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Abstract: To prevent or deal with chronic diseases, using a smart device, automatically classifying
food categories, estimating food volume and nutrients, and recording dietary intake are considered
challenges. In this work, a novel real-time vision-based method for solid-volume food instance
segmentation and calorie estimation is utilized, based on Mask R-CNN. In order to address the
proposed method in real life, distinguishing it from other methods which use 3D LiDARs or RGB-D
cameras, this work applies RGB images to train the model and uses a simple monocular camera to
test the result. Gimbap is selected as an example of solid-volume food to show the utilization of the
proposed method. Firstly, in order to improve detection accuracy, the proposed labeling approach for
the Gimbap image datasets is introduced, based on the posture of Gimbap in plates. Secondly, an
optimized model to detect Gimbap is created by fine-tuning Mask R-CNN architecture. After training,
the model reaches AP (0.5 IoU) of 88.13% for Gimbap1 and AP (0.5 IoU) of 82.72% for Gimbap2. mAP
(0.5 IoU) of 85.43% is achieved. Thirdly, a novel calorie estimation approach is proposed, combining
the calibration result and the Gimbap instance segmentation result. In the fourth section, it is also
shown how to extend the calorie estimation approach to be used in any solid-volume food, such as
pizza, cake, burger, fried shrimp, oranges, and donuts. Compared with other food calorie estimation
methods based on Faster R-CNN, the proposed method uses mask information and considers unseen
food. Therefore, the method in this paper outperforms the accuracy of food segmentation and calorie
estimation. The effectiveness of the proposed approaches is proven.

Keywords: food instance segmentation; solid-volume food calorie estimation; convolutional neural
network; mask R-CNN; deep learning

1. Introduction

Despite advances in medicine in recent years, the number of people affected by
chronic diseases remains high, due to their irregular eating habits and unhealthy lifestyles.
Some of the prevalent chronic diseases include obesity, hypertension, hyperlipidemia,
cardiovascular diseases, blood sugar, and different kinds of cancers [1]. To prevent or
deal with chronic diseases, people usually record their dietary intake to estimate nutrient
consumption. Many dietary mobile applications require users to manually enter their
dietary intake. Using a smartphone camera, automatically classifying food categories, and
estimating their volume and nutrients is still considered a challenge. This paper proposes
a novel real-time vision-based method for solid-volume food instance segmentation and
calorie estimation, using a simple smart camera.

Food recognition is a very complex task and has the following challenges. The non-
rigid structure of foods and variations within the source complicates the correct classi-
fication of foods [1]. Since different ingredients may look very similar, it causes food
recognition problems. Or due to different cooking methods, the same ingredient is recog-
nized as a different food. Therefore, food recognition has become an attractive research
topic in computer vision [2–4]. Compared with food recognition, calorie estimation of food
is known as more a complex task. To estimate calories, it is necessary to correctly recognize
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the food. In addition, even if the food is recognized correctly, it is difficult to estimate the
volume of the food, especially if there is occlusion among the food. Some food does not
have regular volumes, making it harder to estimate calories. In addition, depending on
different types of cameras and lighting conditions, image quality and calibration methods
affect the estimation results. Previous work in [5] talks about the need to translate, rotate,
and scale the pre-constructed 3D food models to make the contour of the templates match
the food. This method achieved an average of 79.05% accuracy in volume estimation.
In [6], a method is proposed based on 3D reconstruction and a deep learning algorithm to
consume food items. In the experiment, a depth camera records the rotating food items
to get the ground truth volume of food. In [7], the network based on Resnet-50 is trained
using RGB-D images as the input. Refs. [5–7] all require RGB-D cameras for food volume
prediction, which are not portable and difficult to apply to daily life. In order to address
the proposed method in real life, this paper only needs to use a simple monocular camera
to take pictures and combines it with the calibration method to predict food calories. In
this paper, Gimbap is selected as an example of a solid-volume food for discussing food
recognition and calorie estimation. Gimbap is a Korean dish made of cooked rice with
ingredients such as vegetables, fish, and meat, rolled into bite-sized slices in a Gim [8]. To
make Gimbap, grilled Gim is placed on a bamboo Gimbap roller with a thin layer of rice on
top. Then, some ingredients are placed on the rice and it is rolled into a cylindrical shape.
Typically, the length of the cylinder is around 19 cm, and the diameter is around 4 cm.
Based on research in this paper, the calories of the other shaped food can be evaluated.

Computer vision in machine learning has become a popular research topic recently [9–11].
Computer vision contains many research tasks: image classification, object detection,
semantic segmentation, and instance segmentation. Object classification requires binary
labels indicating whether objects are present in an image [12]. Deep Convolutional Neural
Networks, such as AlexNet [13], ResNet [14], and EfficientNet [15], are used to extract
features. For object detection, the object’s specified class and its localization in the image
are obtained. A bounding box presents an object’s location. Based on [16], the object
detection model includes two types: a one-stage method and a two-stage method. One-
stage models consist of YOLO [17], Efficient Det [18], and CenterNet [19]. Two-stage
models include R-CNN [20], Fast R-CNN [21], Faster R-CNN [22], and the Feature Pyramid
Network (FPN) [23]. For semantic segmentation, each pixel of an image should be labeled
as belonging to a category, such as dog, cat, and sheep. The same object does not need
to be segmented separately. Instance segmentation is a combination of object detection
and semantic segmentation. Mask R-CNN [24] is the most commonly used instance
segmentation algorithm. Mask R-CNN performs pixel-level segmentation by adding a
branch to Faster R-CNN that outputs a binary mask indicating whether a given pixel is part
of the target object. The branch is a fully convolutional network based on convolutional
neural network feature maps. There is a growing interest in the research of Mask R-CNN
as well as various applications. In [16], strawberry diseases are detected with low cost and
good accuracy. In [25], in order to count the plants and calculate the size of plants, the
image taken by a drone is processed by Mask R-CNN. In [26], using Mask R-CNN, the
waterline is detected and analyzed in the sports area. In [27], it generates a synthetic dataset
for scale-invariant instance segmentation of food materials using Mask R-CNN. In [28],
Mask R-CNN with data augmentation is used for food detection and recognition. However,
both Refs. [27,28] do not consider the calorie estimation problem. In [29], a bottom-up
regime is used to learn category-level human semantic segmentation and to estimate the
multi-person pose.

TensorFlow’s Object Detection API is a tool for building, training, and deploying
object detection models. In most instances, training an entire convolutional network from
scratch requires large datasets and takes time. This problem can be solved by using the
advantage of transfer learning with a pre-trained model using the TensorFlow API. This
work used TensorFlow’s object detection API for Gimbap recognition. Mask R-CNN model
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returns both the bounding box and the mask for each detected Gimbap. Based on the mask
result, since only Gimbap area is detected, the calorie estimation can be more correct.

The main contributions of this paper: 1. Based on the posture of Gimbap in plates,
we created the labeling approach for the Gimbap image datasets to process the Gimbap
food instance segmentation and calorie estimation system. After annotation, the statistics
of the dataset are concluded. 2. An optimized model is created by fine-tuning Mask R-
CNN architecture for efficient instance segmentation of Gimbap Korean Food. In order
to address the proposed method in real life, distinguishing it from other methods which
use 3D LiDARs or RGB-D cameras, this work applies RGB images to train the model and
uses a simple monocular camera to test the result. 3. Combining instance segmentation
results and calibration results, a calorie estimation approach is approached for solid-volume
food. The calorie estimation approach can be extended to any solid-volume food, such
as pizza, cake, burger, fried shrimp, oranges, and donuts. 4. The experiment shows the
effectiveness of the proposed approaches. After training, the model reaches AP (0.5 IoU) of
88.13% for Gimbap1 and AP (0.5 IoU) of 82.72% for Gimbap2. mAP (0.5 IoU) of 85.43% is
achieved. The Gimbap’s calories are correctly evaluated. Compared with other food calorie
estimation methods based on Faster R-CNN, the proposed method uses the mask result
from the Mask R-CNN algorithm and considers unseen food. The comparison result shows
the outperforms in the accuracy of food segmentation and calorie estimation.

The remaining article is written below. Section 2 outlines instance segmentation and
calorie estimation system. Section 3 represents the Mask RCNN algorithm. Section 4
proposed the calorie estimation approach. Section 5 shows the experimental results.

2. Instance Segmentation and Calorie Estimation System Overview

As shown in Figure 1, the Instance Segmentation and Calorie Estimation System
includes the following steps: (1) Image acquisition and processing using a simple monocular
camera; (2) Instance segmentation using the Mask R-CNN algorithm; (3) Calorie estimation.
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Figure 1. Flowchart of Gimbap Instance Segmentation and Calorie Estimation System.

In step (1), the image is resized to 640 × 480 × 3, in order to increase transmission
speed. In the calibration pixel to real-world block, the contour of the coin is detected. The
contour’s minimum and maximum pixels on the x-axis (minx, maxx) and on the y-axis(
miny, maxy

)
are calculated, separately. Based on the diameter of the coin, the physical

sizes of each pixel on the x and y axes of the image are calculated as (1) and (2), where Lppx
and Lppy are the physical sizes corresponding to each pixel on the x and y axes. Dc is the
diameter of the coin.

Lppx = Dc/(maxx −minx) (1)
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Lppy = Dc/
(
maxy −miny

)
(2)

The calibration result is shown in Figure 2. The cropping image is used as a calibra-
tion area, to reduce the calculation time. The big green area is the calibration area. The
calibration tool, such as a coin, should be in this area. The blue line presents the contour
of the coin. Based on this contour, the physical sizes of each pixel on the x and y axes
are calculated.
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For image data transmission, the network topology user datagram protocol (UDP) is
used and set up. Message Queuing Telemetry Transport and Data Distribution Services
provide real-time behavior, so they are considered to be used.

3. Mask R-CNN Algorithm
3.1. Prepare Datasets

The Korea Food Image database, provided by Korea Institute of Science and Tech-
nology (KIST), is used for training and testing. A total of 800 Gimbap images are used
as training images, the other 200 images are testing images. Labelme software is used to
label the edge contours of Gimbap in images with label points. Different labels are used
for classification. All the standard information of each image, for example, label name and
edge points’ coordinates, is saved to a json file corresponding to the original image.

Regarding classification, if there are many classes but the features of classes are similar,
it will cause an issue that one thing is recognized as different classes, simultaneously. Based
on the posture of the Gimbap in plates, there are two kinds of labels. As shown in Figure 3a,
if the Gimbap is cut into pieces, the vegetables and rice are shown in the image, and it will
be labeled as Gimbap1. The surface area sap1 of Gimbap1 is in range of [12.56, 28.26] cm2.
We define sap = 19.625 cm2 in experimental section. As shown in Figure 3b, if the Gimbap
is cut into pieces and placed obliquely, it will be labeled as Gimbap1. The surface area sar1
is around 125 cm2. If the roll of Gimbap is not cut as shown in Figure 3c, and seaweed is
shown in the image, it will be labeled as Gimbap2. If the roll of Gimbap is cut but only
seaweed is shown in Figure 3a,b, it will be labeled as Gimbap2. For Gimbap 2, the surface
area sar2 is around 95 cm2. One roll of Gimbap is a unit for labelling. Or one piece of
Gimbap is a unit.
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Figure 3. Classification of Gimbap. (a) The Gimbap is cut into pieces, the vegetables and rice are
shown in the image, and it will be labeled as Gimbap1; (b) the Gimbap is cut into pieces and placed
obliquely, it will be labeled as Gimbap1; (c) the roll of Gimbap is not cut and seaweed is shown in the
image, it will be labeled as Gimbap2.

As shown in Figure 4a, labelme is used to open the original image and the correspond-
ing json file. The image is divided into two parts by labeling points: the inside of the
labeling points are different kinds of Gimbap, and the others are background. As shown
in Figure 4b, different Gimbaps in the image will be covered with different color masks.
All json files of the labeled images are combined into a json file, containing the labeling
information of all labeled images, then they are converted into COCO datasets and inputted
into the network for training.
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After the annotation process, the statistics of the dataset are shown in Table 1. Among
the 800 training images, there are 1318 Gimbaps labeled as Gimbap1, and 655 Gimbap2
labeled as Gimbap2. There are 278 negative food items, which are food but do not belong to
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Gimbap. The test dataset contains 200 images. It includes 385 Gimbaps labeled as Gimbap1,
106 Gimbaps labeled as Gimbap2, and 56 negative food items.

Table 1. Dataset statistics after the annotation process.

Collection Number of Gimbaps
Labeled as Gimbap1

Number of Gimbaps
Labeled as Gimbap2

Number of Other
Foods

Train 1318 655 278

Test 385 106 56

3.2. Mask R-CNN Architecture

The Mask R-CNN can be divided into four main structures: backbone, Region Proposal
Networks (RPN), region of interest (ROI) classification and bounding-box regression, and
segmentation mask, as shown in Figure 5. The backbone structure of Mask R-CNN uses
one or two commonly used convolutional neural networks to extract features from training
images. Different deep learning networks have different feature extraction effects for
different objects. When training with the same data, using Inception is faster, but using
Resnet101 is more accurate than other networks such as Resnet50. In this paper, due to
speed consideration, Inception_v2 is used and the result is acceptable.
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Figure 5. Architecture of Mask R-CNN.

The Inception_v2 module is designed to reduce the complexity of the convolution
network. The Inception_v2 architecture consists of three main features: (1) it introduces
two additional auxiliary classifiers in the middle of the network to address the vanishing
gradient problem; (2) it has a deeper wider network architecture; (3) in order to solve
the information loss problem caused by reducing the input size, the network upgrades
Inception_v1 by using two 3 × 3 convolutions instead of one 5 × 5 convolutions. The
convolution performance is improved by performing 3 × 3 convolutions [30].

RPN is a typical binary classification network. Its role is to classify images into two
categories: target Gimbap and background. The Gimbap with boxes, which fit the size of the
Gimbap as much as possible is framed. At this time, only the approximate area containing
the target Gimbap and background can be distinguished. It is impossible to classify and
segment the target Gimbap in detail. After RPN, one or more regions containing the target
Gimbap can be obtained. Regions are input to ROIAlign and pooled into a fixed-size
feature map.
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3.3. Mask R-CNN Lost Function

ROIAlign classifies and locates each ROI. It uses a bilinear interpolation method in the
feature map mapping process to precisely match the spatial corresponding of each pixel,
so that each ROI is converted into a fixed-size feature map. Fixed-size feature maps are
input into two branches. One of the branch networks performs target Gimbap recognition
through an ROI classifier and bounding box regression. Both the classifier and the bounding
box regression consist of a fully connected layer. A fully connected layer (FC layer) is used
as an ROI classifier to classify the specific Gimbap categories, and the other fully connected
layer acts as a bounding box regression to adjust the center point position and aspect ratio
of the ROI, in order to detect the target Gimbap more accurately. The other branch network
is composed of a fully convolutional network (FCN) to generate a segmentation network.
The network will generate a mask with the same size and shape as the target Gimbap to
segment the target Gimbap image. Finally, an image is obtained, containing the target
Gimbap category and target Gimbap segmentation mask.

L = Lc + Ll + Lm (3)

where L is a total loss of the network; Lc is classification loss, which is used to measure
the accuracy of network classification; Ll is localization loss, which is used to measure the
frame positioning accuracy; and Lm is mask loss, which is used to measure the accuracy of
the mask position.

For each detection class u, the logarithm of the SoftMax loss function is used to
calculate Lc.

Lc(p, u) = −log2(pu) (4)

where p = (p0, p1, . . . , pk) is the result of the Softmax function.
Ll is calculated based on smoothLl loss function.

Ll(tu, v) = ∑i∈{x,y,w,h} smoothLl (t
u
i − vi) (5)

where v =
(
vx, vy, vw, vh

)
is the coordinates of the real bounding box of the target to be

detected. tu =
(

tu
x , tu

y , tu
w, tu

h

)
the bounding box coordinate correction for the target of

class u.
The smoothLl function is defined as (6).

smoothLl (x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(6)

The output dimension of the Mask branch for each ROI is K m2, where K is the number
of class and m×m is object binary mask size. A per-pixel sigmoid is applied, and Lm is the
average binary cross-entropy loss. For the ROI with class K, Lm is computed only on the
Kth Mask, and other Mask outputs are not counted in the loss.

4. Calorie Estimation Approach

The most common vegetable Gimbap contains 350–400 kcal. If different ingredients
are used, such as tuna, cheese, and tempura, the calorie is close to 500 kcal. In this research,
the calorie of one roll of basic Gimbap is defined as calr = 375 kcal. Usually, one roll of
Gimbap is sliced into 10–12 pieces. Therefore, the calorie of one piece of Gimbap is defined
as calp = 35 kcal. A Gimbap calorie estimation approach is proposed in Figure 6.

One variable of the detection result is boxes [ymin, xmin, ymax, xmax], which is the bound-
ing box coordinates. The bounding box area is calculated as (7)–(9):

bboxx = (xmax − xmin)Imgw (7)

bboxy = (ymax − ymin)Imgh (8)
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bboxarea = bboxx × bboxy (9)

where Imgw and Imgh are the width and height of the test image.
Based on the output binary mask matrix, the binary image is created. Pixels with

values more than 0 are extracted. Using OpenCV findContours function, the mask contour
is obtained. Then mask contour area cntarea is calculated, based on OpenCV contourArea
function. The area ratio is computed as:

arearatio =
cntarea

bboxarea
(10)

As discussed in Section 2, the calibration is processed by calculating the physical size
of each pixel on the x and y axes. For calculating Gimbap calories block, it contains several
cases, based on the class of Gimbap. First, a gain gb is calculated as follows:

gb =


bboxx/bboxy

arearatio
i f bboxx > bboxy

bboxy/bboxx
arearatio

i f bboxy > bboxx

(11)

The pseudo-code to calculate Gimbap calories is as Figure 7, based on (11). The
Gimbap class is obtained from the Mask R_CNN classification result. During the anno-
tation process, class 1 is labeled as Gimbap1, and class 2 is labeled as Gimbap2. The
Total_Calorie_of_Gimbap is equal to zero. It is accumulated based on the number of de-
tections in one image. Finally, the calorie estimation of the combination of Gimbap is
represented by Total_Calorie_of_Gimbap.
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The calorie estimation approach can be extended in any solid-volume food, such
as pizza, cake, burger, fried shrimp, oranges, and donuts. Based on the Mask R-CNN
algorithm, the mask area cntarea and bounding box coordinates [ymin, xmin, ymax, xmax] are
obtained. Depending on the calibration process, physical sizes corresponding to each pixel
on the x and y axes Lppx and Lppy are obtained. The solid-volume food’s surface area can
be calculated within a certain range. If the calorie of each piece of food is defined, then the
calorie of the food in the image can be estimated.
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of the labeled Gimbap. Lppx and Lppy are the physical sizes corresponding to each pixel on the x and
y axes, based on calibration process. sg is a constant scale gain.

5. Experimental Results
5.1. Gimbap Instance Segmentation Using Mask R-CNN

The training uses the Windows10 operating system. The server uses the NVIDIA
GeForce GTX1650 graphics card, and the memory is 6 GB. Mask-RCNN-inception_v2 is
used as a pre-trained model. Two sets of training parameters are used for experimental
comparison: (1) max training steps are 200,000, the initial learning rate is set as 0.0002,
momentum optimizer value is 0.9; (2) max training steps are 300,000, the initial learning
rate is 0.0001, momentum optimizer value is 0.9. Using the first training parameters, the
network will recognize the object, which is not Gimbap. In addition, the network will
repeatedly identify the same object as different classes. Therefore, this article will choose
the second set of parameters. Training takes about 27.7 h to run. On the training set, the
total loss, classification loss, localization loss, and mask loss of the network are changed
along with increasing training steps, as shown in Figure 8. After 300,000 steps, the total loss
curve value of the training set is close to and falls below 0.2, oscillating in a small range.
The network produces the correct result output for most image samples.

Figure 9 shows Gimbap’s sample original images and instance segmentation images.
The column (a) images are original images, which include Gimbap1 class and Gimbap2
class, as discussed in Section 3.1. Input the original image into the trained Mask R-CNN
model, and the results are as column (b) images. Target Gimbaps are covered by different
colors of masks, in the pictures. Each Gimbap is in a separated bounding box. The content
in the upper left corner of the bounding box is the predicted label and score of the target
Gimbap in the bounding box. Target Gimbap classification in the bounding box is Gimbap1
and Gimbap2. The probability that the target Gimbap belongs to this class is 100%.
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The Gimbap is detected by the Mask R-CNN model. The effect of the Mask R-CNN
Gimbap detection model is evaluated by the Intersection over Union (IoU) between the
predicted Gimbap bounding box and ground truth bounding box. The IoU is calculated as:

IoU =
Area o f Intersection

Area o f Union
=

area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(12)

where Bp is the predicted bounding box and Bgt is the ground truth bounding box. If
IoU ≥ 0.5, the detection result is considered a True Positive (TP); otherwise, if 0 < IoU < 0.5,
the result is considered a False Positive (FP). If a mask is generated without Gimbap in the
image, the result is also considered a False Positive. If the image contains Gimbap, but it is
not detected, the result is considered a False Negative (FN). If the image does not contain
Gimbap and no mask was generated, the result is considered a True Negative (TN). As in
(13), the precision indicates the ratio of the correct number of Gimbap identified by the
model to the total number. In (14), Recall is the ratio of the number of Gimbaps correctly
identified by the model to the number of Gimbaps that actually exist.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

The Average Precision (AP) is the area under the precision-recall curve for detection.
Based on [31], AP is calculated from the mean precision at a set of eleven equally spaced
recall levels [0, 0.1, . . . , 1]:

AP =
1

11 ∑r∈{0,0.1,...,1} Pinterp(r) (15)

The precision for each recall level r is interpolated by taking the maximum precision
value for any recall value greater than r.

Pinterp(r) =
maxp(r̃)
r̃:̃r≥r (16)

where p(r̃) is the measured precision at recall r̃. After calculating the AP for each class, the
mean average precision (mAP) is obtained. In this experiment, AP at 0.5 IoU for Gimbap1
is 88.13%, and AP at 0.5 IoU for Gimbap2 is 82.72%. mAP at 0.5 IoU is 85.43%.
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5.2. Gimbap Calorie Estimation

Normally, the calories of one roll of Gimbap are 350–400 kcal. As discussed in Section 4,
after resizing the image and calculating the physical size of each pixel, based on Gimbap
detection results, calorie estimation results are shown in Figure 10. Figure 10a shows
original images. In Figure 10(b1), the calories of each slice of Gimbap are in the range
35–40 kcal. For Gimbap2 class, there are two normal pieces of Gimbap and one big size slice
of Gimbap, the total calories are 130.01 kcal. In Figure 10(b2), five pieces of Gimbap are
recognized together as Gimbap1, and the calories are 194.57 kcal. The calories of the other
two pieces of Gimbap are 35.07 kcal and 40.35 kcal, separately. In Figure 10(b3), the calories
of the Gimbap are 390.84 kcal. There are some uncertainties, for example, the detection
errors from the Mask R-CNN process and the calibration error from the calibration process,
due to lighting conditions and image quality. However, the calorie estimation result is
in the range of definition in real life. Therefore, the proposed Gimbap calorie estimation
approach is effective.

5.3. Comparison with the Other Algorithm

The performance of the calorie estimation method with Mask R-CNN is evaluated by
comparing its results with the results estimated by Faster R-CNN, as shown in Figure 11.
The same test image is used for comparison, in order to minimize the effect of the parametric
uncertainty. Five pieces of Gimbap are recognized as Gimbap1, and the calories are
113.3 kcal. Normally, the calories of five pieces of Gimbap are in the range of 175 kcal to
200 kcal. The calorie estimation result is much less than normal. After object detection using
Faster R-CNN, only bounding box information is obtained, but no mask information. The
unseen food shape cannot be considered. For the Gimbap1 label, based on Figure 7, there
are two cases: (1) Gimbap is cut into pieces. The mask of the Gimbap is round. (2) Gimbap
is cut into pieces and placed obliquely. The mask of the Gimbap is a rectangle. Since there
is no mask information, it is hard to choose the right case. Therefore, the estimation result
is wrong. In Figure 10(b2), the calorie estimation result is 194.57 kcal. It considered the
unseen food and uses Mask R-CNN instance segmentation results to estimate the food’s
calories. Therefore, the result satisfied the standard.
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Figure 10. Calorie estimation results of test samples: (a1–a3) original images including Gimbap,
(b) instance segmentation images. (b1) The Gimbap calorie of each detection is shown in the picture.
The total calorie is 282.38 kcal. (b2), five pieces of Gimbap are recognized together as Gimbap1, and
the calorie is 194.57 kcal. The calorie of the other two pieces of Gimbap is 35.07 kcal and 40.35 kcal,
separately. The total calorie is 269.99 kcal. (b3), the calorie of the Gimbap is 390.84 kcal.
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Figure 11. Calorie estimation result based on Faster R-CNN algorithm. Because it does not consider
the unseen Gimbap, the calorie estimation result is much less than normal.

6. Conclusions

Recently, classifying food, estimating food quantity and nutritional content, and
recording dietary intake have become important issues. In order to obtain accurate results,
Mask R-CNN is applied for food instance segmentation and calorie estimation. Gimbap
is chosen as an example of solid-volume food to show the effectiveness of the proposed
methods. Firstly, based on the posture of Gimbap in plates, the labeled approach for the
Gimbap image datasets is described, in order to process the Gimbap food segmentation
and calorie estimation system. Secondly, an optimized model is created by fine-tuning
Mask R-CNN architecture to obtain classification, bounding box, and mask information.
In order to apply the method in real life, distinguishing from other methods using 3D
LiDAR data or RGB-D images data, this work uses RGB images to train the model and
uses a simple monocular camera to test the result. After training, the model shows 88.13%
for Gimbap1 in AP (0.5 IoU) and 82.72% for Gimbap2 in AP (0.5 IoU). mAP at 0.5 IoU
reaches 85.43%. Thirdly, a novel calorie estimation approach is proposed, combining the
calibration result and the instance segmentation result. the calorie estimation approach can
be extended to any solid-volume food, such as pizza, cake, burger, fried shrimp, oranges,
and donuts. Finally, the effectiveness of the proposed approaches is proved. The Gimbap
can be detected well. Based on Gimbap’s segmentation instance result, Gimbap’s calorie is
correctly estimated. The calorie estimation result is close to Gimbap’s calorie definition.
Compared to other vision-based methods, the method in this paper outperforms in the
accuracy of food segmentation and calorie estimation, since it uses the mask information
from the Mask R-CNN algorithm and considers unseen food.
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