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Abstract: Medical outcomes must be tracked in order to enhance quality initiatives, healthcare man-
agement, and mass education. Thoracic surgery data have been acquired for those who underwent
major lung surgery for primary lung cancer, a field in which there has been little research and few
reliable recommendations have been made for lung cancer patients. Early detection of lung cancer
benefits therapy choices and increases the odds of a patient surviving a lung cancer infection. Using a
Hybrid Genetic and Support Vector Machine (GA-SVM) methodology, this study proposes a method
for identifying lung cancer patients. To estimate postoperative life expectancy, ensemble machine-
learning techniques were applied. The article also presents a strategy for estimating a patient’s life
expectancy following thoracic surgery after the detection of cancer. To perform the prediction, hybrid
machine-learning methods were applied. In ensemble machine-learning algorithms, attribute ranking
and selection are critical components of robust health outcome prediction. To enhance the efficacy
of algorithms in health data analysis, we propose three attribute ranking and selection procedures.
Compared to other machine-learning techniques, GA-SVM achieves an accuracy of 85% and a higher
F1 score of 0.92. The proposed algorithm was compared with two recent state-of-the-art techniques
and its performance level was ranked superior to those of its counterparts.

Keywords: thoracic surgery; data wrangling; genetic algorithm; support vector machine; survival

1. Introduction

Cancer is a physical disease in which some human body cells get out of control and
spread to other parts of the body. Many types of lung cancer are found in men, women, and
children and are the leading cause of death. According to the World Health Organization
(WHO) [1], there were 2.09 million cases of lung cancer registered in 2018, and 1.76 million
people died of lung cancer. The most common cause of cancer-related death is lung cancer.
Cancer of the lungs can start in the windpipe, central airway, or lungs. It is brought on by
the unregulated growth and spread of certain organisms. People who have a lung ailment,
such as emphysema and prior chest problems, have a higher risk of being diagnosed with
lung cancer [2].

In males and women’s excessive tobacco use, cigarettes, and beads are the leading
causes of lung cancer. There are relatively few smokers, indicating fewer smoker additional
elements that contribute to the development of lung cancer. Time plays an essential role in
diagnosing the disease. Late detection of lung cancer is the leading cause of death from
lung cancer. Treatment of a patient’s disease depends on the diagnosis of the disease and
the type of disease. Primary lung cancer begins in the lungs, whereas secondary lung
cancer begins in the lungs and spreads to other body regions. Dimensions of cancer stage
are determined by the size of the tumor and how far it has spread [3].

Researchers have used several methods to detect cancer before symptoms appear, such
as early-stage examination. In addition, new strategies for predicting the success of cancer
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therapy have been developed [4]. Massive datasets for cancer have been collected and
made available to medical researchers due to the advancement of new tools in medicine.
The most difficult challenge, however, is precisely forecasting disease outcome. As a result,
current research focuses on using machine-learning techniques to discover and identify
models and relationships between them from large datasets. The data are analyzed to
extract helpful information supporting disease prediction and to improve models that
accurately predict patient health [5].

Large datasets frequently harm machine-learning systems’ performance and accuracy
levels. Datasets with high-dimensional characteristics have a higher processing complexity
and predictions take longer. A solution to the problem posed by complex datasets is ranking
and selection [6]. In the machine-learning sector, several attribute and selection strategies
have been presented. The primary goal of these approaches is to eliminate unnecessary,
misleading, or redundant features, as these attributes increase the size of the search area,
making it impossible to analyze data further and frustrating the learning process. The
process of selecting the best traits from all the attributes used to distinguish classes is
known as attribute and ranking selection [7].

To overcome the issue, early detection of lung cancer benefits therapy choices and
increases the odds of a patient surviving a lung cancer infection. Using a Hybrid Ge-
netic and Support Vector Machine (GA-SVM) methodology, this study proposes a method
for identifying lung cancer patients. To estimate postoperative life expectancy, ensemble
machine-learning techniques were applied. The article also presents a strategy for esti-
mating a patient’s life expectancy following thoracic surgery after the detection of cancer.
To perform the prediction, hybrid machine-learning methods were applied. In ensemble
machine-learning algorithms, attribute ranking and selection are critical components of
robust health outcome prediction. To enhance the efficacy of algorithms in health data
analysis, we propose three attribute ranking and selection procedures. Compared to other
machine-learning techniques, GA-SVM achieves an accuracy of 85% and a higher F1 score
of 0.92. The proposed algorithm was compared with two recent state-of-the-art techniques
and its performance level was ranked superior to those of its counterparts.

The rest of the paper is structured as follows: Section 2 provides a brief overview of
machine-learning algorithms and attribute ranking and selection approaches used for illness
diagnosis and prediction. Section 3 treats of the specifics of the suggested methodologies
and the dataset. The findings of the experiments are presented in Section 4. Sections 5 and 6
contain the results and the conclusions.

2. Related Work

Machine-learning takes AI software further by allowing intelligent components to
learn based on past work or data extrapolations. A program performs complex decision-
making procedures and learns from past activity as it moves along. The following summa-
rizes the research publications on lung cancer diagnosis using various machine-learning
techniques [6], comparing techniques such as Decision Trees, Naive Bayes, and Artificial
Neural Networks for predicting postoperative life expectancy in lung cancer patients by
utilizing predictive data mining algorithms.

The researchers used a stratified 10-fold cross-validation comparison analysis; accuracy
was tested using the earlier algorithms for each classifier, and a calculation was made [7].
With the lung cancer dataset presented in this paper, distinct outcomes were produced for
each classifier. KNN, SVM, NN, and Random Forest classifiers were implemented, and the
appropriate accuracy rates were obtained. With 85% accuracy, the GA-SVM approach is
the most accurate. The proposed method was tested on a medical dataset, and it assisted
clinicians to make more accurate decisions.

Various segmentation techniques have been discussed, such as Naive Bayes, Hidden
Markov Models, and others [8]. A thorough explanation of how and why various seg-
mentation algorithms are utilized to detect lung tumors has been provided [9]. It was
demonstrated how to make a basic flowchart for a brain tumor detection system. The three
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most extensively used statistical approaches for predicting survival or complications for
LCPs are Kaplan–Meier curves, multivariable logistic regression, and Cox regression [10].
Mangat and Vig [11] suggested an association rule approach based on a dynamic particle
swarm optimizer, with an accuracy of 82.18% in classification. Saber Iraji [12] examined
the accuracy of adaptive fuzzy neural networks, extreme learning machines, and neural
networks in predicting LCP survival one year after surgery.

The boosted support vector machine (SVM) technique was utilized by Tomczak et al. [13]
to predict the postoperative survival of LCPs. The problem of class imbalance occurs
when one class of data in a dataset is much bigger than the others [14]. The subject of
unbalanced data categorization has been widely discussed and extensively explored during
the last few decades. There are two primary study paths discussed in the available articles
on unbalanced data processing methods: data-level and algorithm-level paths [15]. By
resampling the input data, the data-level processing methods establish a balanced class
distribution.

Ensemble learning and cost-sensitive learning are the two fundamental features of
algorithm-level processing approaches. The synthetic minority oversampling technique
(SMOTE) is one of the most extensively utilized unbalanced data-processing methods
because it is both easy and effective [16]. When SMOTE is employed alone, however, it
is likely to be unsatisfactory or even counterproductive, because its blind oversampling
overlooks sample distribution, such as the presence of noise [17,18].

Two types of data mining strategies were discussed along with their categorization
methods; Naive Bayes and SVM are two statistical approaches:

1. Methods of data compression: decision trees, neural networks;
2. Discussions on various datasets were held.

2.1. Genetic Algorithm

There are three essential design options when using a GA to address an issue. A
candidate solution representation must be chosen and encoded on the GA chromosome, a
fitness function must be specified to evaluate the quality of each candidate solution, and,
finally, GA run parameters must be specified, including which genetic operators to use,
such as crossover, mutation, selection, and the probability of risk. For the SVM classifier, a
GA technique was utilized to choose a set of suitable finite feature subsets [19].

2.2. Support Vector Machine

SVMs (Support Vector Machines) are binary linear regression types that are not proba-
bilistic. If a set of training data has been identified as one of two sets, the method displays
them in space and specifies a hyper-plane that is the furthest away from both to divide
them. “The maximal margin hyper-plane” is the name of the plane. If a linear separation is
not achievable, the approach uses kernel methods to provide a non-linear mapping to the
feature space. In this method, a non-linear decision boundary in the input space is repre-
sented by the hyper-plane in the feature space. When the data are noisy, one disadvantage
of SVMs is that they are prone to overfitting. The following expression is used to calculate
the fitness probability of a single chromosome:

FP =
Fi

∑n=6
i=1 Fi

(1)

where FP shows the fitness probability of the ith chromosome and Fi shows the fitness
value of the ith chromosome.

3. Proposed Methodology

A GA-SVM hybrid model is presented to classify the lung cancer dataset. Genetic
algorithm has been utilized in the feature selection problem to redact the high-dimensional
dataset. One of the drawbacks of this technique is that it cannot build associations between
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the features when selecting the optimal features. The possibility of selecting a subset with
redundancy has been increased. To overcome this issue, the boosted genetic algorithm
has been proposed for the finest selection of a feature subset from a multi-dimensional
dataset. The proposed approach splits the chromosome into numerous classifications
for local management. So, mutation and crossover operators have been used on stated
groups to eliminate invalid chromosomes. The Support Vector Machine (SVM) seeks to
represent multi-dimensional datasets in a space divided by a hyper-plane that separates
data components belonging to distinct classes. On unseen data, the SVM classifier can
minimize the generalization error. The optimal hyper-plane is also known as the separating
hyper-plane. The SVM has been demonstrated to be effective for binary classification but
ineffective for noisy data. Learning machine features might be challenging due to the
SVM’s shallow design.

The SVM is a binary classifier, while GA is a feature extractor. A hybrid GA-SVM
model is suggested in this paper, in which the SVM is utilized as a binary classifier, and the
SoftMax layer of the GA is replaced with the SVM. Figure 1 shows the architecture of the
proposed hybrid GA-SVM model.
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SVM Parameter Optimization Using GA

SVM classification accuracy may be improved by adequately selecting parameters
in addition to feature selection. To achieve a high classification rate, the choice of best
feature and the kernel parameter is critical. These settings are usually fine-tuned by
hand. We employ genetic algorithms to automate this decision. Since the SVM parameters
are accurate, which must encode using binary chains; we set two search frequencies for
each variable.

4. Experimental Study

The suggested experiment evaluated the proposed hybrid GA-SVM model for predict-
ing survival in lung cancer patients. The steps in the experimental setup were as follows:

4.1. Dataset Preparation

The original dataset can be found in the UCI Machine Learning Repository [20]. Other
dataset were used for comprehensive comparisons, namely, the Haberman dataset and
the appendicitis dataset [21]. According to the leading repository site, the data were col-
lected prospectively at Wroclaw Thoracic Surgery Center for patients who had undergone
significant lung resections for primary lung cancer in 2007–2011.
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4.2. Dataset Preprocessing

When looking at the information in the data collection, several columns appear to
be object strings for T and F values. PRE7, PRE8, PRE9, PRE10, PREll, PRE17, PRE19,
PRE25, PRE30, PRE32, and Risk1Yr are among them. The T and F object data types were
transformed to 1 and 0 int data types in these columns. Data in a string with an int value
were stored in the columns DGN, PRE6, and PRE14. After reviewing the column data
description, it was concluded that the string value was unnecessary and that the int value
would be more beneficial for analysis in the future.

As a result, these three columns were changed to only have the int value as a data
type int. The id column was eliminated since it was redundant and provided no valuable
information about each patient. For identifying individual row values, the indices were
sufficient. Instead of the original codes, the column names were renamed in a more human-
readable language. There were no missing values in the original dataset to deal with. The
only numeric columns to examine for outliers were PRE4, PRE5, and AGE. The use of box
plots and scatter plots to analyze the data revealed 16 notable anomalies.

The box plots indicated several outliers in the FEV1 column and one outlier in the Age
column at roughly 20, significantly outside the data range. With scatter plots, it is clear that
the Age outlier stands out from the rest of the data. The gap between the FEV1 outliers
and the rest of the dataset is also visible. More research is needed on the two spots in the
FVC boxplot.

The data analysis revealed that most FEV1 data were below 8; hence, the remaining
15 values were considered outliers and eliminated from the dataset. The majority of the
data for Age falls between the ages of 40 and 80; thus, the one outlier at 20 was eliminated.
Despite eliminating 16 outliers, the new dataset comprises 454 occurrences instead of the
original 470, indicating that it is large enough for analysis.

4.3. Exploratory Data Analysis

In the dataset, 69 patients died over a year, while 385 survived, resulting in a mortality
rate of 15.20 percent. Table 1 below compares the various qualities and the two separate
death and live classes for one year.

Table 1. Comparison between two separate death and live classes during one year.

Attribute Death in 1 Year (Mean) Live 1 Year (Mean)

FVC 3.195072 3.304597
FEV1 2.383188 2.540805

Performance 0.913043 0.774026
Pain 0.101449 0.051948

Haemoptysis 0.202899 0.124675
Dyspnoea 0.115942 0.044156

Cough 0.797101 0.677922
Weakness 0.246377 0.158442

Tumor Size 2.014493 1.683117
Diabetes Mellitus 0.144928 0.062338

MI 6 months 0.000000 0.005195
PAD 0.028986 0.015584

Smoking 0.898551 0.815584
Asthma 0.000000 0.005195

There were aspects with substantial differences and others with modest differences
when comparing the means of the two patient groups. However, a normalization step
was conducted for percentage discrepancies to make it easier to compare the numbers
between classes.
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4.4. Classification

A Machine Classifier was used for the supervised classification challenge. We discov-
ered which features were relevant in determining the mean differences between individuals
who lived and died in one year following surgery using EDA and hypothesis testing to
acquire p-values. The test was to be focused on two separate X datasets. The first dataset
eliminated the goal variable, Death 1 year, and the two characteristics MI 6 months and
Asthma, which had a low presence in the data. X was the name given to this information.
Performance, Dyspnoea, Cough, Tumor Size, and Diabetes Mellitus were the sole qualities
of significance determined by the hypothesis testing in the EDA section. X2 was the name
of this data collection.

5. Results and Discussions

We focused on using the Genetic Algorithm and the Support Vector. The dataset is
unbalanced and consists mainly of living patients (85%); only predicting all live patients
would result in a high accuracy score of 85%. As a result, accuracy would not be an
acceptable score method for the model, and average precision score was used, which
summarizes the precision–recall curve. There are also alternatives for balancing the classes,
such as down-sampling or modifying class weights. Modification of the class weights was
concentrated on because down-sampling would result in a tiny dataset to deal with, while
up-sampling may have further confused the data.

The death prediction rate and accuracy level increased with the class weight parameter
at the expense of live-patient prediction. The average accuracy score also served as a decent
summary of the precision–recall curve in this scenario. Figure 2 illustrates the confusion
matrix or classification report that may be used to examine death predictions to understand
how effective the model is for present purposes.
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To balance the death-to-life ratio, which was 15 to 85, the class weight argument was
set to ‘balanced.’ The ramifications of changing this argument’s ratio may be observed in
Figure 3.

Although higher class weights on deaths enhanced correct death forecasts, false death
predictions increased with the drop in incorrect live predictions. In Figure 4, the impact
of class weights can be seen. It is worth noting that the score dropped considerably at the
5.67 value, which is the equalizing point of the ratio of 15 to 85.
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As shown in Table 2, Random Forest performed relatively better than FPSO-SVM +
SMOTE, PSO-SVM +SMOTE, SVM + SMOTE, and KNN + SMOTE. It achieved 0.83 accuracy,
which was better than all of the other classifiers.

Table 2. Comparison of existing approaches with respect to Accuracy and F1 score.

Model Accuracy F1 Score

RANDOM FOREST [1] 0.83 0.91
FPSO-SVM + SMOTE [22] 0.6890 0.6612
PSO-SVM +SMOTE [22] 0.6435 0.5089

SVM + SMOTE [23] 0.6291 0
KNN + SMOTE [24] 0.6630 0.6545
GA-SVM+ SMOTE
Proposed method 0.85 0.91
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As shown in Table 3, FPSO-SVM + SMOTE performed relatively better than PSO-SVM
+ SMOTE, SVM + SMOTE, and KNN + SMOTE. It achieved 0.6942 and 0.6813 for the
G-mean and AUC, respectively, which were better results than those of all of the other
classifiers. The proposed method method has been performed better as compared to
FPSO-SVM + SMOTE and the other state-of-the-art algorithms.

Table 3. Comparison of G-mean and AUC values for different models on the Haberman dataset.

Model G-Mean AUC

FPSO-SVM + SMOTE [22] 0.6942 0.6813
PSO-SVM + SMOTE [22] 0.5832 0.6131

SVM+ SMOTE [23] 0 0.6096
KNN+ SMOTE [24] 0.6572 0.6649
Proposed Method 0.7897 0.6989

In Table 4, the proposed method GA-SVM + SMOTE outperformed PSO + SMOTE,
SVM + SMOTE, and KNN + SMOTE. Its Accuracy and AUC results, which were 0.85 and
0.69, were better than those of the other classifiers. Table 5 shows that the proposed method
performed better than PSO + SMOTE, SVM + SMOTE, and KNN + SMOTE.

Table 4. Accuracy and AUC comparison for different algorithms on the Haberman dataset.

Model Accuracy AUC

FPSO-SVM + SMOTE [22] 0.6890 0.6813
PSO-SVM + SMOTE [22] 0.6435 0.6131

SVM + SMOTE [23] 0.6291 0.6096
KNN + SMOTE [24] 0.6630 0.6649
GA-SVM+ SMOTE
Proposed method 0.85 0.69

Table 5. Accuracy and AUC comparison for different algorithms on the appendicitis dataset.

Model Accuracy AUC

FPSO-SVM + SMOTE [22] 0.8792 0.8807
PSO-SVM + SMOTE [22] 0.8713 0.7602

SVM + SMOTE [23] 0.7979 0.7966
KNN + SMOTE [24] 0.7708 0.7736
GA-SVM + SMOTE
Proposed method 0.90 0.78

6. Conclusions

In this research, a GA-SVM hybrid model for the thoracic surgery dataset has been
proposed, including automated feature synthesis with GA and output prediction with the
SVM. To achieve optimal results, the model combines the advantages of GA and SVM clas-
sifiers. GA and SVM classifiers were ensemble in the proposed system to provide the best of
both techniques. The Support Vector Machine (SVM) seeks to represent multi-dimensional
datasets in a space divided by a hyper-plane that separates data components belonging to
distinct classes. The model also favors the usage of automatically generated features. For
the thoracic surgery dataset, the experimental results indicated that our proposed technique
has a classification accuracy of 85%. The hybrid GA-SVM model is still in its early stages of
development and can be further explored to make it computationally feasible.
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