam [23] optimizer and warm-up [24] to optimize the

model. Unlike the general experimental algorithm that uses fixed intervals to reduce the

learning rate, warm-up initially uses a rather low-learning-rate training model. Later, dur-

ing the mechanism of warm-up, the learning rate increases gradually. When warm-up

ends, the general process continues (see Figure 5). As previously suggested [23], since the

initial value of model training is generated randomly and the model has no comprehen-

sion of the data, data loss will be large in the first epoch. Moreover, a large gradient causes

large weight changes every time. Hence, it is easy to correct the feature distribution of

data at the beginning of model training, while overfitting may occur frequently, or correc-

tion may be achieved only after multiple trainings. However, warm-up can address all

those issues.

During the training of the model, RA can automatically correct the learning rate

based on the degree of variation of the gradient and the number of samples. Therefore,

with the quick convergence of Adam, the convergence can avoid the local minimum and

reach the same results as the stochastic gradient descent (SGD) to make the training stable.

Figure 5. Learning rate changes in warm-up.

2.4. Lookahead (LA)

LA [25] initially generates fast and slow weights for the model separately and then

updates fast weights during the training. The slow weights are updated towards the last

fast weights after k batches. After each slow weight is updated, the fast weights are reset

to the current slow weights’ value. Hence, the model’s weight does not easily converge at

the local minimum. Figure 6 shows the contour map of the gradients. The LA optimization

method can help the model continue to converge to the local minimum.

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

L
ea

rn
in

g
 r

at
e

(%
)

Iteration

Figure 4. Structure of SE block.

2.3. Rectified Adam (RA)

RA [22] employs both the Adam [23] optimizer and warm-up [24] to optimize the
model. Unlike the general experimental algorithm that uses fixed intervals to reduce the
learning rate, warm-up initially uses a rather low-learning-rate training model. Later,
during the mechanism of warm-up, the learning rate increases gradually. When warm-up
ends, the general process continues (see Figure 5). As previously suggested [23], since the
initial value of model training is generated randomly and the model has no comprehension
of the data, data loss will be large in the first epoch. Moreover, a large gradient causes large
weight changes every time. Hence, it is easy to correct the feature distribution of data at
the beginning of model training, while overfitting may occur frequently, or correction may
be achieved only after multiple trainings. However, warm-up can address all those issues.

Appl. Sci. 2022, 12, 10966 5 of 19

Figure 4. Structure of SE block.

2.3. Rectified Adam (RA)

RA [22] employs both the Adam [23] optimizer and warm-up [24] to optimize the

model. Unlike the general experimental algorithm that uses fixed intervals to reduce the

learning rate, warm-up initially uses a rather low-learning-rate training model. Later, dur-

ing the mechanism of warm-up, the learning rate increases gradually. When warm-up

ends, the general process continues (see Figure 5). As previously suggested [23], since the

initial value of model training is generated randomly and the model has no comprehen-

sion of the data, data loss will be large in the first epoch. Moreover, a large gradient causes

large weight changes every time. Hence, it is easy to correct the feature distribution of

data at the beginning of model training, while overfitting may occur frequently, or correc-

tion may be achieved only after multiple trainings. However, warm-up can address all

those issues.

During the training of the model, RA can automatically correct the learning rate

based on the degree of variation of the gradient and the number of samples. Therefore,

with the quick convergence of Adam, the convergence can avoid the local minimum and

reach the same results as the stochastic gradient descent (SGD) to make the training stable.

Figure 5. Learning rate changes in warm-up.

2.4. Lookahead (LA)

LA [25] initially generates fast and slow weights for the model separately and then

updates fast weights during the training. The slow weights are updated towards the last

fast weights after k batches. After each slow weight is updated, the fast weights are reset

to the current slow weights’ value. Hence, the model’s weight does not easily converge at

the local minimum. Figure 6 shows the contour map of the gradients. The LA optimization

method can help the model continue to converge to the local minimum.

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

L
ea

rn
in

g
 r

at
e

(%
)

Iteration

Figure 5. Learning rate changes in warm-up.

During the training of the model, RA can automatically correct the learning rate based
on the degree of variation of the gradient and the number of samples. Therefore, with the
quick convergence of Adam, the convergence can avoid the local minimum and reach the
same results as the stochastic gradient descent (SGD) to make the training stable.

2.4. Lookahead (LA)

LA [25] initially generates fast and slow weights for the model separately and then
updates fast weights during the training. The slow weights are updated towards the last
fast weights after k batches. After each slow weight is updated, the fast weights are reset to
the current slow weights’ value. Hence, the model’s weight does not easily converge at the
local minimum. Figure 6 shows the contour map of the gradients. The LA optimization
method can help the model continue to converge to the local minimum.

Appl. Sci. 2022, 12, 10966 6 of 18Appl. Sci. 2022, 12, 10966 6 of 19

Figure 6. Principle of LA optimization.

2.5. Gradient Centralization (GC)

Gradient descent is of great importance to effectively and efficiently train a DCNN,

which can directly affect the model’s convergence speed and prediction accuracy. When

the model becomes larger, the gradient descent becomes more difficult, causing issues like

gradient vanishing, gradient exploding, or nonconvergence to affect the accuracy. To deal

with this, GC [26] was presented to make the gradient descent smoother and to normalize

the gradient before backward propagation, as described in Equation (1). GC operates di-

rectly on gradients by centralizing each column of convolutional layers and fully con-

nected layers to have zero mean; the gradient is then subtracted from its mean value and

sent back to continue the training of the model, as illustrated in Figure 7. Hence, the ab-

normal data will not affect the training process.

Figure 7. Sketch map for GC.

∅𝐺𝐶(∇𝑤𝑖
ℒ) = ∇𝑤𝑖

ℒ − 𝜇∇𝑤𝑖
ℒ (1)

where Wi denotes the weight matrix of CL or FCL. The gradient ∇𝑤𝑖
ℒ is obtained through

backward propagation of ℒ. After the calculation of mean value μ, average 𝜇∇𝑤𝑖
ℒ can be

realized, and ∅𝐺𝐶(∇𝑤𝑖
ℒ) is gained through GC.

2.6. Local Interpretable Model-Agnostic Explanations (LIME)

LIME [27], a local interpretable regression model, can provide the local area of the

sample to find a simple and interpretable model when faced with complicated models.

First, the images are separated into multiple sub-blocks; next, sub-blocks are randomly

disturbed, and their predictions of complicated models are observed; later, after obtaining

Figure 6. Principle of LA optimization.

2.5. Gradient Centralization (GC)

Gradient descent is of great importance to effectively and efficiently train a DCNN,
which can directly affect the model’s convergence speed and prediction accuracy. When
the model becomes larger, the gradient descent becomes more difficult, causing issues
like gradient vanishing, gradient exploding, or nonconvergence to affect the accuracy.
To deal with this, GC [26] was presented to make the gradient descent smoother and to
normalize the gradient before backward propagation, as described in Equation (1). GC
operates directly on gradients by centralizing each column of convolutional layers and
fully connected layers to have zero mean; the gradient is then subtracted from its mean
value and sent back to continue the training of the model, as illustrated in Figure 7. Hence,
the abnormal data will not affect the training process.

∅GC(∇wiL) = ∇wiL− µ∇wiL (1)

where Wi denotes the weight matrix of CL or FCL. The gradient ∇wiL is obtained through
backward propagation of L. After the calculation of mean value µ, average µ∇wiL can be
realized, and ∅GC(∇wiL) is gained through GC.

Appl. Sci. 2022, 12, 10966 6 of 19

Figure 6. Principle of LA optimization.

2.5. Gradient Centralization (GC)

Gradient descent is of great importance to effectively and efficiently train a DCNN,

which can directly affect the model’s convergence speed and prediction accuracy. When

the model becomes larger, the gradient descent becomes more difficult, causing issues like

gradient vanishing, gradient exploding, or nonconvergence to affect the accuracy. To deal

with this, GC [26] was presented to make the gradient descent smoother and to normalize

the gradient before backward propagation, as described in Equation (1). GC operates di-

rectly on gradients by centralizing each column of convolutional layers and fully con-

nected layers to have zero mean; the gradient is then subtracted from its mean value and

sent back to continue the training of the model, as illustrated in Figure 7. Hence, the ab-

normal data will not affect the training process.

Figure 7. Sketch map for GC.

∅𝐺𝐶(∇𝑤𝑖
ℒ) = ∇𝑤𝑖

ℒ − 𝜇∇𝑤𝑖
ℒ (1)

where Wi denotes the weight matrix of CL or FCL. The gradient ∇𝑤𝑖
ℒ is obtained through

backward propagation of ℒ. After the calculation of mean value μ, average 𝜇∇𝑤𝑖
ℒ can be

realized, and ∅𝐺𝐶(∇𝑤𝑖
ℒ) is gained through GC.

2.6. Local Interpretable Model-Agnostic Explanations (LIME)

LIME [27], a local interpretable regression model, can provide the local area of the

sample to find a simple and interpretable model when faced with complicated models.

First, the images are separated into multiple sub-blocks; next, sub-blocks are randomly

disturbed, and their predictions of complicated models are observed; later, after obtaining

Figure 7. Sketch map for GC.

2.6. Local Interpretable Model-Agnostic Explanations (LIME)

LIME [27], a local interpretable regression model, can provide the local area of the
sample to find a simple and interpretable model when faced with complicated models.
First, the images are separated into multiple sub-blocks; next, sub-blocks are randomly
disturbed, and their predictions of complicated models are observed; later, after obtaining

Appl. Sci. 2022, 12, 10966 7 of 18

many samples of features, the local similarity is defined through regression, and the XAI is
trained to explain and visualize complicated models as suggested in Equation (2).

explanatoion(x) =
argmin

{
L(f ,g,πx) + Ω(g)

}
g ∈ G

(2)

Initially, sample πx is divided into several sub-blocks; then, sub-blocks are randomly
disturbed to observe the predictions of the model f with high reviews. Next, a simple linear
regression model g is trained to explain the predictions, and L(f , g, πx) is used to measure
the differences between the complex model and the interpretation model. Ω(g) refers to a
measure of complexity to analyze and explain the judgment basis of the complex model for
the image (Figure 8).

Appl. Sci. 2022, 12, 10966 7 of 19

many samples of features, the local similarity is defined through regression, and the XAI

is trained to explain and visualize complicated models as suggested in Equation (2).

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑖𝑜𝑛(𝑥) =
𝑎𝑟𝑔𝑚𝑖𝑛{ℒ(𝑓,𝑔,𝜋𝑥) + 𝛺(𝑔)}

𝑔 ∈ 𝐺
 (2)

Initially, sample 𝜋𝑥 is divided into several sub-blocks; then, sub-blocks are ran-

domly disturbed to observe the predictions of the model f with high reviews. Next, a sim-

ple linear regression model g is trained to explain the predictions, and ℒ(𝑓, 𝑔, 𝜋𝑥) is used

to measure the differences between the complex model and the interpretation model.

𝛺(𝑔) refers to a measure of complexity to analyze and explain the judgment basis of the

complex model for the image (Figure 8).

Figure 8. Process of LIME.

3. Proposed Methodology

The proposed methodology and experiment process is shown in Figure 9. The dataset

and DA are described in the next section. In this section, image preprocessing and the

training process of the proposed model are explained.

Figure 9. Framework of the system.

Figure 8. Process of LIME.

3. Proposed Methodology

The proposed methodology and experiment process is shown in Figure 9. The dataset
and DA are described in the next section. In this section, image preprocessing and the
training process of the proposed model are explained.

Appl. Sci. 2022, 12, 10966 7 of 19

many samples of features, the local similarity is defined through regression, and the XAI

is trained to explain and visualize complicated models as suggested in Equation (2).

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑖𝑜𝑛(𝑥) =
𝑎𝑟𝑔𝑚𝑖𝑛{ℒ(𝑓,𝑔,𝜋𝑥) + 𝛺(𝑔)}

𝑔 ∈ 𝐺
 (2)

Initially, sample 𝜋𝑥 is divided into several sub-blocks; then, sub-blocks are ran-

domly disturbed to observe the predictions of the model f with high reviews. Next, a sim-

ple linear regression model g is trained to explain the predictions, and ℒ(𝑓, 𝑔, 𝜋𝑥) is used

to measure the differences between the complex model and the interpretation model.

𝛺(𝑔) refers to a measure of complexity to analyze and explain the judgment basis of the

complex model for the image (Figure 8).

Figure 8. Process of LIME.

3. Proposed Methodology

The proposed methodology and experiment process is shown in Figure 9. The dataset

and DA are described in the next section. In this section, image preprocessing and the

training process of the proposed model are explained.

Figure 9. Framework of the system.

Figure 9. Framework of the system.

Appl. Sci. 2022, 12, 10966 8 of 18

3.1. Image Preprocessing

The model should be lightweight to extract features of images and reduce noises and
the size of input images. Hence, image preprocessing was carried out before inputting it
into DCNN. To ensure that each input image was of the same size during training and
validation, as minimizing the image size can reduce the parameters of the model and
increase GFLOPS, image size was reduced from 400 × 400 × 3 to 224 × 224 × 3. Using
bilinear interpolation, the image of the dataset was resized. In this paper, the RGB average
value and standard deviation of the parameters set for image normalization (Figure 10)
were the average value and standard deviations obtained from millions of images using
ImageNet [28]. This is described in Equations (3) and (4).

Z =
(x− µ)

σ
(3)

µRGB = [0.485, 0.456, 0.406] (4)

Appl. Sci. 2022, 12, 10966 8 of 19

3.1. Image Preprocessing

The model should be lightweight to extract features of images and reduce noises and

the size of input images. Hence, image preprocessing was carried out before inputting it

into DCNN. To ensure that each input image was of the same size during training and

validation, as minimizing the image size can reduce the parameters of the model and in-

crease GFLOPS, image size was reduced from 400 × 400 × 3 to 224 × 224 × 3. Using bilinear

interpolation, the image of the dataset was resized. In this paper, the RGB average value

and standard deviation of the parameters set for image normalization (Figure 10) were

the average value and standard deviations obtained from millions of images using

ImageNet [28]. This is described in Equations (3) and (4).

(a)

(b)

Figure 10. Images of green coffee beans: (a) before normalization, (b) after normalization.

𝑍 =
(𝑥 − 𝜇)

𝜎
 (3)

𝜇𝑅𝐺𝐵 = [0.485,0.456, 0.406]；𝜎𝑅𝐺𝐵 = [0.229,0.224, 0.225] (4)

3.2. Lightweight Deep Convolutional Neural Network (LDCNN)

The LDCNN proposed in this paper took an SE block as the backbone and used DSC

to extract features of input images and adjust output dimensions. Figure 11 demonstrates

the structure of the SE block. The image features went through the PC first to improve the

dimensions, and pointwise features were extracted in the space. Next, image features be-

tween each pixel channel were extracted by DC and compressed using global average

pooling (GAP). Then, the features were multiplied by input images through the ReLU

activation function to expand. Therefore, high weights were enhanced while other

weights were diminished, and the dimensions of output images were finally changed.

Figure 10. Images of green coffee beans: (a) before normalization, (b) after normalization.

3.2. Lightweight Deep Convolutional Neural Network (LDCNN)

The LDCNN proposed in this paper took an SE block as the backbone and used DSC
to extract features of input images and adjust output dimensions. Figure 11 demonstrates
the structure of the SE block. The image features went through the PC first to improve
the dimensions, and pointwise features were extracted in the space. Next, image features
between each pixel channel were extracted by DC and compressed using global average
pooling (GAP). Then, the features were multiplied by input images through the ReLU
activation function to expand. Therefore, high weights were enhanced while other weights
were diminished, and the dimensions of output images were finally changed.

Appl. Sci. 2022, 12, 10966 9 of 18
Appl. Sci. 2022, 12, 10966 9 of 19

Figure 11. Structure of an SE block.

The LDCNN model in this study used the SE block as the backbone (Figure 12). Ini-

tially, the input image improved the dimensions of images through a single CL. Later,

after undergoing the SE block twice, tiny features were extracted. Then, a skip block was

employed to extract features through a skip connection. For instance, residual learning of

ResNet can help the model avoid the difficulty of training deep networks due to weight

degradation. Therefore, a skip block was added in this paper to improve the model’s ac-

curacy. An SE block can extract channel-wise features of image features. However, after

feature extraction, the features mainly focus on the correlation between image channels

and channels, while feature extraction of global images is lacking. Hence, the model in

this study additionally extracted features of the average pooling layer (APL) and CL as

the skip block of the model. Two different features were added for classification, and GAP

was used to connect CL and FCL on the tail structure of the model. Feature extraction was

performed on global images, and the results were then classified.

Figure 12. Proposed LDCNN framework in the study.

Table 1 shows the model structure. As this study targets a lightweight model, the

depth of the model was reduced, and a three-layer bottleneck block and ReLU activation

function were adopted to minimize the GFLOPS and the parameters of the model. Fur-

thermore, to maintain the model’s accuracy, the SE layer was used, and the dimensions of

Figure 11. Structure of an SE block.

The LDCNN model in this study used the SE block as the backbone (Figure 12).
Initially, the input image improved the dimensions of images through a single CL. Later,
after undergoing the SE block twice, tiny features were extracted. Then, a skip block was
employed to extract features through a skip connection. For instance, residual learning of
ResNet can help the model avoid the difficulty of training deep networks due to weight
degradation. Therefore, a skip block was added in this paper to improve the model’s
accuracy. An SE block can extract channel-wise features of image features. However, after
feature extraction, the features mainly focus on the correlation between image channels
and channels, while feature extraction of global images is lacking. Hence, the model in
this study additionally extracted features of the average pooling layer (APL) and CL as
the skip block of the model. Two different features were added for classification, and GAP
was used to connect CL and FCL on the tail structure of the model. Feature extraction was
performed on global images, and the results were then classified.

Appl. Sci. 2022, 12, 10966 9 of 19

Figure 11. Structure of an SE block.

The LDCNN model in this study used the SE block as the backbone (Figure 12). Ini-

tially, the input image improved the dimensions of images through a single CL. Later,

after undergoing the SE block twice, tiny features were extracted. Then, a skip block was

employed to extract features through a skip connection. For instance, residual learning of

ResNet can help the model avoid the difficulty of training deep networks due to weight

degradation. Therefore, a skip block was added in this paper to improve the model’s ac-

curacy. An SE block can extract channel-wise features of image features. However, after

feature extraction, the features mainly focus on the correlation between image channels

and channels, while feature extraction of global images is lacking. Hence, the model in

this study additionally extracted features of the average pooling layer (APL) and CL as

the skip block of the model. Two different features were added for classification, and GAP

was used to connect CL and FCL on the tail structure of the model. Feature extraction was

performed on global images, and the results were then classified.

Figure 12. Proposed LDCNN framework in the study.

Table 1 shows the model structure. As this study targets a lightweight model, the

depth of the model was reduced, and a three-layer bottleneck block and ReLU activation

function were adopted to minimize the GFLOPS and the parameters of the model. Fur-

thermore, to maintain the model’s accuracy, the SE layer was used, and the dimensions of

Figure 12. Proposed LDCNN framework in the study.

Table 1 shows the model structure. As this study targets a lightweight model, the depth
of the model was reduced, and a three-layer bottleneck block and ReLU activation function
were adopted to minimize the GFLOPS and the parameters of the model. Furthermore, to

Appl. Sci. 2022, 12, 10966 10 of 18

maintain the model’s accuracy, the SE layer was used, and the dimensions of the images
were increased. An H-swish (HS) activation function was adopted at both ends of the
model structure to reduce GFLOPS and keep the accuracy of the model as opposed to ReLU.
A 28 × 28 APL was used at the end to reduce the GFLOPS. By combining those models, we
believe that high accuracy and a lightweight model could be realized.

Table 1. Proposed model structure in the study.

Input Size Operator Exp Size Out Stride HS

224 × 224 × 3 Conv2d, 3 × 3 – 16 2 X
112 × 112 × 16 Bneck, 3 × 3 64 32 2 –
56 × 56 × 32 Bneck, 3 × 3 128 48 2 –
28 × 28 × 48 Bneck, 3 × 3 128 48 1 –
28 × 28 × 48 Pool, 28 × 28 – 48 1 –

1 × 1 × 48 Linear – 1024 – X
1 × 1 × 1024 Dropout, 0.2 – 1024 – –
1 × 1 × 1024 Linear – 2 – –

To evaluate the efficiency of the model, fivefold cross-validation was adopted in the
experiment to train and evaluate the model. The dataset was randomly divided into five
groups, four of which contained 3701 images, and the remaining one included 3700 images.
During the training process, one dataset was chosen while the others were used for training.
After performing the experiment five times, the average evaluation results were calculated.
Due to the limited parameters of the lightweight model and small GFLOPS, the model
failed to extract complete features, which may have resulted in overfitting. To solve
those issues, RA, LA, and GC were introduced in this lightweight model to optimize the
learning rate strategy, weight, optimizer, and gradient. Finally, to evaluate the efficiency
of LDCNN and predict reliability, except for calculating evaluation indicators, model size,
parameters, GFLOPS, evaluation time, and comparing state of the art, this model was put
into embedded systems. Moreover, this work adopted LIME to explain the predictions of
LDCNN in model reliability.

4. Experimental Result

In this, we would like to introduce comparisons of the proposed model with previous
related models. The green coffee bean dataset provided by a small optical sorter [29]
included 4626 images that were 400 × 400 pixels. It consisted of 2149 good images and
2477 bad images; sample images are shown in Figure 13. The author collected the images
of green coffee beans through high-speed cameras and conveyor belts and reduced the
brightness of the shooting environment to minimize the shadows and centralize each image.
Figure 13a,b shows good and bad images, respectively, while Figure 13c,d is images with
adjusted brightness. In addition, the computer used for simulations was an AMD Ryzen™
7 4800H CPU and GeForce GTX 1660 Ti GPU with 16GB DDR4 RAM. We implemented
this research by using Python 3.8.11 and Pytorch 1.7.1, Pytorchvision 0.8.2, cudatookit 10.1,
OpenCV 4.5.4 Library on a Windows 10 OS.

To achieve DA (including horizontal and vertical turning and 180◦ rotation) without
any changes in shape, color, and background of images, the number of images was ex-
panded from 4626 to 18,504 as the training dataset of this study. The image input model
after DA helped improve the accuracy and generalization of the model.

Appl. Sci. 2022, 12, 10966 11 of 18

Appl. Sci. 2022, 12, 10966 10 of 19

the images were increased. An H-swish (HS) activation function was adopted at both ends

of the model structure to reduce GFLOPS and keep the accuracy of the model as opposed

to ReLU. A 28 × 28 APL was used at the end to reduce the GFLOPS. By combining those

models, we believe that high accuracy and a lightweight model could be realized.

Table 1. Proposed model structure in the study.

Input Size Operator Exp Size Out Stride HS

224 × 224 × 3 Conv2d, 3 × 3 – 16 2 ✓

112 × 112 × 16 Bneck, 3 × 3 64 32 2 –

56 × 56 × 32 Bneck, 3 × 3 128 48 2 –

28 × 28 × 48 Bneck, 3 × 3 128 48 1 –

28 × 28 × 48 Pool, 28 × 28 – 48 1 –

1 × 1 × 48 Linear – 1024 – ✓

1 × 1 × 1024 Dropout, 0.2 – 1024 – –

1 × 1 × 1024 Linear – 2 – –

To evaluate the efficiency of the model, fivefold cross-validation was adopted in the

experiment to train and evaluate the model. The dataset was randomly divided into five

groups, four of which contained 3701 images, and the remaining one included 3700 im-

ages. During the training process, one dataset was chosen while the others were used for

training. After performing the experiment five times, the average evaluation results were

calculated. Due to the limited parameters of the lightweight model and small GFLOPS,

the model failed to extract complete features, which may have resulted in overfitting. To

solve those issues, RA, LA, and GC were introduced in this lightweight model to optimize

the learning rate strategy, weight, optimizer, and gradient. Finally, to evaluate the effi-

ciency of LDCNN and predict reliability, except for calculating evaluation indicators,

model size, parameters, GFLOPS, evaluation time, and comparing state of the art, this

model was put into embedded systems. Moreover, this work adopted LIME to explain the

predictions of LDCNN in model reliability.

4. Experimental Result

In this, we would like to introduce comparisons of the proposed model with previous

related models. The green coffee bean dataset provided by a small optical sorter [29] in-

cluded 4626 images that were 400 × 400 pixels. It consisted of 2149 good images and 2477

bad images; sample images are shown in Figure 13. The author collected the images of

green coffee beans through high-speed cameras and conveyor belts and reduced the

brightness of the shooting environment to minimize the shadows and centralize each im-

age. Figure 13a,b shows good and bad images, respectively, while Figure 13c,d is images

with adjusted brightness. In addition, the computer used for simulations was an AMD

Ryzen™ 7 4800H CPU and GeForce GTX 1660 Ti GPU with 16GB DDR4 RAM. We imple-

mented this research by using Python 3.8.11 and Pytorch 1.7.1, Pytorchvision 0.8.2, cuda-

tookit 10.1, OpenCV 4.5.4 Library on a Windows 10 OS.

(a)

Appl. Sci. 2022, 12, 10966 11 of 19

(b)

(c)

(d)

Figure 13. Green coffee bean dataset: small optical sorter: (a) good, (b) bad, (c) increased brightness,

(d) reduced brightness.

To achieve DA (including horizontal and vertical turning and 180° rotation) without

any changes in shape, color, and background of images, the number of images was ex-

panded from 4626 to 18,504 as the training dataset of this study. The image input model

after DA helped improve the accuracy and generalization of the model.

4.1. The Influence of Image Normalization on Model

Image normalization means scaling the values of original images within an interval

to extract the features and avoid the influence of abnormal values on the training results

of the model. In this paper, an Adam optimizer was used, the learning rate was set at

0.001, batch size was 16, and 100 epochs were trained. Using the same validation method,

we figured out that image normalization had significantly improved the accuracy of

LDCNN as shown in Table 2.

Table 2. The influence of normalization on LDCNN.

Normalization Accuracy Precision Recall F1 Score

Without 89.79% 84.86% 94.00% 87.78%

With 96.84% 97.06% 96.21% 96.50%

4.2. Ablation Study of Training and Optimization in the Model

Cross-validation was employed to obtain evaluation indicators using the training da-

taset. As indicated in Table 3, the accuracy rate of the model was 98.38%, the precision

rate was 98.60%, the recall rate was 97.89%, and the F1 score was 98.24%. The parameters

Figure 13. Green coffee bean dataset: small optical sorter: (a) good, (b) bad, (c) increased brightness,
(d) reduced brightness.

4.1. The Influence of Image Normalization on Model

Image normalization means scaling the values of original images within an interval to
extract the features and avoid the influence of abnormal values on the training results of
the model. In this paper, an Adam optimizer was used, the learning rate was set at 0.001,
batch size was 16, and 100 epochs were trained. Using the same validation method, we
figured out that image normalization had significantly improved the accuracy of LDCNN
as shown in Table 2.

Table 2. The influence of normalization on LDCNN.

Normalization Accuracy Precision Recall F1 Score

Without 89.79% 84.86% 94.00% 87.78%
With 96.84% 97.06% 96.21% 96.50%

Appl. Sci. 2022, 12, 10966 12 of 18

4.2. Ablation Study of Training and Optimization in the Model

Cross-validation was employed to obtain evaluation indicators using the training
dataset. As indicated in Table 3, the accuracy rate of the model was 98.38%, the precision
rate was 98.60%, the recall rate was 97.89%, and the F1 score was 98.24%. The parameters
were 149,842, the model size was 0.57 MB, GFLOPS was 0.05, and the computing time was
10.08 ms (see Table 4). The computing time is the average time of image preprocessing
and model prediction. As shown, the various evaluation indicators of the model were of
satisfactory accuracy while the model was kept lightweight. Afterwards, the training and
optimization methods were employed to carry out the ablation study. Adam, cross-entropy
loss function, and learning rate of 0.001 were used to evaluate and analyze the RA, LA, and
GC methods.

Table 3. Using training and optimization to begin the ablation study on LDCNN.

RA LA GC Accuracy Precision Recall F1 Score

96.84% 97.06% 96.21% 96.50%
X 96.98% 99.09% 94.41% 96.65%

X 94.24% 93.78% 94.22% 93.62%
X 98.13% 97.53% 98.47% 98.00%

X X 98.00% 97.79% 97.92% 97.85%
X X 97.74% 97.35% 97.82% 97.57%

X X 97.81% 98.22% 97.07% 97.83%
X X X 98.38% 98.60% 97.89% 98.24%

Table 4. Efficiency comparison of each model.

Models Accuracy Precision Recall F1 Score Parameter Model
Size GFLOPs Evaluate

Time

SqueezeNet [14] 95.92% 95.25% 96.01% 95.58% 1,248,424 4.78 MB 0.352 17.57 ms
ResNet18 [18] 89.66% 89.17% 96.07% 91.26% 11,689,512 44.59 MB 1.82 19.45 ms
ResNet34 [18] 85.93% 98.12% 80.45% 87.56% 21,797,672 83.15 MB 3.68 31.00 ms
ResNet50 [18] 87.85% 87.60% 88.95% 86.28% 25,557,032 97.49 MB 4.12 57.10 ms

MobileNetV3small [19] 95.97% 95.26% 96.08% 95.65% 2,542,856 9.7 MB 0.06 10.56 ms
MobileNetV3large [19] 96.69% 97.75% 95.53% 96.49% 5,483,032 20.92 MB 0.23 20.92 ms
EfficientNetV2-S [30] 96.04% 96.10% 96.04% 95.23% 22,103,832 85.1 MB 8.8 73.23 ms

ShuffleNetV2 [31] 95.91% 95.24% 96.01% 95.57% 2,278,604 8.69 MB 0.149 13.72 ms
LDCNN 98.38% 98.60% 97.89% 98.24% 149,842 0.57 MB 0.05 10.08 ms

Based on the experiment results, compared to when the Adam optimizer was used,
the accuracy rate improved by 0.14%, the precision rate increased to 99.09%, and the recall
rate was reduced by 1.80% when RA was employed. Therefore, the generalization ability
of the RA model was low. When using GC, evaluation indicators of the model improved
compared with those without optimization, indicating that GC effectively improved the
detection rate of the model. On the contrary, when using LA, all the evaluation indicators
were lower than those without optimization. Moreover, the evaluation indicators of LA-GC
were lower than those of GC. While using the three methods simultaneously, the accuracy
rate reached 98.38%, and F1 score achieved 98.24%. According to the results in Table 3,
the Adam optimizer was not suitable for training with LA. Only when both RA and LA
were used could the model’s accuracy be improved. When GC was the only one used, the
recall index was the highest. Therefore, the three optimization methods to train the model
simultaneously could obtain excellent stability and generalization.

Figure 14a,b shows the training process of LDCNN and the training process using three
optimization and training methods, respectively. No obvious underfitting or overfitting
occurred during both training processes. However, the accuracy sometimes dropped
suddenly during the training, as the model generated random predictions due to rapid
convergence and insufficient parameters. After adding the optimization method, the

Appl. Sci. 2022, 12, 10966 13 of 18

training stability significantly improved. Hence, the convergence should be stable to
improve the accuracy, showing that the model could significantly improve the stability and
generalization after combining the training method.

Appl. Sci. 2022, 12, 10966 13 of 19

improve the accuracy, showing that the model could significantly improve the stability

and generalization after combining the training method.

(a) (b)

Figure 14. Training process of lightweight model: (a) model of this work, (b) optimization of model

of this work.

4.3. Evaluation Results of Interpretable Model

Figure 15a represents the original image of green coffee beans, and the upper and

lower parts are good and bad coffee beans, respectively. Figure 15b,c is the visualization

of the interpretation model prediction when the LDCNN optimization model went

through LIME. The green block of coffee beans is the area favorable to the prediction re-

sults, and the red block is the unfavorable area. Based on Figure 15b, after XAI, the distri-

bution of green areas may also exist in the surroundings of the coffee beans. It shows that

the model took the background of coffee beans as the basis for judgment when predicting

the quality of beans, and there was no obvious area that could be considered as the refer-

ence for judgment. Figure 15c, demonstrates that the favorable and unfavorable areas of

beans could be revealed by predicting the area of the coffee beans.

To conclude, the prediction of the LDCNN optimization model was reliable, and the

impact of image normalization on model training could also be understood after the im-

age was visualized through LIME. Hence, the training could be optimized, or the abnor-

mal data could be screened out from the dataset so the model could get better accuracy

during the training process.

Figure 14. Training process of lightweight model: (a) model of this work, (b) optimization of model
of this work.

4.3. Evaluation Results of Interpretable Model

Figure 15a represents the original image of green coffee beans, and the upper and
lower parts are good and bad coffee beans, respectively. Figure 15b,c is the visualization of
the interpretation model prediction when the LDCNN optimization model went through
LIME. The green block of coffee beans is the area favorable to the prediction results, and
the red block is the unfavorable area. Based on Figure 15b, after XAI, the distribution
of green areas may also exist in the surroundings of the coffee beans. It shows that the
model took the background of coffee beans as the basis for judgment when predicting the
quality of beans, and there was no obvious area that could be considered as the reference
for judgment. Figure 15c, demonstrates that the favorable and unfavorable areas of beans
could be revealed by predicting the area of the coffee beans.

Appl. Sci. 2022, 12, 10966 14 of 19

(a)

(b)

Figure 15. Cont.

Appl. Sci. 2022, 12, 10966 14 of 18

Appl. Sci. 2022, 12, 10966 14 of 19

(a)

(b)

Appl. Sci. 2022, 12, 10966 15 of 19

(c)

Figure 15. Results of LIME: (a) original green coffee beans, (b) without image normalization, (c) with

image normalization.

4.4. Comparison of Model Efficiency & Embedded System

To compare the models and training methods proposed in this paper, this experiment

chose famous models, including ResNet [18], MobileNetV3 [19], EfficientNetV2 [30], and

ShuffleNetV2 [31], to evaluate and compare with LDCNN. In this experiment, the same

dataset was used to train each model. The Adam optimizer was employed, learning rate

was set to 0.001, batch size was 16, and 100 epochs were trained. This study used the public

dataset of green coffee beans, because most of the related research uses private datasets

and is not public. In this work, the evaluation indicators of each model were tested, in-

cluding accuracy, precision, recall, F1 score, parameter, model size, GFLOPs, and evalua-

tion time, as shown in Table 4. We used the F1 score divided by eval time for evaluation.

If the value was higher, the proposed model was the best in the green coffee bean identi-

fication task, as shown in Figure 16. As suggested in Table 4, in the quality detection of

green coffee beans, the accuracy rate was better when LDCNN was used than when other

models were utilized. However, the accuracy rate was quite low with the ResNet model

compared with that with the other models; ResNet18 had an accuracy of only 89.66%, and

ResNet 34 and ResNet 50 had decreased accuracy due to overfitting under increased CL.

Based on relevant research of public datasets [29], a lightweight model was proposed

by Wang et al. [9] in which the ResNet18 model was trained as a teacher model through

knowledge distillation (KD) to train the lightweight model. The accuracy rate of the light-

weight model reached up to 91% with parameters of 256,779. As illustrated in Table 5,

Yang et al. [11] put forward DSC, SAM, SpinalNet, and KD methods to train the model

when the F1 score achieved 96.54%. Compared with LDCNN, the previous model [9] had

higher accuracy and lower parameters since the latter took ResNet18 as the teacher model

for training. Nevertheless, ResNet18 in this experiment was not the optimal model, result-

ing in a low accuracy rate of the lightweight model. In contrast to Yang et al. [11], the

precision of LDCNN increased by 2.12%, recall was raised by 0.36%, and F1 score gained

1.74%. Finally, the LDCNN was placed on Raspberry Pi 4B to execute the green coffee

bean quality detection system (see Table 6). The evaluation time included model building,

image preprocessing, and image estimation time, which showed that LDCNN could

achieve the task of real-time detection on the embedded system. The model was per-

formed using Python programming language on Raspberry Pi 4B. The experiment used a

Figure 15. Results of LIME: (a) original green coffee beans, (b) without image normalization, (c) with
image normalization.

Appl. Sci. 2022, 12, 10966 15 of 18

To conclude, the prediction of the LDCNN optimization model was reliable, and the
impact of image normalization on model training could also be understood after the image
was visualized through LIME. Hence, the training could be optimized, or the abnormal
data could be screened out from the dataset so the model could get better accuracy during
the training process.

4.4. Comparison of Model Efficiency & Embedded System

To compare the models and training methods proposed in this paper, this experiment
chose famous models, including ResNet [18], MobileNetV3 [19], EfficientNetV2 [30], and
ShuffleNetV2 [31], to evaluate and compare with LDCNN. In this experiment, the same
dataset was used to train each model. The Adam optimizer was employed, learning rate
was set to 0.001, batch size was 16, and 100 epochs were trained. This study used the public
dataset of green coffee beans, because most of the related research uses private datasets and
is not public. In this work, the evaluation indicators of each model were tested, including
accuracy, precision, recall, F1 score, parameter, model size, GFLOPs, and evaluation time,
as shown in Table 4. We used the F1 score divided by eval time for evaluation. If the value
was higher, the proposed model was the best in the green coffee bean identification task,
as shown in Figure 16. As suggested in Table 4, in the quality detection of green coffee
beans, the accuracy rate was better when LDCNN was used than when other models were
utilized. However, the accuracy rate was quite low with the ResNet model compared with
that with the other models; ResNet18 had an accuracy of only 89.66%, and ResNet 34 and
ResNet 50 had decreased accuracy due to overfitting under increased CL.

Appl. Sci. 2022, 12, 10966 16 of 19

3701 verification dataset, and evaluation time was the time it took the model to predict

3701 images (including the preprocessing time). A total of 1226.57 s was used during the

experiment when hardware acceleration method was not used. However, the image size

of the verification dataset had been converted to 224 × 224 × 3 in numpy array format, so

that the model could be executed on limited memory, and the implementation of the

model on the embedded system.

Figure 16. Comparisons with other related models.

Table 5. Comparison of using a public dataset.

Models Accuracy Precision Recall F1 Score Parameter

ResNet50 [18] N/A 84.00% 84.89% 84.21% N/A

Wang et al. [9] 91% N/A N/A N/A 256779

Yang et al. [11] N/A 96.48% 97.53% 96.54% N/A

SqueezeNet [14] 95.92% 95.25% 96.01% 95.58% 1248424

MobileNet [32] N/A 76.98% 81.31% 77.03% N/A

DenseNet121 [33] N/A 88.28% 88.28% 88.28% N/A

Xception [34] N/A 89.70% 89.56% 89.60% N/A

Vgg16 [35] N/A 93.55% 93.52% 93.09% N/A

Chen et al. [36] N/A 97.38% 97.16% 97.21% N/A

LDCNN 98.38% 98.60% 97.89% 98.24% 156370

Table 6. Performance efficiency of the LDCNN model on Raspberry Pi 4B.

Image Evaluate Time Average Frames per Second (FPS)

3701 1226.57 s 3.0174 s

5. Conclusions and Future Work

In this study, a new model for quality detection of green coffee beans, a LDCNN, was

proposed, which combined DSC, SE block, skip block, and other frameworks, as well as

HS and ReLU activation functions, to make the model lightweight and efficient. To im-

prove the performance and training stability, RA, LA, and GC models were combined to

avoid random prediction caused by the lightweight model. Based on the experimental

results, compared with those of other state-of-the-art models, our model could achieve a

higher accuracy rate of 98.38% and an F1 score of 98.24% in the quality detection of green

coffee beans, indicating excellent detection performance. When the model was placed in

the embedded system, the average speed reached up to 3.02 FPS. Finally, the LIME inter-

pretable model was used to verify that the model in this work was reliable, indicating that

the impact of image preprocessing on the model after the image was interpretable and

could be understood to optimize the training of the model or screen the abnormal data in

0 2 4 6 8 10 12

ResNet18 [18]

ResNet34 [18]

ResNet50 [18]

MobileNetV3small [19]

MobileNetV3large [19]

EfficientNetV2-S [30]

ShuffleNetV2 [31]

LDCNN (Proposed)

SqueezeNet [14]

F1-Score/eval time

Figure 16. Comparisons with other related models.

Based on relevant research of public datasets [29], a lightweight model was proposed
by Wang et al. [9] in which the ResNet18 model was trained as a teacher model through
knowledge distillation (KD) to train the lightweight model. The accuracy rate of the
lightweight model reached up to 91% with parameters of 256,779. As illustrated in Table 5,
Yang et al. [11] put forward DSC, SAM, SpinalNet, and KD methods to train the model
when the F1 score achieved 96.54%. Compared with LDCNN, the previous model [9]
had higher accuracy and lower parameters since the latter took ResNet18 as the teacher
model for training. Nevertheless, ResNet18 in this experiment was not the optimal model,
resulting in a low accuracy rate of the lightweight model. In contrast to Yang et al. [11],
the precision of LDCNN increased by 2.12%, recall was raised by 0.36%, and F1 score
gained 1.74%. Finally, the LDCNN was placed on Raspberry Pi 4B to execute the green
coffee bean quality detection system (see Table 6). The evaluation time included model
building, image preprocessing, and image estimation time, which showed that LDCNN
could achieve the task of real-time detection on the embedded system. The model was
performed using Python programming language on Raspberry Pi 4B. The experiment used
a 3701 verification dataset, and evaluation time was the time it took the model to predict

Appl. Sci. 2022, 12, 10966 16 of 18

3701 images (including the preprocessing time). A total of 1226.57 s was used during the
experiment when hardware acceleration method was not used. However, the image size of
the verification dataset had been converted to 224 × 224 × 3 in numpy array format, so
that the model could be executed on limited memory, and the implementation of the model
on the embedded system.

Table 5. Comparison of using a public dataset.

Models Accuracy Precision Recall F1 Score Parameter

ResNet50 [18] N/A 84.00% 84.89% 84.21% N/A
Wang et al. [9] 91% N/A N/A N/A 256,779
Yang et al. [11] N/A 96.48% 97.53% 96.54% N/A

SqueezeNet [14] 95.92% 95.25% 96.01% 95.58% 1,248,424
MobileNet [32] N/A 76.98% 81.31% 77.03% N/A

DenseNet121 [33] N/A 88.28% 88.28% 88.28% N/A
Xception [34] N/A 89.70% 89.56% 89.60% N/A

Vgg16 [35] N/A 93.55% 93.52% 93.09% N/A
Chen et al. [36] N/A 97.38% 97.16% 97.21% N/A

LDCNN 98.38% 98.60% 97.89% 98.24% 156,370

Table 6. Performance efficiency of the LDCNN model on Raspberry Pi 4B.

Image Evaluate Time Average Frames per Second (FPS)

3701 1226.57 s 3.0174 s

5. Conclusions and Future Work

In this study, a new model for quality detection of green coffee beans, a LDCNN,
was proposed, which combined DSC, SE block, skip block, and other frameworks, as well
as HS and ReLU activation functions, to make the model lightweight and efficient. To
improve the performance and training stability, RA, LA, and GC models were combined
to avoid random prediction caused by the lightweight model. Based on the experimental
results, compared with those of other state-of-the-art models, our model could achieve a
higher accuracy rate of 98.38% and an F1 score of 98.24% in the quality detection of green
coffee beans, indicating excellent detection performance. When the model was placed
in the embedded system, the average speed reached up to 3.02 FPS. Finally, the LIME
interpretable model was used to verify that the model in this work was reliable, indicating
that the impact of image preprocessing on the model after the image was interpretable and
could be understood to optimize the training of the model or screen the abnormal data
in the dataset. Hence, the accuracy and generalization of the model could be improved
during the training.

This work used a public dataset for verification, which predicted and classified the
quality of green coffee beans. However, there are more than ten types of defective green
coffee beans, and the types of defective beans can be classified in the future. Since coffee
beans are classified via different screening methods, their color, shape, and size will be
different, which can also improve the generalization of the model. In addition, with AI
research focusing on edge computing and XAI in recent years, XAI techniques have been
developed to improve the explainability of models, such that their output can be better
understood. It can be imported into different industries, and the model can be judged
with reliability. Therefore, we can focus on the development of efficient XAI algorithms to
increase academic research and industrial application in the future work.

Finally, ochratoxin A is a mycotoxin produced by mold. The contamination cases
found in coffee beans in the past were all caused by mold caused by the drying process of
coffee beans in harvesting and ochratoxin [37]. Therefore, the government should conduct
market monitoring to strengthen food management. In addition, it is also necessary to
pay attention to whether coffee-related products are mandatory to label with the category

Appl. Sci. 2022, 12, 10966 17 of 18

of caffeine and compliance with limit standards such as microorganisms, heavy metals,
and pesticide residues. Global standards are based on reference to the background value
of coffee products in various countries and the risk assessment results of people’s dietary
exposure and consider that people will not be caused health hazards due to excessive
intake of ochratoxins under the condition of normal coffee drinking. Finally, this work
proposes an AI computer vision detection system for coffee beans. In the future, from
government policies into the food management mechanism, it can achieve an objective
control mechanism for people’s dietary health.

Author Contributions: C.-H.H. and C.-F.L. carried out the studies and drafted the manuscript.
C.-H.H., Y.-H.L., and C.-F.L. participated in its design and helped draft the manuscript. C.-H.H. and
Y.-H.L. conducted the experiments, performed the statistical analysis, and methodology. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Ministry of Science and Technology, Taiwan,
R.O.C. under Grant No. MOST 111-2221-E-197-020-MY3.

Institutional Review Board Statement: Not applicable. This study did not involve humans or
animals.

Informed Consent Statement: Not applicable. This study did not involve humans.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Inoue, M.; Yoshimi, I.; Sobue, T.; Tsugane, S. Influence of coffee drinking on subsequent risk of hepatocellular carcinoma: A

prospective study in Japan. J. Natl. Cancer Inst. 2005, 97, 293–300. [CrossRef] [PubMed]
2. Loftfield, E.; Freedman, N.D.; Graubard, B.I.; Guertin, K.A.; Black, A.; Huang, W.-Y.; Shebl, F.M.; Mayne, S.T.; Sinha, R. Association

of coffee consumption with overall and cause-specific mortality in a large US prospective cohort study. Am. J. Epidemiol. 2015,
182, 1010–1022.

3. Mazzafera, P. Chemical composition of defective coffee beans. Food Chem. 1999, 64, 547–554. [CrossRef]
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching

for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 1314–1324.

6. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

7. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

8. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. In Proceedings
of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 20–30 April 2020; pp. 1–13.

9. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

10. Goyal, P.; Doll’ar, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch
SGD: Training ImageNet in 1 hour. arXiv 2017, arXiv:1706.02677.

11. Zhang, M.; Lucas, J.; Ba, J.; Hinton, G.E. Lookahead optimizer: K steps forward, 1 step back. In Proceedings of the Conference on
Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 1–12.

12. Yong, H.; Huang, J.; Hua, X.; Zhang, L. Gradient centralization: A new optimization technique for deep neural networks. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 635–652.

13. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should I trust you? Explaining the predictions of ant classifier. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
pp. 1135–1144.

14. Coffee Bean Dataset: Small Optical Sorter. Available online: https://github.com/tanius/smallopticalsorter (accessed on 26 May
2021).

15. ImageNet. Available online: https://www.image-net.org/ (accessed on 11 March 2021).
16. Tan, M.; Le, Q.V. EfficientNetV2: Smaller models and faster training. In Proceedings of the International Conference on Machine

Learning, Online. 18–24 July 2021; pp. 10096–10106.

http://doi.org/10.1093/jnci/dji040
http://www.ncbi.nlm.nih.gov/pubmed/15713964
http://doi.org/10.1016/S0308-8146(98)00167-8
https://github.com/tanius/smallopticalsorter
https://www.image-net.org/

Appl. Sci. 2022, 12, 10966 18 of 18

17. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings
of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 122–138.

18. Wang, P.; Tseng, H.-W.; Chen, T.-C.; Hsia, C.-H. Deep convolutional neural network for coffee bean inspection. Sens. Mater. 2021,
33, 2299–2310. [CrossRef]

19. Yang, P.-Y.; Jhong, S.-Y.; Hsia, C.-H. Green coffee beans classification using attention-based features and knowledge transfer. In
Proceedings of the IEEE International Conference on Consumer Electronics-Taiwan, Penghu, Taiwan, 15–17 September 2021;
pp. 1–2.

20. Santos, J.R.; Sarraguça, M.C.; Rangel, A.O.S.S.; Lopes, J.A. Evaluation of green coffee beans quality using near infrared spec-
troscopy: A quantitative approach. Food Chem. 2012, 135, 1828–1835. [CrossRef] [PubMed]

21. de Oliveira, E.M.; Leme, D.S.; Barbosa, B.H.G.; Rodarte, M.P.; Pereira, R.G.F.A. A computer vision system for coffee beans
classification based on computational intelligence techniques. J. Food Eng. 2016, 171, 22–27. [CrossRef]

22. Arboleda, E.R.; Fajardo, A.C.; Medina, R.P. Classification of coffee bean species using image processing, artificial neural network
and K nearest neighbors. In Proceedings of the IEEE International Conference on Innovative Research and Development, Bangkok,
Thailand, 11–12 May 2018; pp. 1–5.

23. Arboleda, E.R.; Fajardo, A.C.; Medina, R.P. An image processing technique for coffee black beans identification. In Proceedings of
the IEEE International Conference on Innovative Research and Development, Bangkok, Thailand, 11–12 May 2018; pp. 1–5.

24. Pinto, C.; Furukawa, J.; Fukai, H.; Tamura, S. Classification of green coffee bean images based on defect types using convolutional
neural network (CNN). In Proceedings of the IEEE International Conference of Advanced Informatics, Denpasar, Indonesia,
16–18 August 2017; pp. 1–5.

25. Huang, N.-F.; Chou, D.-L.; Lee, C.-A.; Wu, F.-P.; Chuang, A.-C.; Chen, Y.-H.; Tsai, Y.-C. Smart agriculture: Real-time classification
of green coffee beans by using a convolutional neural network. IET Smart Cities 2020, 2, 167–172. [CrossRef]

26. Kabir, H.M.D.; Abdar, M.; Jalali, S.M.J.; Khosravi, A.; Atiya, A.; Nahavandi, S.; Srinivasan, D. SpinalNet: Deep neural network
with gradual input. arXiv 2020, arXiv:2007.03347. [CrossRef]

27. Post-Training Quantization. Available online: https://www.tensorflow.org/model_optimization/guide/quantization/post_
training (accessed on 1 September 2021).

28. Huang, Q. Weight-quantized squeezenet for resource-constrained robot vacuums for indoor obstacle classification. AI 2022, 3,
180–193. [CrossRef]

29. Blalock, D.; Gonzalez Ortiz, J.J.; Frankle, J.; Guttag, J. What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2020,
2, 129–146.

30. Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic sparse connectivity learning for neural networks. IEEE Transac.
Neural Netw. Learn. Syst. 2022, 1–15. [CrossRef] [PubMed]

31. Wang, Z.; Li, C.; Wang, X. Convolutional neural network pruning with structural redundancy reduction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14913–14922.

32. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyang, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

33. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

34. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

36. Chen, P.-H.; Jhong, S.-Y.; Hsia, C.-H. Semi-supervised learning with attention-based CNN for classification of coffee beans defect.
In Proceedings of the IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 July 2022; pp. 1–2.

37. de Fátima Rezende, E.; Borges, J.G.; Cirillo, M.Â.; Prado, G.; Paiva, L.C.; Batista, L.R. Ochratoxigenic fungi associated with green
coffee beans (Coffea arabica L.) in conventional and organic cultivation in Brazil. Braz. J. Microbiol. 2013, 44, 377–384. [CrossRef]
[PubMed]

http://doi.org/10.18494/SAM.2021.3277
http://doi.org/10.1016/j.foodchem.2012.06.059
http://www.ncbi.nlm.nih.gov/pubmed/22953929
http://doi.org/10.1016/j.jfoodeng.2015.10.009
http://doi.org/10.1049/iet-smc.2020.0068
http://doi.org/10.1109/TAI.2022.3185179
https://www.tensorflow.org/model_optimization/guide/quantization/post_training
https://www.tensorflow.org/model_optimization/guide/quantization/post_training
http://doi.org/10.3390/ai3010011
http://doi.org/10.1109/TNNLS.2022.3141665
http://www.ncbi.nlm.nih.gov/pubmed/35073273
http://doi.org/10.1590/S1517-83822013000200006
http://www.ncbi.nlm.nih.gov/pubmed/24294225

	Introduction
	Fundamental Knowledge
	ResNet
	MobileNetV3
	Rectified Adam (RA)
	Lookahead (LA)
	Gradient Centralization (GC)
	Local Interpretable Model-Agnostic Explanations (LIME)

	Proposed Methodology
	Image Preprocessing
	Lightweight Deep Convolutional Neural Network (LDCNN)

	Experimental Result
	The Influence of Image Normalization on Model
	Ablation Study of Training and Optimization in the Model
	Evaluation Results of Interpretable Model
	Comparison of Model Efficiency & Embedded System

	Conclusions and Future Work
	References

