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Abstract: Aiming at the current situation of network embedding research focusing on dynamic homo-
geneous network embedding and static heterogeneous information network embedding but lack of
dynamic information utilization, this paper proposes a dynamic heterogeneous information network
embedding method based on the meta-path and improved Rotate model; this method first uses meta-
paths to model the semantic relationships involved in the heterogeneous information network, then
uses GCNs to get local node embedding, and finally uses meta-path-level aggression mechanisms to
aggregate local representations of nodes, which can solve the heterogeneous information utilization
issues. In addition, a temporal processing component based on a time decay function is designed,
which can effectively handle temporal information. The experimental results on two real datasets
show that the method has good performance in networks with different characteristics. Compared to
current mainstream methods, the accuracy of downstream clustering and node classification tasks
can be improved by 0.5~41.8%, which significantly improves the quality of embedding, and it also
has a shorter running time than most comparison algorithms.

Keywords: dynamic heterogeneous information network; meta-path; the improved rotate model

1. Introduction

Networks in real life are mostly heterogeneous information networks containing
various types of nodes and edges/relationships, which integrate more information than
homogeneous networks. Because heterogeneous information network (shorted as HIN)
embedding has a strong expressive ability and effectively combines node attribute charac-
teristics with the characteristics of structural information, it can not only solve the problems
of network data such as data sparse [1] but also has achieved remarkable improvements
in various downstream tasks, such as node classification [2], link prediction [3], node
aggregation Class [4] and recommendation [5].

Most of the existing network embedding studies focus on static HIN embedding [1,6–9],
mainly considering how to effectively utilize the network topology and semantic infor-
mation in dynamic heterogeneous information networks (shorted as DHINs) without
considering any temporal information, while the network in the real world will change
rapidly over time. The DHIN is a network that changes with time and contains the semantic
features implied by the types of time features, nodes, and edges [10]. Take the citation
network as an example; every minute, there will be new cooperation between scholars
to produce new papers, which will constantly change the co-authorship and collection
of papers, as shown in Figure 1. The existing static embedding methods cannot capture
the structure brought by temporal information and semantic changes. Existing research
has proven that ignoring the heterogeneous nature will result in a decrease in embedding
quality due to information loss [8].
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Figure 1. The Structure of citation DHIN. For example, if an author (A1) published the paper (P1),
which belongs to the domain (D1), timestamp t1 is established between A1-P1 and P1-D1.

Since DHINs have temporal information on the basis of HINs, the edges of networks
are usually generated between nodes that are semantically closely related but belong to
different categories, and the edges between heterogeneous nodes that are semantically
related also often have the same timestamp (for example, A1-P1-D1, A2-P2-D1 and A2-P3-
D2 are semantically closely related, but their categories are different). Different from the
dynamic homogeneous network, affected by the semantic information of the DHIN, it
is more likely that the semantically closely related nodes will have identical timestamps,
rather than the occurrence time will have sequential and incremental timestamps (for
example, the timestamps between A1-P1-D1 are t1; The timestamps between A2-P2-D1 are
t2), which will bring new challenges to the DHIN embedding.

To sum up, the challenges of DHIN embedding mainly lie in how to make full use of
the structural and semantic information in the network and how to make full use of the
time information while considering the integrity of the network. In DHIN, the meta-paths
contain rich semantic information, and a meta-path instance often corresponds to a specific
event that occurs in the real world at a certain time, and it is of practical significance to
explore the impact of meta path instances generated at different times on target nodes.

Therefore, this paper proposes an embedding method for DHINs (shorted as MRDE).
Based on the meta-path, the structure and semantic information of DHIN can be learned
first for GCN based local embedding, then a temporal information processing mechanism
is designed to fully consider the influence of time information with the help of time delay
function and the attention mechanism is used to enhance the time influence of different
meta-path instances on target nodes, and a meta-path level aggression module is used
to learn more comprehensive node embedding. Node classification and node clustering
experiments on real datasets verified the effectiveness of MRDE. The contributions of this
paper are as follows:

(1) A DHIN embedding method based on meta-path and improved Rotate model (MRDE)
is proposed, which can perform real-time and heterogeneous information learning;

(2) Each meta-path can only reflect a specific structure and semantic information, and the
node may be connected to other nodes through multiple meta-paths. An attention
balance mechanism is proposed to learn more comprehensive node embedding;

(3) Experiments on two real datasets show that MRDE can significantly improve the
representation quality and achieve a performance improvement of 0.5~41.8% in down-
stream clustering and node classification tasks. Compared with other mainstream
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algorithms, it was guaranteed by comparing the experimental results of two datasets
with different characteristics, and it is proved to have good generality in different
types of networks.

The remainder of this paper is organized as follows. Section 2 presents related works
on DHIN embeddings, Section 3 introduces the basic notation in this paper and gives
the problem definition, Section 4 details the proposed method based on meta-path and
the improved Rotated model, Section 5 gives experimental details and discussions, and
Section 6 summarizes the full text and gives the future improvement directions.

2. Related Works
2.1. Static HIN Embedding

Static information networks include static homogeneous information networks and
static HINs. In traditional homogeneous information embedding methods [7], the nodes
are represented as low-dimensional dense vectors. Representative models include Deep-
Walk [11], which is a combination of random walk, skip-gram, and LINE [12], which
comprehensively considers the similarity of first-order and second-order neighbors. The
emergence of Graph Neural Networks (GNN [13]) has accelerated the development of
static homogeneous network embedding, typical representatives such as GAT [14], which
uses an attention mechanism to perform weighted summation of adjacent node features;
GraphSAGE [15] uses an inductive learning approach for training to adapt to large-scale
network embeddings; SDNE [16] uses deep auto-encoders to extract network structures and
nonlinear features. There are also many methods to improve node representation by using
the content of nodes or text, images and labels, etc. Some review articles comprehensively
summarize the work in this area [17,18].

The homogeneous information network often only extracts part of the information of
the real network or does not distinguish the differences between objects and relationships
in the real network, which can be regarded as a simplification of the real information
network [19]. To model the real-world network more naturally, more and more researchers
have focused on the analysis of HINs [8,9,20], the most classic of which is the Metap-
ath2vec [8], which is based on meta-path-guided random walks. Metapath2vec utilizes
domain knowledge, the meta-paths are pre-defined to guide random walk sampling to deal
with the heterogeneity of the graph, and the representations of nodes are learned through
Skip-Gram. HIN2Vec [9] realizes the performance of the prediction task while learning
the representation vectors of the nodes and meta-paths. SHNE [20] jointly optimizes Skip-
Gram and deep semantic coding to capture structural and non-structural semantic relations.
GNNs have also made great progress in static HIN embedding [21]. The core idea of neural
graph networks is to aggregate the feature information of neighbors through a neural
network to learn node-independent information and corresponding structural information.
Typical representatives include the relational graph convolutional network (RGCN) [22]
and the heterogeneous graph attention network (HAN) [23].

2.2. DHIN Embedding

The actual networks are often dynamic. For example, new nodes, such as new users,
new stores, and new products, are constantly generated on e-commerce platforms, and
existing nodes can also generate new interactions. If the static HIN embedding method is
used, a lot of repeated training is required. Therefore, it is necessary to study the embedding
method of DHIN to realize dynamic updates. The DHIN can be divided into a snapshot
network and a dynamic real-time network according to the dynamic representation. The
snapshot network refers to a series of snapshots obtained at different time stamps, while
the real-time dynamic network is a stream with time stamps.

Most of the current research focuses on dynamic homogeneous networks [24]. For
example, the model Dynamic Triad [25] can preserve the structural information and evolu-
tion pattern of a given snapshot network; the heuristic algorithm (DNE) [26] can extend
the Skip-Gram-based network representation method to dynamic environments; The in-
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cremental Skip-Gram [27] model can well preserve the evolution information between
snapshots by combining the walking method in Node2Vec [28]; Jiang et al. [29] encodes
temporal information into the Knowledge Graph embedding for the first time. For fine-
grained real-time HIN embedding, there are also many models that have achieved good
performance, such as DANE [30], which well preserves the attribute labels and dynamic
characteristics of the network but assumes all nodes are known in advance during the
training process; DyHNE [31] incrementally captures changes by perturbing the meta-path
augmented adjacency matrix to obtain an updated representation, but it lacks the ability to
distinguish recent events from past events.

2.3. Knowledge-Graph-Based DHIN Embedding

In recent years, Knowledge Graphs have attracted a great deal of attention, and Knowl-
edge Graphs are essentially heterogeneous networks that contain entities and relationships
in networks [32]. According to modeling methods, they can be divided into Translation
models, Bilinear models, Rotation models, Temporal Information Point Process models,
Probability Distribution models, and Graph Neural Network models, etc.

The Translation model TransE [33] embeds the vector of the tail entity as the vector of
the head entity plus the vector of the relationship, which can learn the rich semantics of
entities and relationships. The Bilinear model RESCAL [34] models the relationships as a
linear mapping matrix from the head entity to the tail entity. The Rotate model [35] solves
the defect that the Translation model and the Bilinear model can only model part of the
relationships and can model and infer all types of relationships in Knowledge Graphs. The
Temporal Information Point Process model introduces temporal information and captures
temporal information and dynamic properties in Knowledge Graphs. For example, the
Know-Evolve temporal point model [36] can be used to model and predict future events,
but it cannot model concurrent events that occur in the same time window. The Probability
Distribution model RE-NET [37] solves the shortcomings of the Temporal Information
Point Process methods and models events of the historical time series as a conditional
probability distribution, but RE-NET cannot solve the long-term dependency problem,
and the embedding of all time steps contributes the same to the current embedding. The
GNN models, represented by RE-GCN [38], can capture the dependencies between entities
under the same timestamp through a message-passing framework and capture sequential
information patterns through the stacking of neural graph networks. However, the RE-GCN
model may suffer from over-smoothing and overfitting problems.

At present, Knowledge Graph embedding and traditional HIN embedding are gradu-
ally integrated. For example, MPDRL [39] learns semantics through reinforcement learning
on the basis of Knowledge Graphs; RHINE [40] draws on Knowledge Graph learning tech-
nology, divides relationships in heterogeneous networks into membership and interaction
relationships, and learns them separately; Wang et al. [41] combine with neural networks
to produce high-throughput, fast and real-time data, which can work for data centers,
databases and other platforms as a service. Ni et al. [42] use the Adapter pre-trained by
‘linking of GraphQL schemas and corresponding utterances’ as an external knowledge
introduction plug-in to better map between the logical language and natural language.
Liu et al. [43] propose a real quadratic form-based graph pooling framework for GNN,
which has stronger expressive power than the existing linear forms in Knowledge Graph.
Although real-time Knowledge Graphs have achieved great success through inference
means, how to further exploit the complex structure of the network itself is still an open
topic [44].

To sum up, the possible routes for existing dynamic heterogeneous network embed-
ding include HIN embedding, which can be repeatedly called at different time points,
dynamic homogeneous network embedding, and dynamic Knowledge Graph embedding.
In the experimental part, we will select representative algorithms from the above routes as
experimental baselines.
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3. Notations and Problem Definition

Here we first introduce some relevant definitions of DHINs and then give the formal
descriptions and problem descriptions for DHINs.

Definition 1. Heterogeneous information network. To simplify the problem, a heterogeneous
undirected network G = (V, E) is given, where V is the set of nodes, E is the set of edges,
and G contains maps of node types, the function ∅ : V → A and an edge type mapping func-
tion ϕ : E→ R , satisfy |A|+ |R| > 2. In addition, the node attribute is defined as the initial
feature matrix X ∈ R|V|×D.

Definition 2. Dynamic heterogeneous information network. A heterogeneous information net-
work including time attributes GT = (V, E; T), T represents the time attribute set. For each
connecting u, v nodes, e = (u, v, t), with timestamp t ∈ T.

Definition 3. Meta-path [45]. Let Vt be the set of target class nodes. The meta-path between

nodes vt1 and vtn is defined as vt1
R1→ vt2

R2→ · · · Rn−1→ vtn, the meta-path can reflect the closeness
between the target type nodes.

Definition 4. Meta-path context. Define the meta-path set as ρ =
{

ρ1, ρ2, · · · ρp
}

, where ρi
represents the i-th meta-path. Based on the predefined meta-path, the corresponding adjacency
matrix set Aρ = {Aρ1 , Aρ2 , · · · Aρp} can be obtained, where Aρi ∈ R|Vt |×|Vt |.

Problem Description. Temporal information-based embedding of heterogeneous information
networks, under the guidance of temporal information, will learn low-dimensional representa-
tions H ∈ R|V|×d of structural information and attribute information in G, where d� D.

4. Materials and Methods
4.1. The Whole Framework

This paper proposes a DHIN embedding method based on meta-path and an improved
Rotate model, as shown in Figure 2. First, the different space of different types of node
features are mapped into a unified space through the data preprocessing module; next,
the representations of each meta-path instance under different meta-paths are learned by
GCNs, and the temporal information processing component is used under the guidance of
timestamps. Finally, the more comprehensive node embedding is obtained by aggresse the
node em-bedding based on meta-path-level regression.

4.2. Data Preprocessing

The feature spaces of different types of nodes in heterogeneous information networks
may be different, which brings challenges to subsequent processing. Hence we first map
the different types of nodes into the same vector space. Given a node v ∈ V of a certain
type A, the mapping operations are as follows:

h′v = P(hv) = QA·hv + b (1)

where P(·) is the mapping function, hv is the feature vector of node v, h′v represents the
feature vector of node v after mapping, QA represents the mapping matrix of type A, and b
is a bias vector.

After the mapping process, nodes can have the same feature space, so as to facilitate
the processing of subsequent tasks.
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4.3. DHIN Embedding Based on Meta-Path and Improved Rotate Model
4.3.1. Meta-Path-Based Node Local Representation

Each adjacency matrix can represent a homogeneous graph, and we first learn the
encoder at the node level through local embedding to generate node embeddings containing
the initial node feature X and Aρi information:

Hρi = fρi (X, Aρi ) (2)

where fρi (·) represents the node-level encoder. Here, in order to effectively integrate the
node-familiar features and local structural features, the GCN model is selected as the
node-level encoder, and each node representation is obtained:

Hρi =
(
(Dρi )−

1
2 Ãρi (Dρi )−

1
2
)

XWρi (3)

where, Ãρi = Aρi + I, Dρi represents the degree diagonal matrix of Aρi nodes, and
Wρi ∈ Rd× f is the parameter matrix. After performing the convolution operation on
each adjacency matrix, a node representation set {Hρi}P

i=1 is obtained, Hρi represents the
embedding of the target node Vi under meta path ρi.

4.3.2. Temporal Processing Component Based on Time Decay Function

In this work, an improved Rotate model is designed, which adds a temporal informa-
tion processing component based on a time decay function to learn the effects of different
meta-path instances over time.

Given a meta-path instance ρ(v, u), u ∈ N ρ
v represents the neighbors based on the meta-

path, and the set of intermediate nodes in the meta-path is mρ(v,u) = ρ(v, u){v, u}. Encode
all nodes in this instance into a vector hρ(v,u) = f (ρ(v, u)) = f

(
h′v, h′u,

{
h′i, ∀i ∈ mρ(v,u)

})
,

where f (·) represents the encoding function of ρ(v, u).
There are many types of relationships in the Knowledge Graph, such as symmetric

relationships, asymmetric relationships, semantically opposite relationships, compound
relationships, etc. Traditional translation models can model semantically opposite re-
lationships and compound relationships, while Bilinear models can model symmetric
relationships, but no one model can model and infer all types of relationships. Inspired by
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Euler’s formula (eiθ = cosθ + isinθ), Sun et al. modeled the relationship as a rotation from
the head entity to the tail entity and proposed the Rotate model [35]. Rotate is able to model
all relation types and has achieved breakthroughs in problems such as link prediction. This
work introduces Rotate model and proposes an improved Rotate model to make full use of
complex structural and semantic information in DHIN.

Let ρ(v, u) = (x0, x1, · · · , xn), where x0 = v, xn = u, ri is the relation vector between
relation nodes xi and xi−1. The improved Rotate process is as follows:

o0 = h′x0
= h′v, (4)

oi = h′xi
+ oi � ri

′, (5)

hρ(v,u) =
on

n + 1
, (6)

where � is the Hadamard product.
Given a node v, a series of meta-path instances in meta-path ρ, and their corresponding

timestamps, i.e., v→ {(ρ(v, u)1, t1), (ρ(v, u)2, t2), · · · (ρ(v, u)n, tn)}, the influence of each
instance on the target node can be calculated as follows:

λm = so f tmax
(

λ̃m

)
=

exp(λ̌m)

∑n
l=1 exp(λ̌l)

, (7)

λ̌m = αiuv,ρ(v,u)i
k(t− ti), (8)

k(t− ti) = exp(δs(t− ti)), (9)

uv,ρ(v,u)i
= fθ(v, ρ(v, u)i) = −‖h

′
v − hρ(v,u)i

‖2 (10)

It should be pointed out that, in order to evaluate the impact of different timestamps,
this work builds a meta-path change model based on the time decay function with the fol-
lowing assumptions: when an instance just acts on the target node, it can be considered that
it has the greatest impact on the target node at this moment, but if there is no continuous
stimulus for a certain period time, the influence of the instance on the target node will con-
tinue to decay. Influenced by [46], we designed a time decay function k(·) = exp(δs(t− ti)),
that is, according to the time sequence, the time factor and influence degree are connected
by defining the attenuation function and attenuation strategy. Here t is the current time,
when ti is close to t, ρ(v, u)i has a greater impact on v; δs represents the learnable decay
rate; uv,ρ(v,u)i

measure the similarity between v and ρ(v, u)i, where the Euclidean distance
is used to measure the similarity.

In order to further enhance the expressiveness of the influence of meta path instances
on target nodes over time, the attention mechanism is introduced in this work, and the
attention coefficient is:

αm =
exp(α̃m)

∑n
l=1 exp(α̃i)

, (11)

α̃m = σ
(

k(t− ti)aT
[
Wh′v ⊕Whρ(v,u)i

])
, (12)

where a represents the attention vector, ⊕ represents the splicing operation, W represents
the weight matrix, and σ(·) represents the activation function. The representation of the
target node v under the meta-path ρ is obtained by the weighted representation of the
meta-path instance and its influence factor, namely.

hρ
v = σ

(
n

∑
i=0

λihρ(v,u)i

)
. (13)
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To sum up, given the meta-path set {ρ1, ρ2, · · · , ρk}, after the temporal processing
component, k groups of node representations with different semantics can be obtained,
which can be expressed as Hρi =

{
hρ1

v , hρ2
v , · · · , hρk

v

}
.

4.4. Meta-Path-Level Aggregation

Each meta-path contains a specific structure and semantic information, and the node
may be connected to other nodes through multiple meta-paths, so we need to learn more
comprehensive node embedding. In addition, traditional pooling strategies (average
pooling or max pooling) cannot effectively measure the importance of different meta-paths.
In this paper, a semantic-level attention mechanism is used to analyze the set {Hρi}P

i=1
performs overall aggregation to generate an overall representation containing multiple
relational semantics. To this end, an intuitive idea is to measure the contribution of each
meta-path to the final node representation and then use the respective contributions as
weights to aggregate the individual node representations, so Here an attention layer Latt is
added to learn the corresponding weights:

{βρ1 , βρ2 , · · · , βρP} = Latt(Hρ1 , Hρ2 , · · · , HρP) (14)

First, calculate the importance of the single meta-path ρi.

eρi =
1
N

N

∑
n=1

tan h
(

qT [Wsem·hρi + b]
)

(15)

where, Wsem represents the parameter matrix, and q represents the semantic attention vector
that needs to be learned.

Next, the generated set {eρi}P
i=1 is regularized using the so f tmax function to obtain

the weight βρi of the meta-path ρi:

βρi = so f tmax(eρi ) =
exp(eρi )

∑P
j=1 exp(eρi )

(16)

Finally, the dynamic heterogeneous information network representation H will be
obtained by the linear combination of the node representation set {Hρi}P

i=1:

H =
P

∑
i=1

βρi ·Hρi (17)

It should be noted that the attention weight learned by the model is binary cross-
entropy loss in the method of this paper, and the learned weight helps to measure the
similarity of a node to its neighbors under different distributions, that is, the more similar
the node features to its neighbors, the greater the assigned weight. At the same time, since
the classification label is not involved, the weight will not be affected by the label.

5. Experiment and Discussion
5.1. Experimental Data

The data sets used in this paper are DBLP [47] and IMDB [48]. The DBLP data set
collects research papers in the direction of the computer, including four node information
of author, paper, conference, and keywords. The author node can also be divided into
four sub-directions of the database, data mining, data information retrieval, and machine
learning. This work takes the author as the target node, uses its research field as the label,
and uses the bag-of-words model to generate initial features. The IMDB dataset collects
movie knowledge graphs, which can be divided into three types: action, comedy, and
drama. This paper selects the movie as the target node and uses the genre of the movie as
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the label, and its features include color, title, language, keyword, country, rating, year, and
TF-IDF encoding. Dataset summary information is shown in Table 1.

Table 1. Dataset summary information.

Dataset Node Node
Number Edge Edge

Number
Feature

Dimension Meta-Path

DBLP

Author (A) 4057
AP
AC
PT

19,645
14,328
88,420

334
APA

APCPA
APTPA

Paper (P) 14,328
Conference (C) 20

Term (T) 8789

IMDB

Movie (M) 4275
MA
MD
MK

12,838
4280

20,529
6344

MAM
MDM
MKM

Actor (A) 5431
Director (D) 2082
Keyword (K) 7313

5.2. Baselines

In order to fully verify the effectiveness of our method, we use seven representation
learning methods as baselines, including:

1. Raw Feature, that is, the initial input features are used for node representation;
2. GCN [13], a homogeneous neural network model, introduces the neural network

into the field of graph learning. Here we adapt standard experimental strategies and
parameter settings and construct a meta-path-based adjacency matrix to facilitate its
operation according to the requirements of homogeneous graphs;

3. GAT [14], a homogeneous neural network model, uses an attention mechanism. Here
we adapt standard experimental strategies and parameter settings and construct a
meta-path-based adjacency matrix to facilitate its operation according to the require-
ments of homogeneous graphs;

4. Metapath2vec (M2V) [8], a representation learning method for HINs, performs ran-
dom one-walk based on meta-paths. Here we set the window size to 5, the walk
length to 100, and the number of negative samples to 5;

5. JUST [49], a static HIN embedding method. Here, the initial stay probability parameter
of the walk is set to α = 0.2 so that the algorithm tends to explore new types of nodes
through heterogeneous edges during the walk, and the remaining parameters are
selected as the default settings in the original text;

6. CTDNE [10] is a real-time dynamic homogeneous network embedding method in
which random walks are organized with edges as angles, and the next edge is selected
according to the strict increasing order of timestamps. Here the minimum length of
each walk sequence is 5. The size of the batch update is consistent with the sliding
window step size to ensure that the required walking sequence can be generated in the
network with a limited number of timestamps and that the sequence is not too short.

7. Change2vec (C2V) [50], a DHIN embedding method for snapshots, uses meta-path
guidance. In order to ensure the quality of meta-path selection, the meta-paths used in
each dataset are selected based on the semantics of the dataset. And considering the
influence of selecting different meta-paths, multiple meta-paths are comprehensively
considered for random walks in the experiment;

In this work, the Adam optimizer [51] is used, and the learning rate is set to 0.01,
the weight decay is 0.001, the node dimension is 512, the attention dimension is 8, and
the experimental platform is Pytorch. In the node classification task, the learning method
adopts the Support Vector Machine, while the supervised method is an end-to-end model,
so the classification results are directly output. 80% of the data set is used as the training
set, 10% of the data is used as the validation set, and 10% of the data is used as the test set.
In order to ensure the stability of the results, all experimental tasks were repeated 10 times.
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5.3. Experiment Result and Discussion
5.3.1. Node Classification Task

First, we verified the node classification task, and the experimental results are shown
in Table 2. We mark our results in bold and underline the best results (the same below).
As it can be seen from Table 2, comparing the results of the MRDE method on DBLP and
IMDB, it can be found that the classification effect of the MRDE method in this paper is
improved on both datasets (the highest on DBLP is increased by 30%, and the lowest is
increased by 0.7%. The highest increase is 41.8% on IMDB, and the lowest is 0.5%), which
fully reflects the necessity of introducing local graph embedding and attention balance
mechanism when considering multiple adjacency matrices with different structures at the
same time.

Table 2. Experimental values of the node classification task.

Dataset Training Set Indicator Raw GCN GAT M2V JUST CTDNE C2V MRDE

DBLP
20%

Micro-F 0.715 0.699 0.819 0.593 0.824 0.899 0.906 0.930
Macro-F 0.725 0.698 0.813 0.513 0.835 0.892 0.898 0.904

80%
Micro-F 0.822 0.811 0.838 0.618 0.854 0.910 0.917 0.947
Macro-F 0.825 0.803 0.839 0.521 0.868 0.906 0.910 0.942

IMDB
20%

Micro-F 0.502 0.582 0.633 0.435 0.698 0.608 0.681 0.712
Macro-F 0.523 0.623 0.708 0.447 0.654 0.673 0.692 0.710

80%
Micro-F 0.585 0.679 0.707 0.452 0.734 0.720 0.725 0.738
Macro-F 0.592 0.687 0.736 0.487 0.725 0.739 0.737 0.745

In addition, for DBLP and IMDB, the JUST, CTDNE, and C2V methods, which are
based on DHINs, are better than static methods (GCN, GAT, M2V), it shows the effective-
ness of the DHIN methods, and also verifies the implicit assumption of mining semantic
information and temporal information in HINs is beneficial to improve the quality of node
representation. At the same time, we also compared the Raw method (input features are
directly used as node representations), and we can find that the Raw method has a poor
processing effect compared with each other method, thus excluding the possibility that the
input features lead to better performance of the model.

Similarly, compared with M2V, which only uses the semantic relation network struc-
ture for representation learning, the HIN embedding methods, which effectively combine
the input features and structural information, can usually obtain better node representation.

In addition, in the IMDB dataset, the effectiveness of MRDE is worse than that in
DBLP. We analyze and find that the target nodes in the IMDB dataset are often weakly
correlated; for example, the same director may direct different types of movies, while the
same actor may also appear in different types of movies, thus introducing more noise.

5.3.2. Node Clustering Task

This paper uses the K-mean algorithm to cluster the generated node embeddings. The
number of clusters is set as the number of category types of the target node. The clustering
task is also repeated 10 times, and the average value of the Adjusted Rand index (ARI) is
shown in Table 3.

It is easy to find that MRDE is always better than other comparison methods in Table 3.
Combined with the results of the node classification task, it is found that most compari-
son methods have different degrees of over-smoothing; that is, the node embeddings in
the local structure become too similar. In other words, similar node representations are
beneficial to the classifier to classify nodes to a certain extent. On the contrary, during
node clustering, similar node representations will make nodes clustered together and
become indistinguishable. By comprehensively considering the distribution of the nearest
neighbors under multiple adjacency matrices and selectively extracting useful information
from them, MRDE can effectively prevent the occurrence of the over-smoothing problem.
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Table 3. Experimental results of node clustering task.

Method
DBLP IMDB

ARI ARI

Raw 0.369 0.355
GCN 0.625 0.682
GAT 0.718 0.733
M2V 0.785 0.775
JUST 0.725 0.737

CTDNE 0.805 0.827
C2V 0.798 0.905

MRDE 0.815 0.929

5.3.3. The Effect of Attention Balance Parameter β

In order to further illustrate the role of the attention balance mechanism, the exper-
iment verifies the effect with the attention balance mechanism (MRDE) and without the
attention balance mechanism (MRDE_Null) on the IMDB dataset, and the results are shown
in Figure 3.
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As can be seen from Figure 3, MRDE get the best results on the MKM meta-path, which
means it mainly focuses on the MKM relationship; on the contrary, MRDE_Null mainly
focuses on the MDM and MAM relationship. It is not difficult to understand that MKM
builds relationships through the same keywords between movies, with the commonality
of most keywords, the movie nodes are more closely connected, and their representations
become more similar, which makes MKM gain greater attention.

After adding the attention balance mechanism, MRDE can not only maintain a high
attention weight for MDM and MAM but also assign a certain weight to MKM instead
of ignoring it directly. In this way, MRDE can aggregate features of nodes that cannot be
contracted in MDM and MAM.

5.3.4. Impact of Time Accumulation

In order to verify the impact of time accumulation, we record the DBLP data set as
Y4, Y8, Y12, Y16, Y20, Y24, Y28, Y32, Y36, and Y40 according to the time sequence that
every four years as a time stamp. For each time stamp, we use MRDE to learn the node
embed-ding for the downstream node classification task, the results are shown in Figure 4.
From the figure we can find that the accuracy of node classification is gradually improved
with the continuous accumulation of time, which means that with the accumulation of time,
the effective information on the network is gradually increasing, which is conducive for
better node embedding. It also means that DHIN embedding method can capture the time
consistency information in the network



Appl. Sci. 2022, 12, 10898 12 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17 
 

ignoring it directly. In this way, MRDE can aggregate features of nodes that cannot be 

contracted in MDM and MAM. 

5.3.4. Impact of Time Series 

In order to verify the impact of time series, we record the DBLP data set as Y4, Y8, 

Y12, Y16, Y20, Y24, Y28, Y32, Y36, and Y40 according to the time sequence that every four 

years as a time stamp. For the network states at each time point, we use MRDE to learn 

the node embedding and apply the obtained embedding to the node classification exper-

iment, the results are shown in Figure 4, and the effectiveness of node classification is 

gradually improved with the continuous development of the network. The following con-

clusions can be drawn from the figure: as time goes on, there is more and more effective 

information in the network, which is conducive to learning to obtain better node repre-

sentations. 

 

Figure 4. The effect of temporal variation on the classification task on the DBLP dataset. 

5.3.5. Runtime Comparison 

The requirement of DHIN embedding will occur at any time and frequently. There-

fore, in order to meet the requirements of dynamic characteristics, the running time of the 

algorithm is very important under the premise of ensuring sufficient accuracy of down-

stream tasks. The lower the time cost of the algorithm, the better the comprehensive per-

formance. In this section, we evaluate the running time of MRDE and other comparative 

methods. Table 4 shows the total running time of each method on the two datasets, where 

the underlined part is the best result, and the bold part is the MRDE result. 

Table 4. Clustering task running time (in seconds). 

Method 
Dataset 

DBLP IMDB 

Raw 1032.19 863.56 

GCN 4563.25 2232.41 

GAT 7563.43 4509.28 

M2V 1589.68 1097.65 

JUST 71,920.86 30,122.36 

CTDNE 32,858.93 14,118.73 

C2V 256.37 187.15 

MRDE 815.06 327.92 

Figure 4. The effect of temporal variation on the classification task on the DBLP dataset.

5.3.5. Runtime Comparison

Because the network is constantly changing, the requirement of DHIN embedding will
occur at any time and frequently. In order to meet the requirements of DHIN, the run-ning
time is one of the most important embedding method indicators under the premise of
ensuring sufficient accuracy of downstream tasks. The lower the time cost of the algorithm,
the better the comprehensive performance. In this section, we evaluate the running time
of MRDE and other comparative methods. Table 4 shows the total running time of each
method on the two datasets, where the underlined part is the best result, and the bold part
is the MRDE result.

Table 4. Clustering task running time (in seconds).

Method
Dataset

DBLP IMDB

Raw 1032.19 863.56
GCN 4563.25 2232.41
GAT 7563.43 4509.28
M2V 1589.68 1097.65
JUST 71,920.86 30,122.36

CTDNE 32,858.93 14,118.73
C2V 256.37 187.15

MRDE 815.06 327.92

As can be seen from Table 4, JUST and CTDNE spend more time on embedding, and
the static method JUST obviously exceeds an order of magnitude. Whenever an embedding
needs to be obtained, the static model must be run on the current full graph, and the model
must be completely retrained. Therefore, static methods are difficult to adapt to the needs
of real-time due to the long running time. The CTDNE will try to walk randomly many
times whenever new edges arrive, but the DHINs allow parallel edges between the same
node pair, this means the number of edges may be much greater than the number of nodes
and the edge-based methods will take much longer running time than node-based methods
on an average, especially on edge-dense networks.

5.3.6. Each Sub Module and Its Parameter Influence

In order to verify the effectiveness of each module and the influence of different
parameters, we have conducted the following comparison experiments. The specific
definitions of experiments are as follows:

1. MRDE, representing the method in this paper;
2. MRDE-NoF, indicating that node features are not used;
3. MDE-Bili, which means that the meta path instance is encoded with Bilinear [34];
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4. MDE-Tran, which means that the meta path instance is encoded with TransE [33];
5. MRDE-Avg, the coding method of averaging node vectors;
6. MRDE-NoT means that the time attribute in the network is not considered, and only

the attention mechanism is used to fuse the meta path instances;
7. MRDE-NoAtt, which means that only the time attribute in the network is considered,

and no attention mechanism is used to fuse meta-path instances;
8. MRDE-NoC, which means that the central node of the meta path instance is not

considered, and only the node pairs connected by the meta path are used.

The index values of each method in node classification tasks are shown in Figure 5,
and the index values of node clustering tasks are shown in Figure 6.
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It can be seen from Figures 5 and 6 that:

1. The MRDE-NoF method is the worst or second worst for both classification tasks and
clustering tasks, indicating that the attribute information of the node itself has a great
impact on the performance of embedding. By observing (a) and (b), the degree of
influence in the DBLP dataset is obviously lighter than that in the IMDB dataset. We
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judge that the core information in the DBLP dataset is structural information and time
information, while the core information in the IMDB dataset contains both structural
information, time information, and attribute information;

2. The performance of the MDE-Bili and MDE-Tran methods on DBLP and IMDB
datasets is quite different, which indicates that translation models and bilinear models
are more dependent on the matching degree between the data’s internal patterns and
models. When the matching degree is high, good results can be achieved. Otherwise,
the effects may decline significantly;

3. MRDE-NoT has different effects on different classification tasks and different data sets,
but it is weaker than MRDE, indicating that the impact of time attribute information is
unstable, but it will have a certain impact on the final embedding effect. MRDE-NoAtt,
MRDE-Avg, and MRDE-NoC methods have similar characteristics;

4. The MRDE model has achieved the best results in all data sets and tasks, indicating
the rationality of the embedding framework we have adopted.

6. Conclusions and Future Works

In this work, we propose a representation learning method for DHINs based on
meta-paths and an improved Rotate model. We use meta-paths to fully mine the complex
structural information and rich semantic information in DHINs. We also consider the
temporal properties and the influence of meta-path instances on target nodes at different
time stamps with the help of proposed temporal processing component. The experimental
results of node classification and clustering show that the MRDE method in this paper
achieves better results than other methods, and it also has a shorter running time than most
comparison baselines.

Although the effectiveness of this work have been verified, there are still some short-
comings, including the selection of meta-paths requires more domain knowledge, so it
is necessary to study how to deeply mine the rich, heterogeneous information without
predefined domain knowledge; There are also many more effective real-time processing
methods, such as dynamic Knowledge Graph representation and dynamic GNNs methods,
so one of the directions for future work is how to introduce these methods to achieve
better results.
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