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Abstract: To prevent or deal with chronic diseases, using a smart device, automatically classifying 
food categories, estimating food volume and nutrients, and recording dietary intake are considered 
challenges. In this work, a novel real-time vision-based method for solid-volume food instance seg-
mentation and calorie estimation is utilized, based on Mask R-CNN. In order to address the pro-
posed method in real life, distinguishing it from other methods which use 3D LiDARs or RGB-D 
cameras, this work applies RGB images to train the model and uses a simple monocular camera to 
test the result. Gimbap is selected as an example of solid-volume food to show the utilization of the 
proposed method. Firstly, in order to improve detection accuracy, the proposed labeling approach 
for the Gimbap image datasets is introduced, based on the posture of Gimbap in plates. Secondly, 
an optimized model to detect Gimbap is created by fine-tuning Mask R-CNN architecture. After 
training, the model reaches AP (0.5 IoU) of 88.13% for Gimbap1 and AP (0.5 IoU) of 82.72% for 
Gimbap2. mAP (0.5 IoU) of 85.43% is achieved. Thirdly, a novel calorie estimation approach is pro-
posed, combining the calibration result and the Gimbap instance segmentation result. In the fourth 
section, it is also shown how to extend the calorie estimation approach to be used in any solid-
volume food, such as pizza, cake, burger, fried shrimp, oranges, and donuts. Compared with other 
food calorie estimation methods based on Faster R-CNN, the proposed method uses mask infor-
mation and considers unseen food. Therefore, the method in this paper outperforms the accuracy 
of food segmentation and calorie estimation. The effectiveness of the proposed approaches is 
proven. 

Keywords: food instance segmentation; solid-volume food calorie estimation; convolutional neural 
network; mask R-CNN; deep learning 
 

1. Introduction 
Despite advances in medicine in recent years, the number of people affected by 

chronic diseases remains high, due to their irregular eating habits and unhealthy life-
styles. Some of the prevalent chronic diseases include obesity, hypertension, hyper-
lipidemia, cardiovascular diseases, blood sugar, and different kinds of cancers [1]. To pre-
vent or deal with chronic diseases, people usually record their dietary intake to estimate 
nutrient consumption. Many dietary mobile applications require users to manually enter 
their dietary intake. Using a smartphone camera, automatically classifying food catego-
ries, and estimating their volume and nutrients is still considered a challenge. This paper 
proposes a novel real-time vision-based method for solid-volume food instance segmen-
tation and calorie estimation, using a simple smart camera. 

Food recognition is a very complex task and has the following challenges. The non-
rigid structure of foods and variations within the source complicates the correct classifi-
cation of foods [1]. Since different ingredients may look very similar, it causes food recog-
nition problems. Or due to different cooking methods, the same ingredient is recognized 
as a different food. Therefore, food recognition has become an attractive research topic in 
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computer vision [2–4]. Compared with food recognition, calorie estimation of food is 
known as more a complex task. To estimate calories, it is necessary to correctly recognize 
the food. In addition, even if the food is recognized correctly, it is difficult to estimate the 
volume of the food, especially if there is occlusion among the food. Some food does not 
have regular volumes, making it harder to estimate calories. In addition, depending on 
different types of cameras and lighting conditions, image quality and calibration methods 
affect the estimation results. Previous work in [5] talks about the need to translate, rotate, 
and scale the pre-constructed 3D food models to make the contour of the templates match 
the food. This method achieved an average of 79.05% accuracy in volume estimation. In 
[6], a method is proposed based on 3D reconstruction and a deep learning algorithm to 
consume food items. In the experiment, a depth camera records the rotating food items to 
get the ground truth volume of food. In [7], the network based on Resnet-50 is trained 
using RGB-D images as the input. Ref. [5–7] all require RGB-D cameras for food volume 
prediction, which are not portable and difficult to apply to daily life. In order to address 
the proposed method in real life, this paper only needs to use a simple monocular camera 
to take pictures and combines it with the calibration method to predict food calories. In 
this paper, Gimbap is selected as an example of a solid-volume food for discussing food 
recognition and calorie estimation. Gimbap is a Korean dish made of cooked rice with 
ingredients such as vegetables, fish, and meat, rolled into bite-sized slices in a Gim [8]. To 
make Gimbap, grilled Gim is placed on a bamboo Gimbap roller with a thin layer of rice 
on top. Then, some ingredients are placed on the rice and it is rolled into a cylindrical 
shape. Typically, the length of the cylinder is around 19 cm, and the diameter is around 4 
cm. Based on research in this paper, the calories of the other shaped food can be evaluated. 

Computer vision in machine learning has become a popular research topic recently 
[9–11]. Computer vision contains many research tasks: image classification, object detec-
tion, semantic segmentation, and instance segmentation. Object classification requires bi-
nary labels indicating whether objects are present in an image [12]. Deep Convolutional 
Neural Networks, such as AlexNet [13], ResNet [14], and EfficientNet [15], are used to 
extract features. For object detection, the object’s specified class and its localization in the 
image are obtained. A bounding box presents an object’s location. Based on [16], the object 
detection model includes two types: a one-stage method and a two-stage method. One-
stage models consist of YOLO [17], Efficient Det [18], and CenterNet [19]. Two-stage mod-
els include R-CNN [20], Fast R-CNN [21], Faster R-CNN [22], and the Feature Pyramid 
Network (FPN) [23]. For semantic segmentation, each pixel of an image should be labeled 
as belonging to a category, such as dog, cat, and sheep. The same object does not need to 
be segmented separately. Instance segmentation is a combination of object detection and 
semantic segmentation. Mask R-CNN [24] is the most commonly used instance segmen-
tation algorithm. Mask R-CNN performs pixel-level segmentation by adding a branch to 
Faster R-CNN that outputs a binary mask indicating whether a given pixel is part of the 
target object. The branch is a fully convolutional network based on convolutional neural 
network feature maps. There is a growing interest in the research of Mask R-CNN as well 
as various applications. In [16], strawberry diseases are detected with low cost and good 
accuracy. In [25], in order to count the plants and calculate the size of plants, the image 
taken by a drone is processed by Mask R-CNN. In [26], using Mask R-CNN, the waterline 
is detected and analyzed in the sports area. In [27], it generates a synthetic dataset for 
scale-invariant instance segmentation of food materials using Mask R-CNN. In [28], Mask 
R-CNN with data augmentation is used for food detection and recognition. However, 
both Ref. [27,28] do not consider the calorie estimation problem. In [29], a bottom-up re-
gime is used to learn category-level human semantic segmentation and to estimate the 
multi-person pose. 

TensorFlow’s Object Detection API is a tool for building, training, and deploying ob-
ject detection models. In most instances, training an entire convolutional network from 
scratch requires large datasets and takes time. This problem can be solved by using the 
advantage of transfer learning with a pre-trained model using the TensorFlow API. This 



Appl. Sci. 2022, 12, 10938 3 of 15 
 

work used TensorFlow’s object detection API for Gimbap recognition. Mask R-CNN 
model returns both the bounding box and the mask for each detected Gimbap. Based on 
the mask result, since only Gimbap area is detected, the calorie estimation can be more 
correct. 

The main contributions of this paper: 1. Based on the posture of Gimbap in plates, we 
created the labeling approach for the Gimbap image datasets to process the Gimbap food 
instance segmentation and calorie estimation system. After annotation, the statistics of the 
dataset are concluded. 2. An optimized model is created by fine-tuning Mask R-CNN ar-
chitecture for efficient instance segmentation of Gimbap Korean Food. In order to address 
the proposed method in real life, distinguishing it from other methods which use 3D Li-
DARs or RGB-D cameras, this work applies RGB images to train the model and uses a 
simple monocular camera to test the result. 3. Combining instance segmentation results 
and calibration results, a calorie estimation approach is approached for solid-volume 
food. The calorie estimation approach can be extended to any solid-volume food, such as 
pizza, cake, burger, fried shrimp, oranges, and donuts. 4. The experiment shows the effec-
tiveness of the proposed approaches. After training, the model reaches AP (0.5 IoU) of 
88.13% for Gimbap1 and AP (0.5 IoU) of 82.72% for Gimbap2. mAP (0.5 IoU) of 85.43% is 
achieved. The Gimbap’s calories are correctly evaluated. Compared with other food calo-
rie estimation methods based on Faster R-CNN, the proposed method uses the mask re-
sult from the Mask R-CNN algorithm and considers unseen food. The comparison result 
shows the outperforms in the accuracy of food segmentation and calorie estimation. 

The remaining article is written below. Section 2 outlines instance segmentation and 
calorie estimation system. Section 3 represents the Mask RCNN algorithm. Section 4 pro-
posed the calorie estimation approach. Section 5 shows the experimental results. 

2. Instance Segmentation and Calorie Estimation System Overview 
As shown in Figure 1, the Instance Segmentation and Calorie Estimation System in-

cludes the following steps: (1) Image acquisition and processing using a simple monocular 
camera; (2) Instance segmentation using the Mask R-CNN algorithm; (3) Calorie estima-
tion. 

Acquire Test Image 

Resize Image 

Calibrate Pixel to 
Real-world

Transmit Image 
Data

Label Dataset

Configure Training 

Train Network

Export Inference 
Graph 

Prediction

Calculate Bounding 
Box Area

Calculate Mask 
Area

Estimate Calorie

Transmit Calorie 
Estimation Result

Acquire and 
Process the Test 

Image

Mask R-CNN 
Algorithm Estimate Calorie

 
Figure 1. Flowchart of Gimbap Instance Segmentation and Calorie Estimation System. 

In step (1), the image is resized to 640 × 480 × 3, in order to increase transmission 
speed. In the calibration pixel to real-world block, the contour of the coin is detected. The 
contour’s minimum and maximum pixels on the x-axis (𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥) and on the y-axis 
�𝑚𝑚𝑚𝑚𝑛𝑛𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦� are calculated, separately. Based on the diameter of the coin, the physical 
sizes of each pixel on the x and y axes of the image are calculated as (1) and (2), where 



Appl. Sci. 2022, 12, 10938 4 of 15 
 

𝐿𝐿𝑝𝑝𝑝𝑝𝑥𝑥 and 𝐿𝐿𝑝𝑝𝑝𝑝𝑦𝑦 are the physical sizes corresponding to each pixel on the x and y axes. 𝐷𝐷𝑐𝑐 
is the diameter of the coin. 

𝐿𝐿𝑝𝑝𝑝𝑝𝑥𝑥 = 𝐷𝐷𝑐𝑐 (𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥)⁄   (1) 

𝐿𝐿𝑝𝑝𝑝𝑝𝑦𝑦 = 𝐷𝐷𝑐𝑐 �𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑦𝑦�⁄   (2) 

The calibration result is shown in Figure 2. The cropping image is used as a calibration 
area, to reduce the calculation time. The big green area is the calibration area. The calibration 
tool, such as a coin, should be in this area. The blue line presents the contour of the coin. 
Based on this contour, the physical sizes of each pixel on the x and y axes are calculated. 

 
Figure 2. Calculate the physical size corresponding to each pixel on the x and y axes. The big green 
area is the calibration area. The blue line presents the contour of the object inside the small green 
box. 

For image data transmission, the network topology user datagram protocol (UDP) is 
used and set up. Message Queuing Telemetry Transport and Data Distribution Services 
provide real-time behavior, so they are considered to be used. 

3. Mask R-CNN Algorithm 
3.1. Prepare Datasets 

The Korea Food Image database, provided by Korea Institute of Science and Tech-
nology (KIST), is used for training and testing. A total of 800 Gimbap images are used as 
training images, the other 200 images are testing images. Labelme software is used to label 
the edge contours of Gimbap in images with label points. Different labels are used for 
classification. All the standard information of each image, for example, label name and 
edge points’ coordinates, is saved to a json file corresponding to the original image. 

Regarding classification, if there are many classes but the features of classes are sim-
ilar, it will cause an issue that one thing is recognized as different classes, simultaneously. 
Based on the posture of the Gimbap in plates, there are two kinds of labels. As shown in 
Figure 3a, if the Gimbap is cut into pieces, the vegetables and rice are shown in the image, 
and it will be labeled as Gimbap1. The surface area 𝑠𝑠𝑎𝑎𝑝𝑝1  of Gimbap1 is in range of 
[12.56, 28.26] cm2. We define 𝑠𝑠𝑎𝑎𝑝𝑝 = 19.625 cm2 in experimental section. As shown in Fig-
ure 3b, if the Gimbap is cut into pieces and placed obliquely, it will be labeled as Gimbap1. 
The surface area 𝑠𝑠𝑎𝑎𝑎𝑎1 is around 125 cm2. If the roll of Gimbap is not cut as shown in Fig-
ure 3c, and seaweed is shown in the image, it will be labeled as Gimbap2. If the roll of 
Gimbap is cut but only seaweed is shown in Figure 3a,b, it will be labeled as Gimbap2. 
For Gimbap 2, the surface area 𝑠𝑠𝑎𝑎𝑎𝑎2 is around 95 cm2. One roll of Gimbap is a unit for 
labelling. Or one piece of Gimbap is a unit. 
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(a) (b) 

 
(c) 

 

Figure 3. Classification of Gimbap. (a) The Gimbap is cut into pieces, the vegetables and rice are 
shown in the image, and it will be labeled as Gimbap1; (b) the Gimbap is cut into pieces and 
placed obliquely, it will be labeled as Gimbap1; (c) the roll of Gimbap is not cut and seaweed is 
shown in the image, it will be labeled as Gimbap2. 

As shown in Figure 4a, labelme is used to open the original image and the corre-
sponding json file. The image is divided into two parts by labeling points: the inside of 
the labeling points are different kinds of Gimbap, and the others are background. As 
shown in Figure 4b, different Gimbaps in the image will be covered with different color 
masks. All json files of the labeled images are combined into a json file, containing the 
labeling information of all labeled images, then they are converted into COCO datasets 
and inputted into the network for training. 

  
(a) (b)  

 

Figure 4. Label image. (a) Schematic Diagrams of the Gimbap Label. (b) Labeled Gimbap Sample. 

After the annotation process, the statistics of the dataset are shown in Table 1. Among 
the 800 training images, there are 1318 Gimbaps labeled as Gimbap1, and 655 Gimbap2 
labeled as Gimbap2. There are 278 negative food items, which are food but do not belong 
to Gimbap. The test dataset contains 200 images. It includes 385 Gimbaps labeled as 
Gimbap1, 106 Gimbaps labeled as Gimbap2, and 56 negative food items.  

Gimbap is not cut. 

Gimbap is cut into pieces. 

Gimbap is cut into pieces 
and placed obliquely. 

Gimbap is cut but only seaweed is shown in the image. Gimbap is cut but only seaweed is shown in the image. 
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Table 1. Dataset statistics after the annotation process. 

Collection 
Number of Gimbaps 
Labeled as Gimbap1 

Number of Gimbaps 
Labeled as Gimbap2 Number of Other Foods 

Train 1318 655 278 
Test 385 106 56 

3.2. Mask R-CNN Architecture 
The Mask R-CNN can be divided into four main structures: backbone, Region Pro-

posal Networks (RPN), region of interest (ROI) classification and bounding-box regres-
sion, and segmentation mask, as shown in Figure 5. The backbone structure of Mask R-
CNN uses one or two commonly used convolutional neural networks to extract features 
from training images. Different deep learning networks have different feature extraction 
effects for different objects. When training with the same data, using Inception is faster, 
but using Resnet101 is more accurate than other networks such as Resnet50. In this paper, 
due to speed consideration, Inception_v2 is used and the result is acceptable. 

 
Figure 5. Architecture of Mask R-CNN. 

The Inception_v2 module is designed to reduce the complexity of the convolution 
network. The Inception_v2 architecture consists of three main features: (1) it introduces 
two additional auxiliary classifiers in the middle of the network to address the vanishing 
gradient problem; (2) it has a deeper wider network architecture; (3) in order to solve the 
information loss problem caused by reducing the input size, the network upgrades Incep-
tion_v1 by using two 3 × 3 convolutions instead of one 5 × 5 convolutions. The convolution 
performance is improved by performing 3 × 3 convolutions [30]. 

RPN is a typical binary classification network. Its role is to classify images into two 
categories: target Gimbap and background. The Gimbap with boxes, which fit the size of 
the Gimbap as much as possible is framed. At this time, only the approximate area con-
taining the target Gimbap and background can be distinguished. It is impossible to clas-
sify and segment the target Gimbap in detail. After RPN, one or more regions containing 
the target Gimbap can be obtained. Regions are input to ROIAlign and pooled into a fixed-
size feature map. 

3.3. Mask R-CNN Lost Function 
ROIAlign classifies and locates each ROI. It uses a bilinear interpolation method in 

the feature map mapping process to precisely match the spatial corresponding of each 
pixel, so that each ROI is converted into a fixed-size feature map. Fixed-size feature maps 
are input into two branches. One of the branch networks performs target Gimbap 
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recognition through an ROI classifier and bounding box regression. Both the classifier and 
the bounding box regression consist of a fully connected layer. A fully connected layer 
(FC layer) is used as an ROI classifier to classify the specific Gimbap categories, and the 
other fully connected layer acts as a bounding box regression to adjust the center point 
position and aspect ratio of the ROI, in order to detect the target Gimbap more accurately. 
The other branch network is composed of a fully convolutional network (FCN) to generate 
a segmentation network. The network will generate a mask with the same size and shape 
as the target Gimbap to segment the target Gimbap image. Finally, an image is obtained, 
containing the target Gimbap category and target Gimbap segmentation mask. 

𝐿𝐿 = 𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑙𝑙 + 𝐿𝐿𝑚𝑚  (3) 

where 𝐿𝐿 is a total loss of the network; 𝐿𝐿𝑐𝑐 is classification loss, which is used to measure 
the accuracy of network classification; 𝐿𝐿𝑙𝑙 is localization loss, which is used to measure 
the frame positioning accuracy; and 𝐿𝐿𝑚𝑚 is mask loss, which is used to measure the accu-
racy of the mask position. 

For each detection class 𝑢𝑢, the logarithm of the SoftMax loss function is used to cal-
culate 𝐿𝐿𝑐𝑐. 

𝐿𝐿𝑐𝑐(𝑝𝑝,𝑢𝑢) = −𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑢𝑢)  (4) 

where 𝑝𝑝 = (𝑝𝑝0,𝑝𝑝1, … ,𝑝𝑝𝑘𝑘) is the result of the Softmax function. 
𝐿𝐿𝑙𝑙 is calculated based on 𝑠𝑠𝑚𝑚𝑙𝑙𝑙𝑙𝑠𝑠ℎ𝐿𝐿𝑙𝑙 loss function. 

𝐿𝐿𝑙𝑙(𝑠𝑠𝑢𝑢, 𝑣𝑣) = ∑ 𝑠𝑠𝑚𝑚𝑙𝑙𝑙𝑙𝑠𝑠ℎ𝐿𝐿𝑙𝑙(𝑠𝑠𝑖𝑖
𝑢𝑢 − 𝑣𝑣𝑖𝑖)𝑖𝑖∈{𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ}   (5) 

where 𝑣𝑣 = (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦,𝑣𝑣𝑤𝑤 ,𝑣𝑣ℎ) is the coordinates of the real bounding box of the target to be 
detected. 𝑠𝑠𝑢𝑢 = (𝑠𝑠𝑥𝑥𝑢𝑢, 𝑠𝑠𝑦𝑦𝑢𝑢, 𝑠𝑠𝑤𝑤𝑢𝑢 , 𝑠𝑠ℎ𝑢𝑢)  the bounding box coordinate correction for the target of 
class 𝑢𝑢. 

The 𝑠𝑠𝑚𝑚𝑙𝑙𝑙𝑙𝑠𝑠ℎ𝐿𝐿𝑙𝑙 function is defined as (6). 

𝑠𝑠𝑚𝑚𝑙𝑙𝑙𝑙𝑠𝑠ℎ𝐿𝐿𝑙𝑙(𝑚𝑚) = � 0.5𝑚𝑚2 𝑚𝑚𝑖𝑖|𝑚𝑚| < 1 
|𝑚𝑚| − 0.5 𝑙𝑙𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑠𝑠𝑒𝑒

  (6) 

The output dimension of the Mask branch for each ROI is K m2, where K is the num-
ber of class and 𝑚𝑚 × 𝑚𝑚 is object binary mask size. A per-pixel sigmoid is applied, and 𝐿𝐿𝑚𝑚 
is the average binary cross-entropy loss. For the ROI with class K, 𝐿𝐿𝑚𝑚 is computed only 
on the Kth Mask, and other Mask outputs are not counted in the loss. 

4. Calorie Estimation Approach 
The most common vegetable Gimbap contains 350–400 kcal. If different ingredients 

are used, such as tuna, cheese, and tempura, the calorie is close to 500 kcal. In this research, 
the calorie of one roll of basic Gimbap is defined as 𝑐𝑐𝑚𝑚𝑙𝑙𝑎𝑎 = 375 kcal. Usually, one roll of 
Gimbap is sliced into 10–12 pieces. Therefore, the calorie of one piece of Gimbap is defined 
as 𝑐𝑐𝑚𝑚𝑙𝑙𝑝𝑝 = 35 kcal. A Gimbap calorie estimation approach is proposed in Figure 6. 

Calculate 
bounding box 
area (7)-(9)

Find mask 
contours

Calculate 
contour 

area

Calculate 
area ratio 

(10)

Calibrate and 
Calculate physical 
size of each pixel

Calculate 
Gimbap 
calories  

Figure 6. Gimbap calorie estimation diagram. 

One variable of the detection result is boxes [𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚, 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚,𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥, 𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 ], which is the 
bounding box coordinates. The bounding box area is calculated as (7)–(9): 

𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑥𝑥 = (𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚)𝐼𝐼𝑚𝑚𝑙𝑙𝑤𝑤  (7) 

𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑦𝑦 = (𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚)𝐼𝐼𝑚𝑚𝑙𝑙ℎ  (8) 
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𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑥𝑥 × 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑦𝑦  (9) 

where 𝐼𝐼𝑚𝑚𝑙𝑙𝑤𝑤 and 𝐼𝐼𝑚𝑚𝑙𝑙ℎ are the width and height of the test image. 
Based on the output binary mask matrix, the binary image is created. Pixels with 

values more than 0 are extracted. Using OpenCV findContours function, the mask contour 
is obtained. Then mask contour area 𝑐𝑐𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is calculated, based on OpenCV contourArea 
function. The area ratio is computed as: 

𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖𝑟𝑟 = 𝑐𝑐𝑚𝑚𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎
𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎

  (10) 

As discussed in Section 2, the calibration is processed by calculating the physical size 
of each pixel on the x and y axes. For calculating Gimbap calories block, it contains several 
cases, based on the class of Gimbap. First, a gain 𝑙𝑙𝑏𝑏 is calculated as follows: 

𝑙𝑙𝑏𝑏 = �

𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥𝑥𝑥 𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥𝑦𝑦 ⁄

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟
 𝑚𝑚𝑖𝑖 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑥𝑥 > 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑦𝑦 

𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥𝑦𝑦 𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥𝑥𝑥 ⁄

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟
 𝑚𝑚𝑖𝑖 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑦𝑦 > 𝑏𝑏𝑏𝑏𝑙𝑙𝑚𝑚𝑥𝑥

  (11) 

The pseudo-code to calculate Gimbap calories is as Figure 7, based on (11). The 
Gimbap class is obtained from the Mask R_CNN classification result. During the annota-
tion process, class 1 is labeled as Gimbap1, and class 2 is labeled as Gimbap2. The To-
tal_Calorie_of_Gimbap is equal to zero. It is accumulated based on the number of detec-
tions in one image. Finally, the calorie estimation of the combination of Gimbap is repre-
sented by Total_Calorie_of_Gimbap. 

 
Figure 7. The pseudo-code to estimate Gimbap calorie, where 𝑠𝑠𝑎𝑎𝑝𝑝1, 𝑠𝑠𝑎𝑎𝑎𝑎1 𝑚𝑚𝑛𝑛𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎2 are the surface 
area of the labeled Gimbap. 𝐿𝐿𝑝𝑝𝑝𝑝𝑥𝑥 and 𝐿𝐿𝑝𝑝𝑝𝑝𝑦𝑦 are the physical sizes corresponding to each pixel on 
the x and y axes, based on calibration process. 𝑠𝑠𝑔𝑔 is a constant scale gain. 

The calorie estimation approach can be extended in any solid-volume food, such as 
pizza, cake, burger, fried shrimp, oranges, and donuts. Based on the Mask R-CNN 
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algorithm, the mask area 𝑐𝑐𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and bounding box coordinates [𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚, 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚,𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥, 𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 ]  
are obtained. Depending on the calibration process, physical sizes corresponding to each 
pixel on the x and y axes 𝐿𝐿𝑝𝑝𝑝𝑝𝑥𝑥 and 𝐿𝐿𝑝𝑝𝑝𝑝𝑦𝑦 are obtained. The solid-volume food’s surface 
area can be calculated within a certain range. If the calorie of each piece of food is defined, 
then the calorie of the food in the image can be estimated. 

5. Experimental Results 
5.1. Gimbap Instance Segmentation Using Mask R-CNN 

The training uses the Windows10 operating system. The server uses the NVIDIA Ge-
Force GTX1650 graphics card, and the memory is 6 GB. Mask-RCNN-inception_v2 is used 
as a pre-trained model. Two sets of training parameters are used for experimental com-
parison: (1) max training steps are 200,000, the initial learning rate is set as 0.0002, mo-
mentum optimizer value is 0.9; (2) max training steps are 300,000, the initial learning rate 
is 0.0001, momentum optimizer value is 0.9. Using the first training parameters, the net-
work will recognize the object, which is not Gimbap. In addition, the network will repeat-
edly identify the same object as different classes. Therefore, this article will choose the 
second set of parameters. Training takes about 27.7 h to run. On the training set, the total 
loss, classification loss, localization loss, and mask loss of the network are changed along 
with increasing training steps, as shown in Figure 8. After 300,000 steps, the total loss 
curve value of the training set is close to and falls below 0.2, oscillating in a small range. 
The network produces the correct result output for most image samples. 

 
Figure 8. Relationship between loss and steps. 

Figure 9 shows Gimbap’s sample original images and instance segmentation images. 
The column (a) images are original images, which include Gimbap1 class and Gimbap2 
class, as discussed in Section 3.1. Input the original image into the trained Mask R-CNN 
model, and the results are as column (b) images. Target Gimbaps are covered by different 
colors of masks, in the pictures. Each Gimbap is in a separated bounding box. The content 
in the upper left corner of the bounding box is the predicted label and score of the target 
Gimbap in the bounding box. Target Gimbap classification in the bounding box is 
Gimbap1 and Gimbap2. The probability that the target Gimbap belongs to this class is 
100%. 
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(a) (b) 

Figure 9. Experimental results of test samples: (a) original images: they include Gimbap1 class and 
Gimbap2 class, (b) instance segmentation images: Target Gimbaps are covered by different colors 
of masks. 
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The Gimbap is detected by the Mask R-CNN model. The effect of the Mask R-CNN 
Gimbap detection model is evaluated by the Intersection over Union (IoU) between the 
predicted Gimbap bounding box and ground truth bounding box. The IoU is calculated 
as: 

IoU =  𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑜𝑜 𝐼𝐼𝑚𝑚𝑟𝑟𝑎𝑎𝑎𝑎𝐼𝐼𝑎𝑎𝑐𝑐𝑟𝑟𝑖𝑖𝑟𝑟𝑚𝑚
𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑜𝑜 𝑈𝑈𝑚𝑚𝑖𝑖𝑟𝑟𝑚𝑚

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑝𝑝∩𝐵𝐵𝑔𝑔𝑟𝑟)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑝𝑝∪𝐵𝐵𝑔𝑔𝑟𝑟)

  (12) 

where 𝐵𝐵𝑝𝑝 is the predicted bounding box and 𝐵𝐵𝑔𝑔𝑟𝑟 is the ground truth bounding box. If 
IoU ≥ 0.5, the detection result is considered a True Positive (TP); otherwise, if 0 < IoU <
0.5, the result is considered a False Positive (FP). If a mask is generated without Gimbap 
in the image, the result is also considered a False Positive. If the image contains Gimbap, 
but it is not detected, the result is considered a False Negative (FN). If the image does not 
contain Gimbap and no mask was generated, the result is considered a True Negative 
(TN). As in (13), the precision indicates the ratio of the correct number of Gimbap identi-
fied by the model to the total number. In (14), Recall is the ratio of the number of Gimbaps 
correctly identified by the model to the number of Gimbaps that actually exist. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (13) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (14) 

The Average Precision (AP) is the area under the precision-recall curve for detection. 
Based on [31], AP is calculated from the mean precision at a set of eleven equally spaced 
recall levels [0, 0.1,…, 1]: 

AP = 1
11
∑ 𝑃𝑃𝑖𝑖𝑚𝑚𝑟𝑟𝑎𝑎𝑎𝑎𝑝𝑝(𝑒𝑒)𝑎𝑎∈{0,0.1,…,1}   (15) 

The precision for each recall level 𝑒𝑒 is interpolated by taking the maximum precision 
value for any recall value greater than 𝑒𝑒. 

𝑃𝑃𝑖𝑖𝑚𝑚𝑟𝑟𝑎𝑎𝑎𝑎𝑝𝑝(𝑒𝑒) =�̃�𝑎:�̃�𝑎≥𝑎𝑎
max𝑝𝑝(�̃�𝑎)  (16) 

where p(�̃�𝑒) is the measured precision at recall �̃�𝑒. After calculating the AP for each class, 
the mean average precision (mAP) is obtained. In this experiment, AP at 0.5 IoU for 
Gimbap1 is 88.13%, and AP at 0.5 IoU for Gimbap2 is 82.72%. mAP at 0.5 IoU is 85.43%. 

5.2. Gimbap Calorie Estimation 
Normally, the calories of one roll of Gimbap are 350–400 kcal. As discussed in Section 

4, after resizing the image and calculating the physical size of each pixel, based on Gimbap 
detection results, calorie estimation results are shown in Figure 10. Figure 10a shows orig-
inal images. In Figure 10b.1, the calories of each slice of Gimbap are in the range 35–40 
kcal. For Gimbap2 class, there are two normal pieces of Gimbap and one big size slice of 
Gimbap, the total calories are 130.01 kcal. In Figure 10b.2, five pieces of Gimbap are rec-
ognized together as Gimbap1, and the calories are 194.57 kcal. The calories of the other 
two pieces of Gimbap are 35.07 kcal and 40.35 kcal, separately. In Figure 10b.3, the calories 
of the Gimbap are 390.84 kcal. There are some uncertainties, for example, the detection 
errors from the Mask R-CNN process and the calibration error from the calibration pro-
cess, due to lighting conditions and image quality. However, the calorie estimation result 
is in the range of definition in real life. Therefore, the proposed Gimbap calorie estimation 
approach is effective. 
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(a.1) (b.1) 

  
(a.2) (b.2) 

  
(a.3) (b.3) 

Figure 10. Calorie estimation results of test samples: (a.1–a.3) original images including Gimbap, (b) 
instance segmentation images. (b.1) The Gimbap calorie of each detection is shown in the picture. 
The total calorie is 282.38 kcal. (b.2), five pieces of Gimbap are recognized together as Gimbap1, and 
the calorie is 194.57 kcal. The calorie of the other two pieces of Gimbap is 35.07 kcal and 40.35 kcal, 
separately. The total calorie is 269.99 kcal. (b.3), the calorie of the Gimbap is 390.84 kcal. 

5.3. Comparison with the Other Algorithm 
The performance of the calorie estimation method with Mask R-CNN is evaluated by 

comparing its results with the results estimated by Faster R-CNN, as shown in Figure 11. 
The same test image is used for comparison, in order to minimize the effect of the para-
metric uncertainty. Five pieces of Gimbap are recognized as Gimbap1, and the calories are 
113.3 kcal. Normally, the calories of five pieces of Gimbap are in the range of 175 kcal to 
200 kcal. The calorie estimation result is much less than normal. After object detection 
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using Faster R-CNN, only bounding box information is obtained, but no mask infor-
mation. The unseen food shape cannot be considered. For the Gimbap1 label, based on 
Figure 7, there are two cases: (1) Gimbap is cut into pieces. The mask of the Gimbap is 
round. (2) Gimbap is cut into pieces and placed obliquely. The mask of the Gimbap is a 
rectangle. Since there is no mask information, it is hard to choose the right case. Therefore, 
the estimation result is wrong. In Figure 10b.2, the calorie estimation result is 194.57 kcal. 
It considered the unseen food and uses Mask R-CNN instance segmentation results to 
estimate the food’s calories. Therefore, the result satisfied the standard. 

 
Figure 11. Calorie estimation result based on Faster R-CNN algorithm. Because it does not consider 
the unseen Gimbap, the calorie estimation result is much less than normal. 

6. Conclusions 
Recently, classifying food, estimating food quantity and nutritional content, and re-

cording dietary intake have become important issues. In order to obtain accurate results, 
Mask R-CNN is applied for food instance segmentation and calorie estimation. Gimbap 
is chosen as an example of solid-volume food to show the effectiveness of the proposed 
methods. Firstly, based on the posture of Gimbap in plates, the labeled approach for the 
Gimbap image datasets is described, in order to process the Gimbap food segmentation 
and calorie estimation system. Secondly, an optimized model is created by fine-tuning 
Mask R-CNN architecture to obtain classification, bounding box, and mask information. 
In order to apply the method in real life, distinguishing from other methods using 3D 
LiDAR data or RGB-D images data, this work uses RGB images to train the model and 
uses a simple monocular camera to test the result. After training, the model shows 88.13% 
for Gimbap1 in AP (0.5 IoU) and 82.72% for Gimbap2 in AP (0.5 IoU). mAP at 0.5 IoU 
reaches 85.43%. Thirdly, a novel calorie estimation approach is proposed, combining the 
calibration result and the instance segmentation result. the calorie estimation approach 
can be extended to any solid-volume food, such as pizza, cake, burger, fried shrimp, or-
anges, and donuts. Finally, the effectiveness of the proposed approaches is proved. The 
Gimbap can be detected well. Based on Gimbap’s segmentation instance result, Gimbap’s 
calorie is correctly estimated. The calorie estimation result is close to Gimbap’s calorie 
definition. Compared to other vision-based methods, the method in this paper outper-
forms in the accuracy of food segmentation and calorie estimation, since it uses the mask 
information from the Mask R-CNN algorithm and considers unseen food. 
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