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Abstract: Condition monitoring of gear train assembly has been carried out with vibration signals 

acquired from an all-terrain vehicle (ATV) gearbox. The location of the defect in the gear was 

identified based on finite element analysis results. The vibration signals were acquired using an 

accelerometer under good and simulated fault conditions of the gear. The raw vibration signatures 

acquired from all the possible conditions of the gear train assembly were processed using the 

descriptive statistics tool. A set of descriptive statistical features were extracted from the raw 

vibrational signals. This study used a deep learning algorithm based on the tree family, which 

includes the decision tree, random forest, and random tree algorithms, to classify gear train 

conditions. Among the tree family algorithms, the random forest algorithm produced maximum 

classification accuracy of 99%. The decision rules were used to design an online monitoring system 

to display the gear condition. This study will help to implement online gear health monitoring in 

ATVs, ensuring the safety of drivers. 
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1. Introduction 

Gears are the essential parts of the power transmission system of automotive 

vehicles. A geartrain assembly provides different torque and speed combinations for 

uniform power on varying road conditions [1]. Hence, fault diagnosis of a gear train 

assembly is an essential process for identifying gear failures during their operation. The 

gear stiffness determines the flexibility of the tooth, and defects in the gears result in 

variable gear stiffness and mesh frequency, which cause the vibration pattern of the gear 

assembly to vary [2]. Vibration analysis is the most communal means of predictive gear 

maintenance and fault diagnostics [3]. Although faults influence gear vibration in gear 

train assembly, the vibration signals are usually captured at the gear train casing, which 

is also influenced by other parts of the vehicle, such as the chassis and the engine of ATVs 

[4]. The acquired vibration data may be in the form of a time domain, frequency domain, 

and time–frequency domain [5]. Acoustic emission and vibration signals significantly 

affect gearbox conditions [6]. 

Various methods, such as spectral analysis, power cepstrum analysis, cyclo-

stationary processes, time-synchronous average methods, etc., can be used to process the 
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vibration signals to identify the faults in gears [7,8]. Statistical [9], histogram [10], and 

wavelet transform [11] are approaches that can be used for analyzing the signals logically 

with programming functions. Statistical feature extraction is one of the frequently used 

time-domain signal-processing approaches through which the raw vibration signals are 

decomposed into small segments of information called features [12]. This study also 

extracted statistical features using Visual Basic. 

The extracted features comprise the source data for classifying the condition of the 

gear train. There are many algorithmic approaches available for analyzing the extracted 

statistical features. The tree family algorithm is one of the most efficient methods to 

analyze vibration data with better accuracy. Earlier, among the performances of various 

deep learning algorithms, decision trees were found to be more accurate in detecting 

faults [13]. The decision tree algorithm was used to analyze the statistical features of 

vibration signals for misfires in an internal combustion engine [14,15]. Additionally, the 

same classifier algorithm was used to analyze the vibration signals due to the faulty 

gearbox [16] and cutting tool wear [11]. The accuracy of the statistical analysis obtained 

after post-pruning the decision tree was higher than the C4.5 decision tree [17]. In another 

study, the defects in a helical gearbox of a commercial vehicle were recognized using the 

decision tree algorithms [18]. 

Gear pitting is the most commonly occurring fault in the power transmission system. 

A test rig was used for the experiments, and vibration signals were captured. A deep 

learning algorithm was used to monitor the pitting level [19]. Gear pitting can also be 

monitored using vibration, current, and AE signals [20]. A detailed summary of studies 

that applied machine learning algorithms for fault monitoring was reviewed [21]. The 

application of deep learning algorithms in fault diagnosis of various rotating elements 

was discussed [22,23]. Fault diagnosis of a gearbox was performed with a standard gear, 

a gear with wear and tear, a gear with cracks, a gear with broken teeth, and a gear with 

tooth deficiency conditions. A deep learning algorithm was used to monitor gear health 

[24]. 

As listed in the literature, all the diagnosis applications were reported using test 

setups. Many studies have been reported for a single-stage spur gear assembly and a 

single-stage helical gear assembly. A gear was tested in the rig with seven different gear 

pitting conditions, and AE and vibration signals were captured. Convolutional neural 

network (CNN) and gated recurrent unit (GRU) networks were integrated to monitor gear 

health [25]. The condition of the worm gearbox was monitored with thermal images using 

a deep learning algorithm [26]. However, no studies have been reported to monitor the 

condition of a real-time two-stage gear train fitted with an ATV. In this study, a gear train 

assembly has been considered for condition monitoring applications. The tree family 

algorithms, such as the random tree, random forest, and decision tree algorithms, were 

used to make a comparative study. The flow chart representing the data collection is 

represented in Figure 1. 
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Figure 1. Flow chart for data collection. 

2. Experimental Setup 

Figure 2a shows the ATV used for this study. The vibration signatures were taken on 

an experimental setup shown in Figure 2b. The gear train setup consists of a Briggs and 

Stratton Model 19 Engine (7.5 HP) with a maximum speed of up to 3800 RPM coupled 

with the gear train assembly via a continuously variable transmission (CVT). 

Theoretically, the CVT has an infinite gear ratio which helps to control the speed and 

torque of the vehicle. The CVT is interconnected with a Kevlar belt which minimizes the 

shock loading which emanates from the engine. 

 

(a) 



Appl. Sci. 2022, 12, 10917 4 of 17 
 

 

(b) 

Figure 2. (a) ATV used for experiments. (b) Power train setup. 

The two-stage gear train consisted of spur gears in the first stage and helical gears in 

the second stage. The schematic representation of the gear train is shown in Figure 3a. The 

actual gear train is shown in Figure 3b. The gearbox’s output shaft was coupled to the 

transaxle, which ultimately drives the vehicle. The gear train was fully lubricated with 

GL490 oil. Mechanical brakes using tandem cylinders were used to apply a load of 280 N 

for the testing conditions of 1800 and 2000 RPM to account for the road resistance acting 

during the runtime of the vehicle. 

The gear train was considered free from other defects, such as shaft misalignment, 

bearing, and casing. The only defects induced are on the spur and helical gears while their 

mating pinions remain unscathed. The vibration signals for all the conditions were 

obtained using an accelerometer mounted directly on top of the gear train casing, as 

depicted in Figure 4a,b. 

 

(a) 
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(b) 

Figure 3. (a) Schematic representation of gear train assembly. (b) Gear train assembly. 

 

(a) 
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(b) 

Figure 4. (a) Sensor mounting (front view). (b) Sensor mounting (top view). 

3. Experimental Procedure 

The two-stage gear train assembly was modeled with the dimensions of the gears, as 

shown in Table 1, to identify the gear failure locations. Figure 5 shows the finite element 

analysis (FEA) of a gear. After the application of load, the bottom of the teeth becomes 

affected. FEA results reveal that obtained von Mises stress is in the permissible range. 

Based on this simulated study, the location of the fault was identified, and different faults 

mentioned in Table 2 were simulated. The size of the defects induced in the gears is 

slightly larger than those that will present themselves in a real-time scenario after being 

under load for a prolonged period. Cracks originating at the gear surface may lead to 

failure modes such as pitting and tooth breakage. Furthermore, the contact load on the 

flank surface induces stresses at the bottom of the tooth, which may lead to crack 

initiation. Over time the sub-surface crack propagation may lead to gear failure, referred 

to as “tooth breakage” [27]. Different crack growth models can estimate crack propagation 

[28]. 

Table 1. Spur and helical gear parameters. 

Parameters Spur Pinion Spur Gear Helical Pinion Helical Gear 

No. of teeth 18 54 18 54 

Module (mm) 2 2 2 2 

Normal Pressure angle 

(Degree) 
20 20 20 20 

Helix angle (Degree) - - 20 20 

Tooth Thickness (mm) 14 14 23 20 

Material EN353 EN353 EN353 EN353 
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Figure 5. Finite element analysis of spur gear. 

Table 2. Gear combinations and fault conditions. 

Gears Spur Helical 

SHHC Without defects Without defects 

SGWC Crack Without defects 

SGBT Broken tooth Without defects 

HGWC Without defects Crack 

HGBT Without defects Broken tooth 

HSBT Broken tooth Broken tooth 

Most often, the gear fails due to fatigue and overload. The most common form of 

failure is actual breakage, and other failure modes include surface fatigue, pitting, normal 

and abnormal wear, and plastic flow [29]. As per our knowledge, in ATVs, the applied 

load is significantly less. Hence, the occurrence of the abovementioned failures may be 

significantly less. The different defects have been collected from the authorized service 

person. Based on the data collected, the following fault conditions, namely spur and 

helical gear in healthy condition (SHHC), spur gear with crack (SGWC), spur gear with 

broken tooth (SGBT), helical gear with crack (HGWC), helical gear with broken tooth 

(HGBT), and helical and spur gear with broken tooth (HSBT) were simulated on the gear. 

Figure 6a–d show the instigated defects for spur and helical gears. 
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(a) 
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(c) 

 

(d) 

Figure 6. (a) Crack on the tooth of spur gear. (b) Spur gear with a broken tooth. (c) Crack on the 

tooth of helical gear. (d) Helical gear with a broken tooth. 

In the experimental setup, different gear sets were used for every condition of the 

gears. The combination of gears used in the gearbox is mentioned in Table 2. The vibration 

signals were taken for three engine shaft speeds (1500, 1800, and 2000 RPM). The loading 

condition (0 N and 280 N) provided for 1800 and 2000 RPM to account for the rolling 

resistance encountered during the runtime of the vehicle. 
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The vibration signals were collected with the help of an accelerometer (a piezo-

ceramic sensing element) placed on the casing of the gear train assembly. The signals were 

taken after allowing the gearbox to run for a little while. The sample length was arbitrarily 

chosen as 10,000, and the sampling frequency was set at 25 kHz for all conditions. 

Generally, a large sample size ensures more accurate statistical measures. On the contrary, 

a large sample size would mean longer computational time. To find a solution to this 

problem, a sample size of 10,000 was decided. Many trial runs were conducted at one set 

speed, and the vibrational signals were recorded when the engine attained the optimum 

running conditions. A hundred data files containing 10,000 samples were considered for 

the analysis of each simulated condition of the gearbox. 

4. Feature Extraction and Feature Selection 

The raw vibration signals were acquired from the gear train under all the faulty 

conditions simulated (SHHC, SGWC, SGBT, HGWC, HGBT, and HSBT), as shown in 

Figure 7. The vibrational signals for the above conditions were collected under 0 N and 

280 N loading conditions and different engine speeds. The twelve statistical features were 

extracted from acquired vibration signals [18,30]. Instead of using all the extracted 

features, the valuable features alone were selected from the extracted features using the 

effect of several feature selection studies [30]. The order of features was selected using the 

attribute evaluator [31]. 

Based on the attribute evaluator, the first feature alone was used for the classification, 

and the corresponding accuracy will be noted. The second feature suggested by the 

attribute evaluator was then clubbed with the first feature, and the two-feature set was 

classified. Then, the third feature clubbed to the previous set, and the results were noted. 

In the same way, the accuracy was calculated until all the features were added and 

classified once. Among these, the feature set combination which produced maximum 

accuracy was selected for further classification.  
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Figure 7. Vibration signals for different gearbox conditions. 
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5. Feature Classification Using the Tree Family Algorithms 

The decision tree algorithm utilizes information gain and entropy for making the 

decision tree with the help of decision rules. The tree model was developed based on the 

given training data. The decision tree algorithm calculates information gains of all 

possible branching features, and the one with the highest information gain is selected for 

further classification [32]. The classification accuracy of the decision tree is demonstrated 

by its confusion matrix [31]. The confusion matrix of the algorithm recognizes the number 

of correctly matched and mismatched instances. 

The random tree is a supervised learning algorithm broadly used in data mining for 

classification problems. It generates multiple learners that construct a decision tree [33]. 

Every node is bifurcated according to the best variable parameters among the available 

ones. This decision tree constructs a tree consisting of N chosen attributes at a time. The 

number of attributes chosen is random, out of which the highest entropy gain attribute is 

selected for further bifurcation until the node class is reached. 

The random forest classifier is an aggregate of multiple decision trees that uses a 

classification and regression tree (CART) for predictive analysis [34]. Random forest uses 

the random subspace method for improving the estimation by selecting random samples 

of features instead of the entire feature set [7]. After producing the independent decision 

trees, each node is split randomly according to the number of features provided by the 

user. The final classification decision is calculated using the arithmetic mean of the class 

assignment probabilities of the produced trees [35]. This study used the three tree family 

algorithms for the classification process. 

6. Results and Discussion 

The experiment started with six fault conditions of the gear train, as mentioned in 

Table 2. The vibration signals were recorded at three different speeds for each fault 

condition of the gear train. For 1500 RPM, no load was applied on the gearbox, whereas 

for 1800 and 2000 RPM, a constant load of 280 N was applied to account for the road 

resistances encountered by the gear train during the operating condition, as shown in 

Table 3. The statistical features were extracted from the vibration signature under each 

condition. The participating features were selected using the accuracy by class and the 

attribute evaluator. Three tree algorithms were selected to classify the input features and 

check the accuracy at each engine speed. Table 4 shows the maximum classification 

accuracy for 1800 RPM for the random forest; 99% is maximum accuracy. Hence, 1800 

RPM was considered for further analysis. 

Table 3. Loading conditions at different speeds. 

Engine Speed (RPM) Loading Condition (N) 

1500 0 

1800 280 

2000 280 

Table 4. Effect of number of features studied for the speed of 1800 RPM. 

No. of Features Random Forest Decision Tree Random Tree 

1 40.17 42.17 40.17 

2 95.50 95.67 95.33 

3 97.00 95.50 94.00 

4 96.83 95.00 96.83 

5 96.33 95.00 96.67 

6 97.50 97.50 97.33 

7 99.00 98.33 97.00 
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8 99.00 98.33 98.17 

9 98.83 98.17 98.17 

10 98.67 98.33 98.67 

11 98.67 98.33 98.33 

12 98.67 98.33 98.17 

Figure 7 reveals that vibration amplitude is higher for faulty gears than for healthy 

gears. The increase in vibration is ascribed to the faulty conditions of the gear. Table 5 

shows the classification accuracy for all the tree family classifiers: random forest, decision 

tree, and random tree. The selected features under all the speed conditions were classified 

using the tree family algorithms, and the corresponding accuracy values are presented in 

Table 5. In Table 5, the decision tree and random forest produced maximum classification 

accuracies of 98.33% and 99%, respectively, with seven features. The random tree suggests 

ten features for the maximum classification accuracy of 98.67%. 

Table 5. Accuracy of the tree family classifiers. 

Speed Random Forest Decision Tree Random Tree 

1500 90.34 93.93 89.72 

1800 99.00 98.33 98.67 

2000 98.83 98.16 96.83 

Under each condition, 100 data samples were used for classification. The ten-fold 

cross-validation was used to obtain the accuracy. From these three trees, it is seen that the 

maximum accuracy was found as 99% for the random forest algorithm. This can be 

studied using the confusion matrix obtained from the random forest algorithm. Table 6 

shows the confusion matrix obtained from the random forest under a speed of 1800 RPM. 

Table 6. Confusion matrix for random forest algorithm. 

Confusion Matrix 

A B C D E F Classified as 

98 2 0 0 0 0 A = SHHC 

2 97 1 0 0 0 B = SGWC 

0 1 99 0 0 0 C = SGBT 

0 0 0 100 0 0 D = HGWC 

0 0 0 0 100 0 E = HGBT 

0 0 0 0 0 100 F = HSBT 

The matrix displays the correct and incorrect instances classified by the algorithm. 

Each column of the matrix determines the predicted class of the input data, whereas each 

row defines the actual condition of the gearbox associated with the input data. The 

confusion matrix’s diagonal elements are the values correctly classified in the correct 

nodes. In the first row, among the 100 data points belonging to SHHC, 98 data points were 

classified as SHHC, and 2 data points were misclassified as SGWC. In the second row, 

data belongs to SGWC; 97 data points were correctly classified as SGWC. Two data points 

were misclassified as SHHC and one data point was misclassified as SGBT. 

Similarly, in the last row, among the 100 data points belonging to HSBT, all are 

correctly classified as HSBT. Hence, there was no misclassification. In this manner, the 

confusion matrix was used to identify the number of correctly classified data points and 

misclassified data points, and to classify the trained data and determine the total number 

of data points that were used for classification. Among the 600 data points belonging to 

all fault conditions, 594 data points were correctly classified with a classification accuracy 

of 99.00%. 
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The above classification accuracy was found using the decision rules. These decision 

rules were used to design the LabVIEW model based on the conditions defined for 

selected statistical features. The raw signal data were fed into the LabVIEW model. They 

identified the condition in which the statistical features belong. Figure 8 shows the 

LabVIEW program used to develop the online model for analyzing the gear train 

condition. The advantages of the proposed approach are as follows: 

➢ While driving, any simulated faults in the ATV can be identified immediately. 

➢ This study will help implement online gear health monitoring in ATVs, ensuring 

the safety of drivers. 

The model will be tested in real-world systems to make it an online condition 

monitoring system as the future scope of this study. In the future, other defects such as 

pitting and scuffing can be considered with dynamic load conditions. 

 

Figure 8. LabVIEW model for displaying the results. 

7. Conclusions 

The present work has outlined a structure for fault detection in a two-stage gearbox 

using a vibrational signal; additionally, we applied a deep learning algorithm to 

characterize the gear train condition of an all-terrain vehicle. The vibration signals were 

captured from all the simulated good and faulty conditions of the gear train. The statistical 

features were extracted from the raw vibrational signals using the Visual Basic program. 

Feature selection and classifications were made using the following tree family 

algorithms: the decision tree, random forest, and random tree algorithms. The random 

forest algorithm yielded a maximum classification accuracy of 99.00 % at 1800 RPM. The 

decision rules were used to design the LabVIEW model for displaying the gear train 

condition. The model will help display the gear train’s condition as an online model. 
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