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Abstract: In this paper, we present a monitoring program of loss control prevention for airlines to en-
hance aviation safety and operational efficiency. The assessments of dynamic stability characteristics
based on the approaches of oscillatory motion and eigenvalue motion modes for jet transport aircraft
response to sudden plunging motions are demonstrated. A twin-jet transport aircraft encountering
severe clear-air turbulence in transonic flight during the descending phase was examined as the
study case. The flight results in sudden plunging motions with abrupt changes in attitude and
gravitational acceleration (i.e., the normal load factor) are provided. Development of the required
thrust and aerodynamic models with the flight data mining and the fuzzy logic modeling techniques
was carried out. The oscillatory derivatives extracted from these aerodynamic models were then used
in the study of variations in stability characteristics during the sudden plunging motion. The fuzzy
logic aerodynamic models were utilized to estimate the nonlinear unsteady aerodynamics while
performing numerical integration of flight dynamic equations. The eigenvalues of all motion modes
were obtained during time integration. The positive real part of the eigenvalues is to indicate unstable
motion. The dynamic stability characteristics during sudden plunging motion are easily judged by
the values in positive or negative. The present quantitative assessment method is an innovation
to examine possible mitigation concepts of accident prevention and promote the understanding of
aerodynamic responses of the jet transport aircraft.

Keywords: flight data mining; plunging motion; clear-air turbulence; stability characteristics; motion
modes; eigenvalues

1. Introduction

Aircraft performance data for aircraft autopilots and some training-level flight simu-
lators design are generally obtained from flight testing under normal flight conditions. It
is impossible to take all flight conditions into account in the design process of transport
aircraft. Some flight conditions, e.g., in-flight abrupt descent in clear-air turbulence (CAT),
are not easy to test in airworthiness certification, which may lead to the aircraft loss of
control in commercial service operation. The flight mechanism of off-nominal conditions
cannot easily be simulated by wind tunnel tests, and it is not possible to directly perform
flight tests with real aircraft. In other words, the design value of aerodynamic performance
is inconsistent with the actual aerodynamic performance during the flight operations. It is
appropriate that off-nominal flight conditions cannot be combined with aircraft design and
flight simulators [1]. More importantly, the pilots cannot gain much experience in these
flight conditions.

The adverse weather related to off-nominal flight conditions includes (but is not limited
to) heavy rain, convective storms [2], turbulence [3,4], crosswind [5,6], wind shear [7,8], and
in-flight icing [9,10]. Adverse weather impacts the flight safety of transport aircraft and the
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operational efficiency of air traffic management. An innovative commercial flight route planning
tool is developed to avoid the deep convective storms [2]. This program provides an overview
to establish a better air route based on original trajectory operations for safe, efficient, and
comfortable operating flights to the airlines.

Among the different adverse weathers, clear-air turbulence is important in flight
safety since it is hard to detect and predict. Clear-air turbulence is the leading cause of
serious personal injuries in non-fatal accidents of commercial aircraft [11]. One main type of
motion that causes flight injuries in clear-air turbulence is the sudden plunging motion with
abrupt changes in attitude and gravitational acceleration (i.e., the normal load factor) [12].
The assessment of flying qualities during sudden plunging motion was presented for an
aged twin-jet transport aircraft encountering severe clear-air turbulence through digital
six degree-of-freedom (6-DOF) flight simulations. The important process of the method
is to numerically integrate the 6-DOF equations of motion and simultaneously determine
the eigenmodes of motion at every instant. The longitudinal equations are coupled with
the lateral-directional equations, and some nonlinear effects are incorporated, which is
an advantage of 6-DOF flight simulation [13]. Unfortunately, with that approach, it was
difficult to identify the individual modes of motion from these eigenvalues from one instant
to another because of the rapid changes in aerodynamic forces and moments in turbulence.

In Ref. [11], an aged twin-jet transport aircraft was tested. The static aeroelastic effect
was significant when the transport aircraft sustained instantaneous high g-loads in severe
clear-air turbulence. Any structural deformation with static aeroelastic effects caused by
flight loads would change certain aerodynamic parameter values. However, that article
did not provide the corresponding relationship between the static aeroelastic effect and
eigenvalue motion modes.

This article presents flight data mining and the fuzzy logic modeling of an artificial
intelligence technique to establish nonlinear and unsteady aerodynamic models for six
aerodynamic coefficients based on the flight data of a new twin-jet transport aircraft with
the service year of only 11 months. The new aircraft has fewer static aeroelastic effects in
comparison with the aged one, and even those of the new one can be negligible [14]. This
new twin-jet encountered severe clear-air turbulence twice during the descending phase.
The oscillatory derivatives extracted from the aerodynamic models were used to study the
dynamic stability characteristics during the sudden plunging motion. The longitudinal and
lateral-directional motion modes were analyzed through digital flight simulation based on
decoupled dynamic equations of motion. The eigenvalue equations were formulated in the
form of polynomials and solved. The eigenvalues for short-period, phugoid (long-period),
Dutch roll, spiral, and roll modes of motion were estimated based on the damping ratio
and undamped natural frequency. A positive real part of the eigenvalues is to indicate
unstable motion. The dynamic stability characteristics during sudden plunging motion are
easily judged by the values in positive or negative. The present approach is an innovation
to examine possible mitigation concepts of accident prevention for airlines to enhance
aviation safety and operational efficiency.

2. Methodology
2.1. Flight Data Mining Technology

The input data for fuzzy logic modeling were extracted from post-flight data. There are
many flight parameters recorded by FDRs (Flight Data Recorders) or QARs (Quick Access
Recorders), but some of them are not related to the current study, such as light signs, landing
gear retracting, etc. The steps are to collect and organize a large amount of data and obtain the
required information for specific analysis and applications; this process is called flight data
mining [15]. The flight data mining process is divided into two parts: the development of a
nonlinear and unsteady aerodynamic database and the aerodynamic models.



Appl. Sci. 2022, 12, 10920 3 of 21

2.2. Development of Nonlinear and Unsteady Aerodynamic Database

This section describes the development process of the demand data selection, data
frequency upscaling and data make-up, compatibility check, and input information of
aircraft main geometry and moment of inertia data. The flowchart of each step is shown in
Figure 1.
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Before developing a nonlinear and unsteady aerodynamic database, one must ensure
that the selected parameters and corresponding data are those required for the study. The
parameters and corresponding data required for the current study include the following items:

(1) To select the required flight status, flight control surface, and engine raw data for a
specific flight number from the actual flight QAR or FDR data.

(2) The main geometric and moment of inertia data include appearance size, wingspan,
average chord length, wing area, etc. Most are public data of aircraft manufacturers and
can be obtained via the Internet. However, the thrust performance of the entire aircraft is
non-public data and must be obtained from the Flight Planning and Performance Manual
(Boeing Series) or Flight Crew Operation Manual (Airbus Series).

The frequency of each parameter sensor is different, from 1 Hz to 8 Hz, due to the
properties and characteristics of the parameters [16]. For example, attitude angles such as
roll, pitch, and heading angles are 4 Hz; aileron and elevator angles are 2 Hz; the vertical
acceleration sampling rate is 8 Hz. To preserve the properties and characteristics of each
parameter, it is necessary to avoid high-frequency data loss, so the frequency of all original
data sampling is uniformly arranged to 8 Hz.

The data frequency increase and make-up of this research are developed based on the
method of monotone cubic spline interpolation [17]. This method is commonly used in
aircraft flight test analysis to provide a smooth curve. Data upscaling and data completion
of blanks are important steps for the aerodynamic database to have high accuracy and
reliability in applications for operational efficiency enhancement of transport aircraft.

2.3. Compatibility Check

Typically, the longitudinal, lateral, and vertical accelerations (ax, ay, az) along the (x, y, z)-
body axes of aircraft, as well as the angle of attack α, Euler angles (φ, θ, and ψ), aileron deflection
(δa), elevator (δe), rudder (δr), stabilizer (δs), etc., are available and recorded in the QAR or
FDR of all transport aircraft. Since the recorded flight data may contain errors (or biases),
compatibility checks are performed to remove them by satisfying the following kinematic
equations [12,18]:

.
φ = p + q sin φ tan θ + r cos φ tan θ (1)

.
θ = q cos φ− r sin φ (2)

.
ψ = (q sin φ + r cos φ) sec θ (3)

.
V = (ax − g sin θ) cos α cos β + (ay + g sin φ cos θ) sin β
+(az + g cos φ cos θ) sin α cos β

(4)
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.
α = [(az + g cos θ cos φ) cos α− (ax − g sin θ) sin α]/(V cos β)
+q− tan β(p cos α + r sin α)

(5)

.
β = cos β(ay + g cos θ sin φ)/V + p sin α− r cos α
− sin β[(az + g cos θ cos φ) sin α− (ax − g sin θ) cos α]/V

(6)

where g is the gravitational acceleration and V is the flight speed. Let the errors be denoted
as bax , bay , baz , bp, bq, br, bV , bα, bβ, bθ , bφ, bψ, for ax, ay, az, etc., respectively. These errors are
estimated by minimizing the squared sum of the differences between the two sides of
Equations (1)–(6).

These equations in vector form can be written as:

.
⇀
z =

⇀
f (

⇀
x ) =

→
f (

⇀
x m − ∆

⇀
x ) (7)

where
⇀
z = (V, α, β, θ, φ, ψ)

T
(8)

⇀
x m = (ax, ay, az, p, q, r, V, α, β, θ, φ, ψ)

T
(9)

∆
⇀
x = (bax , bay , baz , bp, bq, br, bV , bα, bβ, bθ , bφ, bφ)

T (10)

where superscript “¯” stands for the mean value and the subscript “m” indicates the
measured or recorded values. The cost function is defined as:

J =
1
2
(

.
⇀
z −

⇀
f )

T
Q(

.
⇀
z −

⇀
f ) (11)

where Q is a weighting diagonal matrix with elements being 1.0 and
.
⇀
z is calculated with a

central difference scheme with
⇀
z m, which is the measured value of

⇀
z . The steepest descent

optimization method is adopted to minimize the cost function. As a result of analysis,
variables unavailable in the QAR or FDR, such as β, p, q, and r, are able to be estimated.

The above-mentioned unavailable variables in the QAR or FDR need initial values as a
basis for correction, where the angular rates, such as p, q, and r, are obtained from derivatives of
φ, θ, and ψ with time by using the method of monotonic cubic interpolation. This interpolation
method is used to connect the flight data in a continuous curve to obtain the slope of the curve.
The value of β cannot be obtained from the derivative. The initial value of β is assumed to be 0
at the time of estimation, and it is calculated when Equation (6) is satisfied.

2.4. Aircraft Main Geometry and Moment of Inertia Data

The main objective of this article is to present a dynamic stability monitoring method
based on the approach of oscillatory motion and eigenvalue motion modes for the twin-jet
transport aircraft response to sudden plunging motions. The data of main geometry and
moments of inertia are presented in Table 1.

Table 1. Main geometry and moment of inertia data for the twin-jet transport aircraft.

Parameter Twin-Jet

Takeoff gross weight (kg) 180,168
Wing reference area, S (m2) 361.300

Mean chord length, c(m) 6.005
Wing span, b (m) 60.289

Moment of inertia—x-axis, Ixx (kg·m2) 12,815,012
Moment of inertia—y-axis, Iyy (kg·m2) 12,511,197
Moment of inertia—z-axis, Izz (kg·m2) 53,650,986

Moment of inertia—xy-axes, Iyz (kg·m2) 0.0
Moment of inertia—xy-axes, Ixy (kg·m2) 0.0
Moment of inertia—xz-axes, Ixz (kg·m2) 0.0
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2.5. Nonlinear and Unsteady Aerodynamic Database

The actual physical phenomenon of an aircraft flying in the atmosphere is the physical
movement along the flight trajectory over time. Since all flight variables recorded are based
on the body axes, it is more convenient to estimate the force and moment coefficients for
aircraft on the same axis system as follows [19]:

(1) Force coefficients acting on the body axes of the aircraft:

max = CxqS + Tx (12)

may = CyqS + Ty (13)

maz = CzqS + Tz (14)

(2) Moment coefficients about the body axes of the aircraft:

ClqS b = Ixx
.
p− Ixz

.
r + qr

(
Izz − Iyy

)
− Ixz pq (15)

CmqS c = Iyy
.
q + rp(Ixx − Izz) + Ixz

(
p2 − r2

)
− Tm (16)

CnqS b = −Ixz
.
p + Izz

.
r + pq

(
Iyy − Ixx

)
+ Ixzqr (17)

where m is the aircraft mass; q is the dynamic pressure; S is the wing reference area; Cx, Cz,
and Cm are the longitudinal aerodynamic force and moment coefficients; Cy, Cl, and Cn are
the lateral-directional aerodynamic force and moment coefficients; and Ixx, Iyy, and Izz are
the moments of inertia about the x-, y-, and z-axes, respectively. The products of inertia, Ixy,
Ixz, and Iyz, are assumed to be zero in the present case but are included in the equations
because non-zero values may be available in other applications. The terms Tx, Ty, Tz, and
Tm represent the thrust contributions to the force in the direction of x-, y-, and z-axes and to
the pitching moment, respectively.

The variables pq, qr, and pr in the Equations (15)–(17) are the product terms of two
dependent variables, and the equations belong to the nonlinear differential equation system
due to the existence of nonlinear terms. Nonlinear differential equations are difficult to
solve mathematically, and the physical phenomena of motion are complicated [20]. In
the physical sense, the product term of the two dependent variables is related, which
is the coupling effect of nonlinear motion. The raw flight data of QAR or FDR can be
used to establish a nonlinear and unsteady aerodynamic database through the steps of the
flowchart in Figure 1.

The terms on the left-hand side of Equations (15)–(17) are rolling, pitching, and yawing
moments. The moments due to inertia coupling on the right-hand side in Equations (15)–(17)
will be produced due to the abrupt change in the flight attitude before and during the severe
clear-air turbulence encounters.

2.6. Development of Nonlinear and Unsteady Aerodynamic Models

This section describes the development process of nonlinear and unsteady aerodynamic
models, as shown in Figure 2. The flowchart of Figure 2 is based on the data of the nonlinear and
unsteady aerodynamic database. The thrust data in aerodynamic database have been separated
from aerodynamic coefficients. Model strucg-n, the numerical model structure, is set up through
parameter selection, time segment selection, and sampling rate setting, and then goes through
the refining process of fuzzy logic modeling to establish the required models. The operational
efficiency enhancement can be studied after model defuzzification.

Tx,Ty,Tz, and Tm are the axial thrusts along the body x-, y-, and z-coordinates and the
pitching moment about the y-axis, respectively, in Equations (12)–(14) and (16). It is known
from the various thrusts that the force and moment acting on the aircraft will be affected
by the engines. Both thrust and aerodynamic forces are generated together, and the two
effects cannot be accurately separated only from the flight record data during analysis.
To accurately estimate the aerodynamic coefficient, it is necessary to obtain an accurate
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thrust value to separate the thrust effects; then, the accurate aerodynamic coefficients can
be obtained [18].
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Since the values of thrust for aircraft in flight cannot be directly measured in the
current state of the art, they are not recorded by the QAR nor the FDR. The manufacturers
of engines agreed that using parameters such as the Mach number, airspeed, flight altitude,
temperature, rpm of the pressure compressors, and engine pressure ratios are adequate
to estimate the engine thrust [21]. To study aircraft performance with fuel consumption,
data from the flight manual for the fuel flow rate (

.
m f ) at various altitudes (h), weights (W),

Mach numbers (M), calibrated airspeed (CAS), and engine pressure ratios (EPRs) during
cruise flight are utilized.

For the Pratt and Whitney turbofan engines, thrust (T) is defined by EPR, and the
thrust model is set up as:

T = f
(

h, W, M, CAS, EPR,
.

m f

)
(18)

For GE or CFM turbofan engines, the rpm of the low-pressure compressor (N1) is used
to set the level of thrust, so the thrust model is set up as:

T = f
(

h, W, M, CAS, 1,
.

m f

)
(19)

In the present study, a twin-jet with GE turbofan engines under study is illustrated.
The actual thrust in operation is obtained by using the recorded variables in the QAR,
particularly the fuel flow rates. Once the thrust models are generated as a function with the
flight conditions of climbing, cruise, and descending phases, we can estimate the thrust
magnitude by inserting those flight data into the aerodynamic database.

When studying the nonlinear and unsteady aerodynamic characteristics of motion, it
can be found that the nonlinear and unsteady aerodynamics with hysteresis [6,22,23] are
affected by many parameters of motion state. The aerodynamic models developed by the
fuzzy logic modeling method are suitable for aerodynamic research of coupling motion and
can be used to enhance the operational efficiency of transport aircraft. The development
process of nonlinear and unsteady aerodynamic models is shown in Figure 2.

Modeling means to establish the numerical relationship among certain variables of
interest. In the fuzzy logic model, more complete necessary influencing flight variables can
be included to capture all possible effects on aircraft response to structure deformations.
The longitudinal main aerodynamics are assumed to depend on the following ten flight
variables [22]:

Cx, Cz, Cm = f
(
α,

.
α, q, k1, β, δe, M, P, δs, q

)
(20)

The coefficients on the left-hand side of Equation (20) represent the coefficients of axial
force (Cx), normal force (Cz), and pitching moment (Cm). The variables on the right hand
side of Equation (20) denote the angle of attack (α), time rate of angle of attack (dα/dt, or
.
α), pitch rate (q), longitudinal reduced frequency (k1), sideslip angle (β), control deflection
angle of elevator (δe), Mach number (M), roll rate (p), stabilizer angle (δs), and dynamic
pressure (q). These variables are called the influencing variables. The roll rate is included
here because it is known that an aircraft encountering hazardous weather tends to develop
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rolling, which may affect longitudinal stability. The variable of dynamic pressure is for
estimation of the significance in structural deformation effects.

For the lateral-directional aerodynamics [22],

Cy, Cl , Cn = f
(

α, β, φ, p, r, k2, δa, δr, M,
.
α,

.
β
)

(21)

The coefficients on the left-hand side of Equation (21) represent the coefficients of side
force (Cy), rolling moment (Cl), and yawing moment (Cn). The variables on the right-hand
side of Equation (21) denote the angle of attack (α), sideslip angle (β), roll angle (φ), roll
rate (p), yaw rate (r), lateral-directional reduced frequency (k2), control deflection angle
of aileron (δa), control deflection angle of rudder (δr), Mach number (M), the time rate of
angle of attack (

.
α), and the time rate of sideslip angle (

.
β).

Most representative of the numerical differentiation theory is the difference method.
This paper uses the central difference method as follows.

f ′(x) =
f (x + ∆x)− f (x− ∆x)

2∆x
(22)

Although the numerical differentiation method is used to obtain the derivative of
a certain point of the function curve, it can also be applied to the derivative analysis of
experimental data. However, the experimental data are scattered and discontinuous points,
and interpolation must be used to connect the points into a continuous curve. Fuzzy logic
modeling plays the function of interpolation. Fuzzy logic modeling is extremely important
in the aerodynamic performance analysis of actual flight data. Two examples of applying
the fuzzy logic modeling model to take derivatives are given.

The longitudinal stability derivative (Cmα) comes from the model of Cm. The aerody-
namic derivative of the unsteady aerodynamic model can be calculated using the central
interpolation method. The formula of the central difference method is as follows:

Cmα = [Cm (α + ∆α, . . . ) − Cm (α − ∆α, . . . )]/2∆α (23)

∆α = 0.1 degrees, which means that α changes up and down by 0.1 degrees, while all
other variables remain unchanged.

The damping derivative (Clp) is proposed from the model Cl. The formula of the
central interpolation method is as follows:

Clp = [Cl ( . . . , p + ∆p, . . . ) − Cl ( . . . , p − ∆ p, . . . )]/2∆p (24)

where ∆p is in unit of deg/s.
The calculations of all other aerodynamic derivatives are derived from the same

method in this paper.

2.7. Flight Simulation

Due to the rapid changes in aerodynamic forces and moments in turbulence, it is
difficult to identify the individual modes of motion from these eigenvalues through digital
6-DOF flight simulations from one instant to another. Regarding the dynamic stability
monitoring, one approach to solve this problem is to use the approximate modes of motion
obtained from decoupled longitudinal and lateral-directional equations as guidance.

The decoupled linearized longitudinal equations of motion, which are decoupled from
the lateral-directional motions in Ref. [19], are given by

.
u = −gθ cos θ1 − Xuu + Xαα + Xδeδe (25)

U1
.
α−U1

.
θ = −gθ sin θ1 + Zuu + Zαα + Z .

α

.
α + Zq

.
θ + Zδeδe (26)

..
θ = Muu + Mαα + M .

α

.
α + Mq

.
θ + Mδeδe (27)
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where Xu, Xα, and Xδe are the dimensional variations of force along the X-axis with the
speed, angle of attack, and elevator angle, respectively; the other dimensional derivatives of
Z and M are described and given in Ref. [19]. The decoupled lateral-directional equations
of motion are:

U1
.
β + U1

.
ψ = gφ cos θ1 + Yββ + Yp

.
φ + Yr

.
ψ + Yδaδa + Yδrδr (28)

..
φ− A1

..
ψ = Lββ + Lp

.
φ + Lr

.
ψ + Lδaδa + Lδrδr (29)

..
ψ− B1

..
φ = Nββ + Np

.
φ + Nr

.
ψ + Nδaδa + Nδrδr (30)

where A1 = Ixz/Ixx and B1 = Ixz/Izz; the dimensional derivatives of Y, L, and N are
described and given in Ref. [19]. The characteristic equations for Equations (25)–(27) and
Equations (28)–(30) are polynomials of the 4th degree and their roots are solved with a
quadratic factoring method based on the Lin–Bairstow algorithm in Ref. [24].

The 4th degree polynomial of longitudinal characteristic equations has 4 roots; they are
two complex conjugates [12]. The short-period mode is one of the two complex conjugates.
The other is the phugoid mode (long-period mode). Each mode has the same real part, but
with imaginary parts of equal magnitude and opposite signs. The 4th degree polynomial
of lateral-directional characteristic equations also has 4 roots; they are one pair of complex
conjugates and two real values. The pair of complex conjugates represents the Dutch roll
mode. One of the two real values represents the spiral mode and another one represents
the roll mode.

2.8. Fuzzy Logic Modeling Algorithm

Modeling procedures start from setting up numerical relations between the input
(i.e., flight variables) and output (i.e., flight operations or aircraft response). To obtain
continuous variations in predicted results, the present method is based on the internal
functions instead of fuzzy sets [25] to generate the output of the model.

The fuzzy logic algorithm can take advantage of correlating multiple parameters
without assuming explicit functional relations among them [26,27]. The algorithm employs
many internal functions to represent the contributions of fuzzy cells (to be defined later) to
the overall prediction. These internal functions are assumed to be linear functions of input
parameters as follows [5]:

Pi = yi(x1, x2, · · · , xr, · · · xk) = pi
0 + pi

1x1 + · · ·+ pi
rxr + · · · pi

kxk (31)

where pi
r, r = 0, 1, 2, . . . , k, are the coefficients of internal functions yi, and k is number of

input variables. In Equation (31), yi is the estimated aerodynamic coefficient of force or
moment, and xr represents the variables of the input data. The numbers of the internal
functions (i.e., cell numbers) are quantified by the membership functions.

With the internal function chosen in a linear form, the fuzzy logic model resembles the
multiple linear regression method. What makes the fuzzy logic model unique is that it is
in the form of a fuzzy cell structure composed of linear equations. In other words, there
are different numbers of cells corresponding with each input parameter. The values of each
fuzzy variable, such as the angle of attack, are divided into several ranges, each of which
represents a membership function [6]. The membership functions allow the membership
grades of the internal functions for a given set of input variables to be calculated. The ranges
of the input variables are all transformed into the domain of [0, 1]. The membership grading
also ranges from 0 to 1.0, with 0 meaning no effect from the corresponding internal function
and 1 meaning full effect. Generally, overlapped triangles are the shapes frequently used to
represent the grades. A fuzzy cell is formed by taking one membership function from each
variable. The output of the fuzzy logic model is the weighted average of all cell outputs.

There are two main tasks involved in the fuzzy logic modeling process. One is the
determination of coefficients of the linear internal functions. The other is to identify the
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best structure of fuzzy cells of the model, i.e., to determine the best number of membership
functions for each fuzzy variable. The coefficients are calculated with the gradient descent
method by minimizing the sum of squared errors (SSE) [6]:

SSE =
m

∑
j=1

(ŷj − yj)
2 (32)

On the other hand, the structure of fuzzy cells is optimized by maximizing the multiple
correlation coefficient (R2):

R2 = 1−

m
∑

j=1
(ŷj − yj)

2

m
∑

j=1
(y− yj)2

(33)

where ŷj is the output of the fuzzy logic model, yj is the measured data, and y is the average
value of all extracted data.

The aerodynamic model is defined by the values of pr
i coefficients. These coefficients are

determined by minimizing SSE (Equation (32)) with respect to these coefficients. Minimization
is achieved by the gradient descent method with an iteration formula defined by:

pi
r,t+1 = pi

r,t − αr
∂(SSE)

∂pi
r

(34)

where αr is the convergence factor or step size in the gradient method. Since

∂(SSE)
∂pi

r
= 2

m

∑
j=1

(
_
y j − yj)

∂
_
y j(x1,j, . . . , xk,j, p1

r , . . . , pn
k )

∂pi
r

, (35)

the computed gradient tends to be small and the convergence is slow. To accelerate the
convergence, the iterative formulas are modified by using the local squared errors to give
for r = 0,

pi
0,t+1 = pi

0,t − 2α0(ŷj − yj)
op[Ai

1(x1,j), . . . , Ai
k(xk,j)]

n
∑

s=1
op[As

1(x1,j), . . . , As
k(xk,j)]

(36)

and for r = 1, . . . , k,

pi
r,t+1 = pi

r,t − 2αr(ŷj − yj)
op[Ai

1(x1,j), . . . , Ai
k(xk,j)]xr,j

n
∑

s=1
op[As

1(x1,j), . . . , As
k(xk,j)]

(37)

In Equations (35) and (36), op[Ai
1(x1,j), . . . , Ai

k(xk,j)] is the weighted factor of the ith

cell; the index j of the dataset, where j = 1, 2, . . . , m, and m is the total number of the data
recorded; and op is the product operator of elements in this paper.

Once the fuzzy logic aerodynamic models were set up, we can input influencing
variables into the model to describe the flight conditions under analysis.

The fuzzy logic algorithm can take advantage of correlating multiple parameters
without assuming explicit functional relations among them [21,22]. The algorithm employs
many internal functions to represent the contributions of fuzzy cells (to be defined later) to
the overall prediction. The internal functions are assumed to be linear functions of input
parameters as follows [19].

3. Numerical Results and Discussion

In the present study, the accuracy of the established unsteady aerodynamic models
with six aerodynamic coefficients by using the fuzzy logic modeling technique is estimated
by the sum of squared errors (SSE) and the square of multiple correlation coefficients
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(R2). All the aerodynamic derivatives in the study of dynamic stability characteristics are
calculated with these aerodynamic models of aerodynamic coefficients.

Figure 3 presents the main aerodynamic coefficients of normal force Cz, pitching
moment Cm, rolling moment Cl, and yawing moment Cn predicted by the nonlinear and
unsteady aerodynamic models.
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The changes in the normal force coefficient (Cz) are large for both model predicted
and input data before the modeling in Figure 3a due to the large variations in normal
acceleration (az) and angle of attach (α), referred to in Figure 3a,b. The magnitudes of az
and α (AOA) are obviously large to cause strong variations in the normal force coefficient
(Cz) that started at roughly t = 7650 s.

The scattering of Cm data in Figure 3b is most likely caused by turbulence-induced
buffeting [12,13] on the structure, particularly on the horizontal tail. The predicted results
of others by the final models match well with the flight data. Once the aerodynamic models
are set up, one can calculate all the necessary derivatives by a central difference scheme to
analyze the stability characteristics.

The final main aerodynamic models of aerodynamic coefficients consist of many fuzzy
rules for each coefficient, as described in Tables 2 and 3. In Tables 2 and 3, the numbers
below each input variable represent the number of membership functions. The total number
of fuzzy cells (n) in each model is the product of each number presented in column 3. The
last column shows the final multiple correlation coefficients (R2). The accuracy of the
established aerodynamic model through the fuzzy logic algorithm can be judged by the
multiple correlation coefficients (R2).

Table 2. Final main models of longitudinal aerodynamics.

Coef. α,
.
α, q, k1, β, δe, M, p,

¯
q n R2

Cz 2 3 3 2 3 3 2 3 2 3888 0.9618
Cm 2 2 3 4 2 3 2 2 3 3456 0.9873

Table 3. Final main models of lateral-directional aerodynamics.

Coef. α, β, φ, p, r, k2, δa, δr, M,
.
α,

.
β n R2

Cl 2 3 3 2 2 3 2 2 3 3 2 15,552 0.9617
Cn 3 2 4 2 2 2 3 3 2 2 2 13,824 0.9435

The twin-jet transport aircraft encountered clear-air turbulence during a commercial
flight. As a result, several passengers and cabin crew members sustained injuries, and this
event was classified as an aviation accident. To examine the dynamic stability characteristics,
it is imperative to understand the flight environment in detail.

The corresponding flight data for twin-jet transport with plunging motion is presented
in Figure 4. The dataset of the time span t = 7480~7739 s used for the modeling was
extracted from the FDR. This twin-jet transport encounters severe clear-air turbulence twice
during this time span. In Figure 4a, the variations in normal acceleration (az) show the
highest az of 2.05 g around t = 7483 s and the lowest az of 0.08 g around t = 7484 s in the first
turbulence encounter; in the second turbulence encounter, the highest az was 1.83 g around
t = 7682 s and the lowest was 0.06 g around t = 7684 s. Figure 4b shows that the variation
in α (AOA) is approximately in phase with az during those two turbulence encounters.
The variation ranges of AOA are 4 deg. to −1.8 deg. in the first turbulence encounter and
5.5 deg. to−2 deg. in the second. The time history of β is about−2 deg. with the magnitude
of small fluctuation, as indicated in Figure 4c. The aircraft rapidly plunges downward
during the turbulence encounter. The largest drop-off height reaches 57.3 m in the time
span t = 7484~7486 s. The Mach number (M) drops from 0.83 to 0.75 in the first turbulence
encounter and from 0.80 to 0.70 in the second, as shown in Figure 4d.



Appl. Sci. 2022, 12, 10920 12 of 21

Appl. Sci. 2022, 12, 10920 12 of 22 
 

Table 2. Final main models of longitudinal aerodynamics. 

Coef. α,  , q, k1, β, δe, M, p, q  n R2 

Cz 2  3  3  2  3  3  2  3  2 3888 0.9618 

Cm 2  2  3  4  2  3  2  2  3 3456 0.9873 

Table 3. Final main models of lateral-directional aerodynamics. 

Coef. α, β, ϕ, p, r, k2, δa, δr, M,  ,   n R2 

Cl 2  3  3  2  2  3  2  2  3  3  2 15,552 0.9617 

Cn 3  2  4  2  2  2  3  3  2  2  2 13,824 0.9435 

The twin-jet transport aircraft encountered clear-air turbulence during a commercial 

flight. As a result, several passengers and cabin crew members sustained injuries, and this 

event was classified as an aviation accident. To examine the dynamic stability character-

istics, it is imperative to understand the flight environment in detail.  

The corresponding flight data for twin-jet transport with plunging motion is pre-

sented in Figure 4. The dataset of the time span t = 7480~7739 s used for the modeling was 

extracted from the FDR. This twin-jet transport encounters severe clear-air turbulence 

twice during this time span. In Figure 4a, the variations in normal acceleration (az) show 

the highest az of 2.05 g around t = 7483 s and the lowest az of 0.08 g around t = 7484 s in the 

first turbulence encounter; in the second turbulence encounter, the highest az was 1.83 g 

around t = 7682 s and the lowest was 0.06 g around t = 7684 s. Figure 4b shows that the 

variation in α (AOA) is approximately in phase with az during those two turbulence en-

counters. The variation ranges of AOA are 4 deg. to −1.8 deg. in the first turbulence en-

counter and 5.5 deg. to −2 deg. in the second. The time history of β is about −2 deg. with 

the magnitude of small fluctuation, as indicated in Figure 4c. The aircraft rapidly plunges 

downward during the turbulence encounter. The largest drop-off height reaches 57.3 m 

in the time span t = 7484~7486 s. The Mach number (M) drops from 0.83 to 0.75 in the first 

turbulence encounter and from 0.80 to 0.70 in the second, as shown in Figure 4d. 

 

(a) 

Appl. Sci. 2022, 12, 10920 13 of 22 
 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Time history of main flight variables in severe clear-air turbulence. (a) Time history of 

normal acceleration (az); (b) Time history of angle of attack (AOA); (c) Time history of sideslip angle 

(β); (d) Time history of Mach number. 

Figure 5 presents the twin-jet transport aircraft response to dynamic flight motion. 

The magnitudes of pitch rate (q) and roll rate (p) are shown in Figure 5a; the variation of 

p is larger than that of q. The yaw rate is not shown because it is small throughout. This 

implies that pitch angle (θ) does not vary as much as AOA and the variations in roll angle 

(ϕ) are large, especially during the second turbulence encounter. 

Figure 4. Time history of main flight variables in severe clear-air turbulence. (a) Time history of
normal acceleration (az); (b) Time history of angle of attack (AOA); (c) Time history of sideslip angle (β);
(d) Time history of Mach number.
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Figure 5 presents the twin-jet transport aircraft response to dynamic flight motion.
The magnitudes of pitch rate (q) and roll rate (p) are shown in Figure 5a; the variation of
p is larger than that of q. The yaw rate is not shown because it is small throughout. This
implies that pitch angle (θ) does not vary as much as AOA and the variations in roll angle
(φ) are large, especially during the second turbulence encounter.
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of the variable dβ/dt.

Figure 5b,c presents the time rate of the angle of attack (dα/dt, or
.
α) and the time rate of

the sideslip angle (
.
β), respectively. Figure 5b shows that variations in

.
α are approximately

in phase with az and AOA during the two turbulence encounters. Figure 5c describes that
the time history of β is about a certain value with the magnitude of small fluctuation. It
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implies that the twin-jet transport aircraft has a crosswind encounter, but this crosswind
does not have variations in flight directions.

In general, the configuration of the static stability assessment is based on enough
values of steady damping derivatives to maintain a stable condition. The longitudinal, roll,
and directional damping derivatives have to be associated with

.
α- and

.
β- derivatives as

oscillatory motion in a stability assessment. The longitudinal oscillatory derivatives are
defined as [19]: (

Cmq
)

osc = Cmq + Cm
.
α (38)(

Czq
)

osc = Czq + Cz
.
α (39)

The roll and directional oscillatory derivatives are:(
Clq

)
osc

= Clq + C
l

.
β

sin α (40)

(Cnr)osc = Cnr − C
n

.
β

cos α (41)

The values of oscillatory derivatives are equivalent to the combinations of steady
damping and dynamic derivatives in Equations (38)–(41). The use of oscillatory derivatives
instead of steady damping only is more consistent with the actual case of plunging motion.
To be stable in oscillatory motion, (Czq)osc > 0, (Cmq)osc < 0, (Clp)osc < 0, and (Cnr)osc < 0.
Physically, if it is unstable, the motion could be divergent in oscillatory motions within a
short time period.

The (Czq)osc and (Cmq)osc would enlarge the variations in Cz and data scattering of Cm.
The (Czq)osc and (Cmq)osc are insufficient in oscillatory damping, as shown in Figure 6a,b in
the periods of t = 7484–7486 s and t = 7490–7494 s. The effect of

.
α-derivative on (Cmq)osc is

to improve the stability in pitch in the periods of t = 7482.5–7484 s and 7486–7488.5 s. The
values in the period of plunging motion have some differences between oscillatory and
steady damping derivatives in Figure 6a,c due to the effects of the dynamic derivatives
(i.e.,

.
α-derivatives), and in Figure 7a,c due to the effects of the dynamic derivatives (i.e.,

.
β-derivatives).
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.
α

represents the virtual mass effect and is particularly large in transonic flow to affect the
plunging motion [28]. The magnitudes of C

l
.
β

in Figure 7c and (Clp)osc in Figure 7a are small;
Clp is not shown because it is small throughout. The values of C

n
.
β

are from positive at
t = 7483 s to negative at t = 7484 s; those of (Cnr)osc are from positive at t = 7483.5 s to
negative at t = 7485 s. This implies that the effect of

.
β-derivative is to cause the directional

stability to become more unstable.
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In essence, the effects of
.
α-derivative on (Czq)osc and

.
β-derivative on (Clp)osc are small

in Figures 6 and 7. The effect of
.
α-derivative on (Cmq)osc is to improve the stability in pitch;

the effect of
.
β-derivative is to cause more directional instability. These results indicate that

the turbulent crosswind has some adverse effects on directional stability and damping.
Although the dynamic derivatives tend to be small for the present configuration, these are
helpful to understand the unknown factors of instability characteristics.

In the present study, the longitudinal and lateral-directional motion modes are ana-
lyzed based on the damping ratio (ζ) and undamped natural frequency (ωn). The roots of
the complex conjugate are as follows:

λ1,2 = −ζωn ± iωn

√
1− ζ2 (42)

where −ζωn is a real part (i.e., in-phase) and ±iωn
√

1− ζ2 are imaginary (i.e., out-of-
phase) parts. λr and λi represent eigenvalues of real and imaginary parts, respectively. If
λr is positive, the system is unstable; if it is negative, the system is stable [13].

Figure 8 presents the eigenvalues of the short-period and phugoid modes. The eigen-
values of the real part in Figure 8a are small negatives, except two portions at t = 7486.2 s
and t = 7492.0–7493.0 s are small positives. The short-period mode is typically a damped
oscillation in pitch about the body y-axis in normal flight conditions. The short-period mode
is mostly in a stable condition due to the value of (Cmq)osc being mostly negative to have
adequate pitch damping in oscillatory motions in the time span t = 7484–7486 s with largest
drop-off height, the highest az being 2.05 g around t = 7483 s and the lowest being −1.05 g
around t = 7484 s in Figure 4a, and the highest AOA being about 4 deg. in Figure 4b. The
eigenvalues of the real part in Figure 8b are positive and the magnitude varies like a mountain
chain with pinnacle. The value of (Czq)osc is negative and the magnitudes of Cz

.
α also have

negative values; (Czq)oscis insufficient in oscillatory damping with virtual mass effects during
sudden plunging motion to cause the phugoid mode in an unstable condition. Note that part
of the conventional phugoid mode has degenerated into the plunging mode.
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Figure 9 presents the eigenvalues of the Dutch roll, spiral, and roll modes. The eigen-
values of the real part in Figure 9a are positive in the time period of t = 7490–7494 s and all
values in Figure 9b are also positive, except the value of a small portion at t = 7484 s. The
values of (Cnr)osc are mostly positive; (Cnr)osc is insufficient in oscillatory damping to induce
the unstable Dutch roll and spiral modes. The eigenvalues of the real part in Figure 9c are
negative. The roll mode is stable because the values of (Clp)oscare mostly small negatives to
have some roll damping.
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Airlines care about the vertical plunging mode of motion, which is not considered in
classical flight dynamics. According to [28], in vertical plunging motion, the damping term
is mainly related to Cz

.
α. It may be possible to define the severity of plunging motion based

on the vertical plunging equation of motion.
For the present purpose, if the severity is defined by the lowest load factor developed,

this transport aircraft developed−1.05 g with ∆h = 57.3 m (around t = 7483 s). The phugoid
mode in Figure 8b has all positive real eigenvalues; this implies insufficient longitudinal
oscillatory damping and virtual mass effects during sudden plunging motion. Thus, this
transport does not have sufficient lateral-directional oscillatory damping. Therefore, it may
be concluded that the plunging motion is more severe because of its unstable condition.

4. Concluding Remarks

The main objective of this paper was to present a dynamic stability monitoring method
based on the approach of oscillatory motion and eigenvalue motion modes for jet transport
aircraft response to sudden plunging motions. Three achievements can be concluded from
the present paper as follows:

(1) Flight data mining and fuzzy logic modeling were shown to be effective in establishing
nonlinear and dynamic aerodynamic models through the flight data of FDR. The
fuzzy logic aerodynamic models had robustness and nonlinear interpolation ability
to generate the required independent variables in predicting the oscillatory motion
during a severe clear-air turbulence encounter.

(2) The eigenvalues of both longitudinal and lateral-directional motion modes were
analyzed through digital flight simulation based on decoupled dynamic equations of
motion. The decoupled concept is an innovative consideration for the flight simulation
of 6-DOF.

(3) The results of flight simulation showed that the phugoid, Dutch roll, and spiral
modes were in unstable conditions for the transport aircraft examined in the present
study. Those unstable conditions were easily judged by the positive real part of the
eigenvalues during the sudden plunging motion.

The oscillatory motion and eigenvalue approaches for the dynamic stability assess-
ments were helpful to understand the effects of severe clear-air turbulence encounters on
dynamic stability characteristics. The simulated results could provide a training program
of loss control prevention for airlines to enhance aviation safety and operational efficiency.
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Nomenclature

az normal accelerations, g
b wing span, m
Cx, Cz, Cm longitudinal aerodynamic force and moment coefficients
Cy, Cl, Cn lateral-directional aerodynamic force and moment coefficients
c mean aerodynamic chord, m
h altitude, m
Ixx, Iyy, Izz moments of inertia about x-, y-, and z-axes, respectively, kg·m2

Ixy, Ixz, Iyz products of inertia, kg·m2

k1, k2 longitudinal and lateral-directional reduced frequencies, respectively
M Mach number
m aircraft mass, kg
.

m f fuel flow rate, kg/hour
N1 the rpm of the compressor, rpm
p, q, r Body axis roll rate, pitch rate, and yaw rate, deg./s
q dynamic pressure, kpa
S wing reference area, m2

T, W thrust and aircraft weight in flight, N, respectively
T2 time to double or halve the amplitude, s
t time, s
X, Y, Z forces acting on the aircraft body-fixed axes about x-, y-, and z-axes, respectively, N
α,

.
α angle of attack, deg., and time rate of angle of attack, deg./s, respectively

β,
.
β sideslip angle, deg., and time rate of sideslip angle, deg./s, respectively

δa, δe, δr control deflection angles of aileron, elevator, and rudder, respectively, deg.
φ, θ, ψ Euler angles in roll, pitch, and yaw, respectively, deg.

λr, λi
eigenvalue in real (i.e., in-phase) and imaginary (i.e., out-of-phase) parts,
respectively

ζ damping ratio
ωn natural frequency
Abbreviations
AAA Advanced Aircraft Analysis
A/P autopilot
DOF degree of freedom
FDR flight data recorder
FLM Fuzzy logic modeling
IATA International Air Transport Association
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