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Abstract: Multi-kernel learning methods are essential kernel learning methods. Still, the base kernel
functions in most multi-kernel learning methods only with select kernel functions with shallow
structures, which are weak for large-scale uneven data. We propose two types of acceleration models
from a multidimensional perspective of the data: the neural tangent kernel (NTK)-based multi-
kernel learning method is proposed, where the NTK kernel regressor is shown to be equivalent to
an infinitely wide neural network predictor, and the NTK with deep structure is used as the base
kernel function to enhance the learning ability of multi-kernel models; and a parallel computing
kernel model based on data partitioning techniques. An RBF, POLY-based multi-kernel model is also
proposed. All models use historical memory-based PSO (HMPSO) for efficient search of parameters
within the model. Since NTK has a multi-layer structure and thus has a significant computational
complexity, the use of a Monotone Disjunctive Kernel (MDK) to store and train Boolean features
in binary achieves a 15–60% training time compression of NTK models in different datasets while
obtaining a 1–25% accuracy improvement.

Keywords: neural tangent kernel; support vector acceleration; particle swarm algorithm; Boolean
kernels; neural tangent kernel acceleration; multi-kernel learning; data splitting

1. Introduction

Kernel methods, such as support vector machines (SVM) and kernel ridge regression,
are an important class of machine learning methods. These methods implicitly map
low-dimensional, indistinguishable data points to a high-dimensional space and teach
linear learners in high-dimensional areas. This implicit mapping is generated by kernel
function induction, so the choice of kernel function can often determine the performance of
kernel methods.

When the sample features contain heterogeneous information, the sample size is large,
the distribution of multidimensional data is irregular (e.g., NON-IID), or the data are not
flat in the high-dimensional feature space, it is not reasonable to use a single simple kernel
for mapping all samples. To better handle these kinds of data (such as building models on
the data collected by personal terminal devices), vertical federated learning (VFL) is widely
studied as a variant of federated learning (FL) [1,2]. The emergence of VFL stems from
the concern for data privacy. It summarizes the parameters of each sub-model to train the
global model (generally through neural networks). These sub-models are trained by vertical
partition data with different attributes (i.e., feature dimensions) [3]. Based on similar ideas,
there is also split learning [4]. Different from FL, it breaks the network structure. Each
device retains only a part of the network structure, and the subnets of all devices form a
complete network model. In the training process, different devices only perform forward or
backward calculations on the local network and transmit the calculation results to the next
device. Multiple devices complete the model training through the intermediate results of
the joint network layer until the model converges [5]. “In network learning” is a particular
FL structure [6], different from the classic FL. It runs distributed processing through the FL
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training, reasoning and testing stages. The information exchanged by each node in various
locations and the bandwidth requirements has also been thoroughly studied [7].

In contrast, using multi-core learning instead of single-core methods enhances the
interpretability of the decision function, is more capable of handling large samples and
variable data, and efficiently achieves better performance than single-core models [8,9].
Compared with a single kernel function, the multicore model has higher flexibility. The
high-dimensional space after mapping multiple kernel functions is a combinatorial space
made by combining various feature spaces, and the combinatorial space can combine
different feature mapping capabilities of each subspace to map various features in the
data by the most appropriate single kernel function, respectively, which more accurately
represents the data in the new combinatorial space.

Multi-kernel learning methods have different classification methods according to
different classification standards. According to the other construction methods and charac-
teristics of multi-kernel functions, multi-kernel learning methods can be roughly divided
into three categories: the composite kernel method combines multiple kernel functions
with different factors [10]. It combines various kernel functions by directly summing or
weighted summing the essential kernel functions. However, this method may lose some
characteristic information of the original data; for all input samples, the weights corre-
sponding to different cores are unchanged, and the samples are virtually averaged. Based
on this consideration, a non-stationary combination method [11] is proposed, and each
input sample is assigned with different weight coefficients. The multi-scale kernel [12]
approach is relatively more flexible and can provide a more complete scale selection than
the synthetic kernel method, which is more conducive to processing data with uneven
distribution [13]. The above two methods are based on the premise of a linear combina-
tion of finite kernel functions, but they are not necessarily effective for some large-scale
problems [14]. The expression ability of the decision function of multi-core fusion cannot
be optimal everywhere. Compared with other methods, the infinite kernel method has a
unique feature, that is, the number of basic kernels can be unlimited [15,16], and only these
kernels need to be continuously parameterized [17].

Existing multicore model studies commonly use shallow structured kernel functions
such as RBF and LINEAR, which have many shortcomings when dealing with large sample
sizes [18], irregular data [19] or uneven data distribution [20], and to solve this problem,
we propose a multicore learning method based on neural tangent kernel (NTK). Using
NTK instead of the traditional shallow kernel function as the base kernel function for
multicore learning, the optimal weight coefficients of each base kernel function and the
optimal internal parameters of the kernel function model are iteratively derived using
the improved particle swarm algorithm HMPSO, and the multicore decision function is
derived and solved using a linear synthesis method. We also construct multi-kernel-RBF
and multi-kernel-POLY models based on RBF and POLY using the same idea, conduct
experiments on standard datasets and compare them with the well-known models.

In addition to the number of features aspect, constructing a model by changing the
number of samples may be an effective method. This study discusses the NTK-SVM
acceleration from the above two factors.

1.1. Our Contributions

• The traditional SVM is a single-kernel learning model, the SVM model with multi-
kernel learning is introduced, using NTK, which is equivalent to an infinitely wide
neural network, as the base kernel function for multi-kernel learning, and multi-
kernel-NTK, RBF-Boolean, and POLY-Boolean models are selected for the classification
task, where RBF- Boolean utilizes the multiscale multi-kernel idea, multi-kernel-NTK,
POLY-Boolean utilizes the linear synthetic kernel idea.

• The HMPSO algorithm uses EDA to estimate and preserve the information of the
historical optimal distribution of particles, which can avoid premature convergence of
the model by competing among the information and maintaining fast convergence.
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Its performance is better than most of the PSO improvement algorithms. We use
the HMPSO algorithm to select various parameters in multi-kernel-NTK and other
multi-kernel models.

• The single kernel SVM model has a limited search space, and the diagnostic results
of the model are more sensitive and less robust to the kernel parameters and penalty
parameters. The sensitivity of multi-kernel-NTK and NTK-SVM models to the penalty
parameter C and network depth L is studied visually and comparatively.

• The NTK kernel has a multi-layer structure, which consumes a lot of time in its
computation. Because of its special function construction (four-dimensional GRAM
matrix), matrix decomposition and chunking acceleration techniques are difficult to be
applied to the NTK kernel function. We extract the features belonging to the Boolean
type from the original dataset and use the Boolean kernel (Monotone Disjunctive
Kernel) to encode them into a binary square array for training, which improves the
model accuracy and compresses the model training time at the same time.

• The Multi-NTK model is accelerated regarding the number of features and the multi-
kernel model. We also used the data-cutting technique to construct the Block-NTK
model to accelerate the model regarding the number of samples.

1.2. Article Structure

We review the contributions of related studies and where improvements can be made
in Section 1, present recent research work in Section 2, introduce background techniques
relevant to this study in Section 3, shows the experimental design details of the survey in
Section 4, visualise and analyse the experimental results in Section 5, and discuss them in
Section 6, and a conclusion in Section 7.

2. Related Works

Anirban et al. [21] proposed a multiple kernel learning embedded multi-objective
swarm intelligence technique to identify the candidate biomarker genes from the tran-
scriptomic profile of arsenicosis samples. Using multiple kernel learning MKL models,
Chien et al. [22] assessed the predictive value of various clinical and MRI measures for dis-
ease activity. Jiang et al. [23] proposed a high-order norm-product regularized multiple ker-
nel learning framework to optimize the discrimination performance. Stanton R et al. [24]
explored different divergence measures on the values in the kernel matrices and repro-
ducing kernel Hilbert space (RKHS). Fatemeh and Sattar [25] formulated multiple kernel
learning in a bi-level learning paradigm consisting of the kernel combination weight
learning (KWL) stage and the self-paced learning (SPL) stage. Yang et al. [26] focused on en-
hancing the original data representation by combining the gravitation-based method with a
multiple empirical kernel approach. This paper proposes a sample-level method known as
the gravitational balanced multiple kernel learning (GBMKL) method. Archibald et al. [27]
developed a kernel learning backwards SDE filter method to estimate the state of a stochas-
tic dynamical system based on its partial noisy observations. Tian et al. [28] proposed
an efficient kernel method called reduced PSVM-2V (RPSVM-2V). It can provide a novel
solution to process incomplete-view data and can also be adjusted to address large-scale
complete-view learning problems efficiently. Saeedi [29] proposed an algorithm that uses
recent advances in quantum sample-based Hamiltonian simulation to extend the existing
quantum LS-SVM algorithm to handle the semi-supervised term in the loss. Guo et al. [30]
proposed a novel semi-supervised multiple empirical kernel learning (SSMEKL) which
enables various practical kernel learning to achieve better classification performance with a
small number of labeled samples and many unlabeled samples.

Saeedi presented a quantum machine learning algorithm for training semi-supervised
kernel support vector machines. Shi et al. [31] proposed a localized multiple kernel learning
model with a nonlinear synthetic kernel (LMKL-D). A three-layer deep multiple kernel
learning model trained the nonlinear synthetic kernel. Ding et al. [32] proposed a dynamic
quantum particle swarm optimization algorithm (DQPSO). Bin et al. [33] used the artificial
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neural network model to establish the objective functions for particle swarm optimization.
The biogeography-based learning particle swarm optimization (BLPSO) is used to optimize
the B-spline function parameters by Guo Qing et al. [34].

Polato et al. [35] proposed a new family of Boolean kernels for categorical data where
features correspond to propositional formulas applied to the input variables. He also pro-
posed an approach for extracting explanation rules from support vector machines [36]. The
kernel idea is based on using kernels with feature spaces composed of logical propositions.
Alfaro et al. [37] introduced a novel method for accelerated training of parallel support
vector machines based on ensembles. Song et al. [38] proposed an accelerator for the SVM
algorithm based on local geometrical information.

3. Background Techniques
3.1. Particle Swarm Algorithms

The particle swarm optimization (PSO) algorithm [39] is one of the evolutionary
algorithms. It starts from a random solution and iterates to find the optimal solution.
The solution quality is evaluated by fitness, but it is more straightforward than genetic
algorithm rules, without the “crossover” and “variation” operations of genetic algorithms,
and only follows the searched optimal values to find the global optimum.

PSO is initialized as a population of random particles (random solutions), where the
position property of the particle is denoted as xi = (xi1, xi2, · · · , xiD), and the direction of
motion and distance of the particle is determined by the velocity: vi = (vi1, vi2, · · · , viD).
In each iteration, the particle updates itself by tracking two extremes: the first one is the
optimal solution found by the particle itself, called the individual extremum; the other ex-
tremum is the optimal solution found by the whole population, called the global extremum.

vk+1
id = w[vk

id + c1r1(pk
ibest − xk

id) + c2r2(pk
gbest − xk

id)]

xk+1
id = xk

id + vk+1
id

(1)

where i = 1, · · · , N is the number of particles, d = 1, · · · , D is the dimension of the search
space, w is the inertia weight, c1, c2 is the acceleration factor, r1, r2 is the random number
uniformly distributed on the interval [0,1], and pibest = (pi1, pi2, · · · , piD) is the individual
extremum, and pgbest = (pg1, pg2, · · · , pgD) is the global extremum.

Li et al. [40] proposed an improved HMPSO algorithm. A distribution estimation
algorithm is used to estimate and preserve the historical hoping pbest information of the
particles. Each particle has three candidate positions, generated from historical memories
H, pibest and pgbest, respectively:

Posi_j(t + 1) = (Posi_1, Posi_2, Posi_3)

Posd
i_j
(t + 1) = xid(t + 1) + vid(t + 1)

xid(t + 1) = Posd
i_mi

(t + 1)
(2)

3.2. Multi-Kernel Learning

Compared with a single-kernel function, the multi-kernel model has higher flexibility.
The high-dimensional space after the mapping of multiple kernel functions is a combined
space made by combining various feature spaces, which can connect different feature
mapping capabilities of subspaces and map different feature components of heterogeneous
data by the most suitable single kernel function, respectively. The data can then be more
accurately and reasonably expressed in the new space and improve the prediction accuracy
of sample data.

The different construction methods and characteristics of multi-kernel functions can
be divided into three categories: synthetic kernels, multiscale kernels, and infinite kernels.
We replace the traditional kernel functions such as linear kernel, Gaussian kernel and
polynomial kernel with NTK with deep structure as the base kernel functions of the multi-
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kernel learning method, thus enhancing the representation capability of the multi-kernel
learning method.

The linear combinatorial synthesis method is used to perform convex combina-
tions of multiple basis kernel functions, and the final combined kernel function K f inal
is expressed as:

K f inal =
n

∑
i=1

wiKi, wi ≥ 0,
n

∑
i=1

wi = 1, (3)

where Ki is the basis kernel function, wi is the weight coefficient of the basis kernel function,
and n is the number of basis kernel functions. Then, the decision function of the SVM-based
multi-kernel learning method can be transformed into:

f (x) = sgn(
o

∑
j=1

ajyjK(xi, x) + b)⇒ f (x) = sgn(
o

∑
j=1

ajyj

n

∑
i=1

wiKi(xi, x) + b) (4)

where 0 ≤ aj ≤ C is a Lagrangian multiplier.
The linear combinatorial multi-kernel model has no basis for parameter selection and

combination, which cannot satisfactorily solve the uneven distribution of samples and
limits the representation capability of the decision function. In contrast, multi-scale kernel
fusion is more flexible and provides a more complete choice of scales.

Among the widely used kernel functions, the Gaussian radial basis kernel is a typical
multiscale kernel with generalized approximation capability. Take this kernel as an example
and multiscale it (assuming it has translation invariance):

K(x, z) = exp(− ‖x−z‖2

2σ2 )

Ki(x, z) = [exp(− ‖x−z‖2

2σ2
1

), · · · , exp(− ‖x−z‖2

2σ2
m

)]
(5)

where σ1 < · · · < σm, when σ is small, the model is prone to classify the drastically varying
samples. When σ is large, it can classify those samples that vary gently, resulting in a better
generalization capability. The decision function of the SVM-based multi-kernel learning
method can be transformed into:

f (x) = f1(x) + f2(x) + · · ·+ fm(x)

f1(x) =
N
∑

i=1
aiK1(xi, x) + b1

...

fm(x) =
N
∑

i=1
aiKm(xi, x) + bm

(6)

3.3. Kernel Functions
3.3.1. Boolean Kernel

Plato proposed a new family of Boolean kernel functions for categorical data, where
the features correspond to propositional formulas applied to the input variables.

We use the Monotone Disjunctive Kernel in our study. For two Boolean variables
x, z ∈ {0, 1},An active disjunction of d literals for X can be defined as a set of d elements
taken from the space U. Anytime ∃a, b ∈ Ud|a ∈ X ∧ b ∈ Z, then Ud is an active subset for
X and Z, so the value of the kernel is the number of active subsets Ud in common between
X and Z. The definitions are as follows:

Kd
MDK(x, z) =

(
|U|
d

)
−
(
|U\X|

d

)
−
(
|U\Z|

d

)
+

(
|U\(X ∪ Z)|

d

)
=

(
n
d

)
−
(

n− 〈x, x〉
d

)
−
(

n− 〈z, z〉
d

)
+

(
n− 〈x, x〉 − 〈z, z〉

d

) (7)
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3.3.2. Neural Tangent Kernel

Jacot et al. [41], building on a series of studies such as Neal et al. [42] and Matthews et al. [43],
first connected a neural network with all layers trained, infinitely large, and trained using
gradient descent to a kernel predictor, expressing the dynamics of the neural network in
terms of a representation through an ordinary differential equation, so that the training
process of the DNN can be approximated with the help of NTK.

Specifically, let x ∈ Rd be the input, t(0)(x) = x denotes input variables that are not
nonlinearized, and d0 = d represents the width of the initial layer. Then, a neural network
with L hidden layers can be defined as follows:

f (w, x) = f (L+1)(x) = W(L+1)t(L)(x)
= W(L+1)

√
cσ
dL

σ(W(L) · · ·
√

cσ
d1

σ(W(1)(x))) (8)

W(h) ∈ Rdh×dh−1 is the weight matrix of layer h. The set of network parameters is
w = (W(1), · · · , W(L+1)). All elements are initialized with independent standard normal
distributions. σ : R→ R is the activation function, RELU is recommended. cσ is the scaling
factor, usually defined as 2, which can be used to avoid gradient explosion or disappearance
in deep networks.

Jacot deduces that the dynamics of the neural network exhibit limiting behavior along
the gradient trajectory when the width d1, d2, · · · , dL → ∞ of each layer. Let x, x′ ∈ Rd be
two data points, then the covariance kernel ∑(h)(x, x′) = f (h)(x)· f (h)(x′) of the output of
layer h can be recursively defined as:

∑(0)(x, x′) = f (0)(x)· f (0)(x′) = xTx′,

Λ(h)(x, x′) =

(
∑(h−1)(x, x) ∑(h−1)(x, x′)
∑(h−1)(x′, x) ∑(h−1)(x′, x′)

)
, h ∈ [L]

∑(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ(u)σ(v)],

(9)

It is important to note that this recursive form holds during initialization and training
(gradient descent training of η → 0 is required). Formally, NTK is shown to be the kernel
in the limit case of:

Θ(x, x′) ,
〈

∂ f (w,x)
∂w , ∂ f (w,x′)

∂w

〉
=

L+1
∑

h=1

〈
∂ f (w,x)
∂W(h) , ∂ f (w,x′)

∂W(h)

〉 (10)

For the loss function L of the network:

∂θ
∂t = −∇θ L = −∇θ f (θ, X)T∇ f (θ,x)L

∂ f (θ,x)
∂t = ∇θ f (θ, x) ∂θ

∂t
= −∇θ f (θ, x)T∇θ f (θ, x)∇ f (θ,x)L
= −Θ(x, X)∇ f (θ,x)L

(11)

By transforming the expression of the neural network at t = 0, through operations
such as Taylor decomposition and differentiation, it can be shown that, while Θ(x, X)
evolves in time to Θt(x, X), Θt(x, X) is shown to converge to a definite Θ0(X, X) [43] and
does not evolve with the training process, i.e., Θt(X, X) = Θ0(X, X). Thus, this differential
equation can be expressed as:

∂ f (θ, X)

∂t
= −Θ0(X, X)∇ f (θ,X)L. (12)
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4. Experimental Setup
4.1. Data Setup and Parameter Selection

In this paper, we use more than twenty UCI-labeled datasets to validate the perfor-
mance of the proposed algorithm, which includes data from various fields such as sports,
economy, medicine, and environment, etc. The performance of the multi-kernel-NTK
multi-kernel model is validated on more than 10,000 pieces of data.

The HMPSO algorithm uses EDA to estimate and preserve the information of the
historical optimal distribution of particles, which have their own advantages and thus can
complement each other to avoid premature convergence and maintain fast convergence.
Therefore, in this paper, we use the HMPSO algorithm to measure the basis kernel function,
and calculate the weight parameters corresponding to the basis kernel function and the
built-in parameters of the basis kernel function. We set the range of kernel function
parameters as in Table 1.

Table 1. Support vector model parameter settings.

Kernel Para.1 Range Para.2 Range Para.3 Range

Poly C 0.001, . . . , 1024 Coef0 0.02, . . . , 2 degree 1, 2, 3
Rbf C 0.001, . . . , 1024 gamma 0.1, . . . , 50

MDK C 0.004, . . . , 1024 d 0.003, . . . , 32
NTK C 0.004, . . . , 128 dep 1, . . . , 13 fix 0, . . . , 12

It should be noted that the above parameters are not the parameter settings obeyed by
a single experiment, but the concatenation of the parameters taken by all our experiments,
for example, we set the maximum width to 5 when studying the accuracy of the multi-
kernel-NTK model, and the maximum width to 13 when studying its robustness.

4.2. Multi-Kernel-NTK and Other Multi-Kernel Models

We use the HMPSO algorithm to select various parameters in the multi-kernel-NTK
model. The particle length in the HMPSO algorithm is set to 40, where the first 20 particles
constitute the penalty parameter C of the support vector model, taking values in the range
2−8 ≤ C ≤ 210. The remaining particles are the kernel function selection particles, denoted
as [r1, r2, · · · , r20], where ri takes values of 1 or 0, representing whether the corresponding
kernel is selected or not, respectively.

The features of Boolean type in the original dataset are extracted and trained using the
Monotone Disjunctive Kernel. At the same time, the data are saved in binary to improve
the computational efficiency further. The NTK kernel function is used to construct a four-
dimensional GRAM matrix based on the remaining features, and the two are combined
and brought into the SVM training.

For the NTK-Boolean and POLY-Boolean models, we choose linear combinatorial
synthetic multi-kernel models, while for the RBF-Boolean model, we choose 20 alterna-
tive basis kernels, which are constructed by a multiscale multi-kernel learning method,
with the kernel parameters obtained by exponential growth, taking values. The range is
σi = 2iσ, 1 = 0, 1, 2, · · ·

We compare our proposed model with well-known models such as RF and Adaboost
and perform statistical hypothesis testing and present the results in the “Discussion”
section (Section 6). In the support vector machine training using NTK, a two-dimensional
symmetric matrix is reconstructed from a four-dimensional tensor using the index as a
Gram matrix in a general sense and involved in the computation, and the computational
flow of our proposed primary model: NTK-Boolean model is shown in Figure 1.
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Relevant experiments were designed and completed to visualize the experimental
results and discuss the accuracy ranking among the models and the acceleration achieved
by our approach.

4.3. Multi-Kernel-NTK Model Robustness Test

We constructed the Block-NTK model from the perspective of sample size, using the
idea of data cutting, dividing the original data into several subsets of the same size, and
ensuring that each part of the subset has data of all categories, training on each subset in
parallel using the NTK classifier, and aggregating the training results of different subsets,
the time relationship between the NTK-SVM model processing different size datasets is not
linear, so processing small datasets in parallel can theoretically obtain a minor time loss in
processing large datasets.
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4.4. Multi-Kernel-NTK Model Robustness Test

We discuss the robustness of the NTK model by referring to Arora et al. [44], Simon et al. [45],
Novak et al. [46], and other studies that construct the NTK kernel function, following
the setting of Arora et al. The computation of the NTK involves the construction of a
four-dimensional tensor K ∈ RL×L′×n×n, where n is the input sample size, the structure
of the NTK kernel differs from the various existing kernel functions, and L, L′ is the
hyperparameters specific to the NTK kernel. We have learned that the NTK is introduced
from a neural network satisfying certain conditions and L, L′ represents the depth of that
neural network and the depth at which the parameters are fixed, respectively (the maximum
value is the total number of layers–1), so whether the structure of the network has an impact
on the performance of the kernel function is an issue that must be considered, and we have
also investigated the sensitivity of the model to the penalty parameter C. We visualized the
experimental results and performed a comparative analysis.

5. Analysis of Experimental Results
5.1. Comparison of Multi-Model Results

Based on the multi-kernel-NTK model established above, we substituted the collected
UCI dataset for the analysis; the selection of parameters in training follows the settings in
Section 4.1. Other details follow the settings in Section 4.2. Using 70% of the dataset as the
training set, we divided each original dataset 20 times and ensured that each training set
and test set contained all categories. We summarized some of the training data in Table 2
and performed a statistical analysis. The optimal results for different datasets have been
blacked out.

Table 2. Comparison of model results for selected datasets.

Datasets POLY M-POLY RBF M-RBF NTK M-NTK B-NTK

breast-cancer 0.808 0.857 0.788 0.808 0.818 0.858 0.831
credit-approval 0.884 0.892 0.884 0.872 0.883 0.901 0.825
echocardiogram 0.892 0.881 0.862 0.896 0.854 0.898 0.942

fertility 0.9 0.9 0.9 0.91 0.9 0.92 0.875
hepatitis 0.805 0.799 0.844 0.822 0.818 0.882 0.856

libras 0.772 0.77 0.689 0.702 0.817 0.846 0.775
Parkinsons 0.918 0.873 0.938 0.883 0.938 0.968 0.877

bridges-MATERIAL 0.868 0.888 0.887 0.898 0.887 0.887 0.928
bridges-REL-L 0.784 0.845 0.824 0.875 0.765 0.875 0.755
bridges-SPAN 0.696 0.685 0.674 0.695 0.739 0.803 0.799

bridges-T-OR-D 0.902 0.943 0.902 0.943 0.887 0.907 0.926
bridges-TYPE 0.654 0.697 0.654 0.728 0.716 0.728 0.738
german-credit 0.76 0.772 0.75 0.798 0.786 0.798 0.770

trains 0.6 0.6 0.6 0.6 0.6 0.8 0.6
wine 0.989 0.953 0.978 0.908 0.978 0.989 0.870
zoo 0.96 0.96 0.96 0.9 0.9 0.96 0.8

Friedman test H0 : e1 = e2 = e3 = e4 = e5 = e6 = e7
p = 0.000(reject H0)

Kendall test H0 : e1 = e2 = e3 = e4 = e5 = e6 = e7
p = 0.000(reject H0)

In these experiments, we used different parameters for each model. For the POLY-
based model, C was selected from 2−10 to 210, coef0 was selected from 0.02 to 2, and degree
was set at 1, 2, 3; for the RBF-based model, C was selected from 2−10 to 210, gamma was
chosen from 0.1 to 50; for NTK based model, C was selected from 2−8 to 27, dep was
selected from 1 to 6. Experimental results show that the multi-kernel-NTK support vector
classifier model outperforms the RBF POLY support vector machine classifier, random
forest, AdaBoost, and RBF-Boolean and POLY-Boolean models in more than 90% of different
domain datasets and in datasets that do not reach optimal performance, the multi-kernel-
NTK version is also very close to the optimal performance. Moreover, the accuracy of the
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BLOCK model is maintained at a certain level, and the best accuracy is achieved in the three
datasets. The statistical tests also demonstrate significant differences between the models.

5.2. Multi-Kernel-NTK Model Acceleration

To investigate the acceleration efficiency of the proposed model for the NTK regressor,
we validated it on more than twenty UCI datasets, with the model parameters selected
following the settings in Section 4.1 and other details following the grounds in Section 4.2,
using 70% of the datasets as training sets. In comparing the temporal data, we normalize the
running time of the original NTK model in different datasets with the running time of the
multi-kernel-NTK model in each dataset as the origin, and the results of each experiment
are shown in Figure 2 and Table 3.
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Table 3. Selection of Boolean variables for selected datasets and model efficiency.

Dataset Boolean(%) M-Time Saving (%) M-Acc Improv. (%) B-Time Saving(%) B-Acc Improv.(%)

breast-cancer 1 22.2 58.9 2.47 62.5 8.01
breast-cancer 2 6.1 52.5 3.65 62.5 1.57
credit-approval 26.7 30.0 2.04 18.3 −7.89
echocardiogram 30.0 37.2 5.15 74.9 10.30
heart-cleveland 23.1 27.9 8.46 28.0 15.15

hepatitis 63.2 24.7 7.83 59.3 4.62
libras 23.3 15.7 3.55 −9.0 −5.14

Parkinsons 13.6 37.1 3.20 80.2 −5.96
bridges-REL-L 28.6 35.9 14.38 59.5 −1.31

bridges-T-OR-D 28.6 55.1 2.25 26.6 −9.92
bridges-SPAN 28.6 31.6 8.66 −1.3 8.53
bridges-TYPE 28.6 35.5 22.15 −24.4 3.07

Australian-credit 28.6 25.2 3.36 36.0 13.04
zoo 62.5 40.3 6.67 88.1 −11.11

lenses 75.0 36.1 25.00 14.0 4.34
waveform 28.6 20.9 4.81 −48.6 5.96

wine 30.8 24.9 1.12 99.8 −0.80
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For the NTK based model, C was selected from 2−8 to 27, dep was selected from 1 to 6;
for the Boolean kernel we used, C was selected from 2−8 to 210, and d was selected from
0.003 to 32.

The second column in Table 3 shows the proportion of Boolean-type features extracted
from the original dataset to the total number of parts, and the third column shows the
percentage of time resources saved by the multi-kernel-NTK model compared with the
original NTK classifier. The third column shows the improved classification accuracy of
multi-kernel-NTK compared with the NTK model. The fourth column shows the percentage
of time resources saved by the Block-NTK model compared with the original NTK classifier.
The last column shows the improved classification accuracy of Block-NTK compared with
the NTK model.

From Figure 2 and Table 3, it can be easily seen that our proposed multi-kernel-NTK
model achieves higher computational efficiency in most datasets in different domains,
saving up to nearly 60% of the time. At the same time, the model also improves the
classification accuracy of the traditional NTK model, ranging from 1% to 25% in different
datasets. For the BLOCK model, there may be a risk of deepening the time complexity in
some datasets, but overall, the speedup is achieved in most datasets and the accuracy of
the original model is relatively maintained.

5.3. Multi-Kernel-NTK Robustness Testing
5.3.1. Network Parameters and Multi-Kernel-NTK

We tried to find the model factors that can affect the NTK model, as mentioned in
Section 4.4, we investigated the effect of changing the SVM parameter C and NTK parameter
L on the computational complexity of NTK separately. We selected several datasets from the
UCI dataset and tested the robustness of NTK and multi-kernel-NTK models, respectively,
at different network depths L, where the parameter L was taken from 1 to 12 and trained
for all layers. The results are shown in Figure 3. Since the Block model also uses the NTK
kernel function, we do not discuss its robustness.
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Fifteen datasets are selected for display in Figure 3, where the red line represents the
accuracy of the multi-kernel-NTK model as a function of L, and the black line represents
the accuracy of the original NTK model as a function of L. An interesting trend of the
NTK model can be found here, where the accuracy of the model tends to increase as the
number of network layers increases, and when the number of layers is greater than five,
as the number of network layers increases, the accuracy of the model. This is contrary
to the classical notion of neural networks: more layers of the network tend to imply
higher accuracy.
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As can be seen from the figure, the multi-kernel-NTK model demonstrates better
robustness as L increases, and even in some datasets the model accuracy gradually increases
as the number of network layers increases.

5.3.2. Network Parameters and Multi-Kernel-NTK

As mentioned in Section 4.4, we investigated the effect of changing the SVM parameter
C and NTK parameter L on the computational complexity of NTK, respectively, and selected
several datasets from the UCI dataset and tested the robustness of NTK and multi-kernel-
NTK models under different penalty parameters C, where the parameter C ranges from
0.004 to 128, and the results are shown in Figures 4 and 5.
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The red line represents the trend of the multi-kernel-NTK model with C, and the black
line represents the trend of the original NTK model with C.

Another interesting trend of the NTK model can be found in Figure 4; the training
time of the model increases exponentially as C increases, which is a property not possessed
by other kernel functions. Still, our proposed multi-kernel-NTK model can mitigate this
trend well and avoid the significant time expenditure that may result from an overly large
parameter C. It can be seen from Figure 5 that as C increases, the multi-kernel model obtains
better classification accuracy compared with the original model.
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6. Discussion

The SVM model of multi-kernel learning is introduced, and NTK is used as the base
kernel function of multi-kernel learning. More than twenty UCI datasets are selected,
and a multi-kernel-NTK diagnostic model using HMPSO optimization is built for multi-
domain classification tasks, which extracts features of sample data from multifaceted
high-dimensional space and performs linear convex combination, which can better identify
sample data and expand the search of the model space. At the same time, the multiscale
multi-kernel learning method is used to construct 20 multiscale RBF kernel functions and
MDK kernel functions to create the RBF-Boolean model and the POLY-Boolean model
with a linear combination of POLY and MDK. The above models are compared with
RF and Adaboost models, and the superiority of multi-kernel. The power of the NTK
model is demonstrated by statistical tests. We constructed the Block-NTK model from
the perspective of sample size, using the idea of data cutting, dividing the original data
into several subsets of the same size, ensuring that each part of the subset has data of all
categories, training on each subset in parallel using the NTK classifier, and aggregating the
training results of different subsets.

As can be seen from Table 4, the accuracy of our proposed NTK improvement model
outperforms the commonly used classification models in most multi-domain, different-size
datasets. In Table 5, we show the relative time complexity of different models running
different datasets and we mark the model with the shortest running time in each dataset
as 1. The higher relative complexity of the model represents its higher time complexity.
Table 5 shows that the decision tree model achieves the fastest speed in most datasets. Still,
our proposed model is second only to the decision tree model in terms of average running
rate while maintaining the best average classification accuracy.
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Table 4. Acc-Comparison between our model and commonly used standard models.

Datasets RF ADABOOST KNN Decision Trees M-RBF M-NTK B-NTK

breast-cancer 0.798 0.677 0.768 0.727 0.808 0.858 0.831
credit-approval 0.870 0.817 0.846 0.803 0.872 0.901 0.825
echocardiogram 0.846 0.831 0.815 0.8 0.896 0.898 0.942

fertility 0.9 0.86 0.880 0.9 0.91 0.92 0.875
hepatitis 0.818 0.792 0.831 0.701 0.822 0.882 0.856

libras 0.678 0.767 0.633 0.572 0.702 0.846 0.775
Parkinsons 0.876 0.856 0.876 0.845 0.883 0.968 0.877

bridges-MATERIAL 0.849 0.868 0.868 0.830 0.898 0.887 0.928
bridges-REL-L 0.765 0.706 0.667 0.706 0.875 0.875 0.755
bridges-SPAN 0.674 0.717 0.696 0.587 0.695 0.803 0.799

bridges-T-OR-D 0.843 0.882 0.902 0.804 0.943 0.907 0.926
bridges-TYPE 0.635 0.596 0.558 0.538 0.728 0.728 0.738
German-credit 0.75 0.73 0.724 0.696 0.798 0.798 0.770

trains 0.6 0.6 0.4 0.6 0.6 0.8 0.6
wine 0.966 0.955 0.966 0.876 0.908 0.989 0.870
zoo 0.96 0.8 0.92 0.94 0.9 0.96 0.8

Table 5. Time-Comparison between our model and commonly used standard models.

Datasets RF ADABOOST KNN Decision Trees M-NTK B-NTK

breast-cancer 124.19 16.05 7.41 1.63 1.13 1.00
credit-approval 112.83 14.69 9.74 1.00 1.32 16.32
echocardiogram 236.59 28.55 7.58 1.00 10.64 1.72

fertility 323.30 43.64 5.39 1.00 5.42 5.19
hepatitis 479.56 33.72 5.51 1.00 2.19 1.52

libras 279.17 46.18 9.43 7.13 1.00 3.97
Parkinsons 186.28 24.77 4.87 1.00 1.29 1.34

bridges-MATERIAL 302.00 39.42 5.05 1.00 1.38 1.36
bridges-REL-L 235.11 30.93 3.54 1.00 1.21 1.29
bridges-SPAN 221.42 31.12 3.79 1.00 2.19 1.39

bridges-T-OR-D 305.00 39.12 4.53 1.00 1.90 1.25
bridges-TYPE 306.06 38.88 4.70 1.00 3.29 2.02
German-credit 163.34 24.71 13.00 1.98 1.00 12.49

trains 122.63 19.45 17.42 1.53 1.12 1.00
wine 358.86 5.72 93.48 1.00 6.40 4.05
zoo 247.87 32.61 7.16 1.00 2.07 1.40

The acceleration performance and robustness of the multi-kernel-NTK model are
investigated. It is found that compared with the traditional NTK model, the multi-kernel-
NTK model achieves excellent acceleration performance in most datasets, saving up to
nearly 60% of the running time and improving the model accuracy, ranging from 1% to
25% in different datasets.

Multi-kernel-NTK reduces the sensitivity of the deep NTK kernel to parameters and
penalty parameters and improves the robustness of the model. When L is more significant
than four, the NTK model accuracy gradually decreases as the number of network layers
increases. At the same time, multi-kernel-NTK has better resistance to this phenomenon,
and when 4 < L < 13, multi-kernel-NTK performs better in all data. The average accuracy of
multi-kernel-NTK in all datasets is improved by 21.6% compared with NTK. The training
time of the NTK model increases exponentially with the increase in C. Multi-kernel-NTK
model can alleviate this trend well; when 2 < C < 128, the average time consumed by
multi-kernel-NTK in all datasets is reduced by 93.6% compared with NTK. The average
accuracy of multi-kernel-NTK in all datasets is improved by 8.3% compared with NTK
when 0.04 < C < 128.
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7. Conclusions

Our main work is constructing accelerated NTK acceleration models in feature and
sample size reduction, respectively. The experimental results on multi-domain datasets
show that our proposed models achieve satisfactory acceleration results and significantly
improve the model classification accuracy.

As seen in Table 3, the multi-kernel-NTK model achieves accuracy improvement and
operational speedup in all datasets. Still, the Blocking-NTK model loses some accuracy
and increases the computational complexity of the model in a small number of datasets.
This may imply that the acceleration of the NTK model from the original data processing
level is more suitable from the data feature size, and the computational complexity of the
NTK classification model is not a simple linear relationship with the sample size of the
original data.

Compared with other kernel classifiers, NTK undoubtedly has significantly substantial
computational complexity. In addition to processing by datasets, the GRAM matrix of the
NTK model can be optimized directly by decomposition techniques such as Kronecker
product; however, how to effectively process the four-dimensional GRAM matrix of NTK
by using tensor compression (decomposition) methods is a problem worth thinking about,
and at the same time to ensure that the decomposed kernel matrix should satisfy certain
conditions (e.g., the matrix is required to be semi-positive definite).
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16. Özöğür, A.S.; Weber, G.W. On numerical optimization theory of infinite kernel learning. J. Glob. Optim. 2010, 48, 215–239.

[CrossRef]
17. Liu, Y.; Liao, S.; Lin, H.; Yue, Y.; Wang, W. Infinite kernel learning: Generalization bounds and algorithms. In Proceedings of the

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
18. Huang, C.R.; Chen, Y.T.; Chen, W.Y. Gastroesophageal reflux disease diagnosis using hierarchical heterogeneous descriptor fusion

support vector machine. IEEE Trans. Biomed. Eng. 2016, 63, 588–599. [CrossRef] [PubMed]
19. Peng, S.L.; Hu, Q.H.; Chen, Y.L. Improved support vector machine algorithm for heterogeneous data. Pattern Recognit. 2015, 48,

2072–2083. [CrossRef]
20. Shi, Y.; Eberhart, R.C. A modified particle swarms optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation,

Anchorage, AK, USA, 4–9 May 1998; IEEE: Piscataway, NJ, USA, 1998; pp. 69–73.
21. Dey, A.; Sharma, K.D.; Sanyal, T.; Bhattacharjee, P.; Bhattacharjee, P., Sr. Identification of Biomarkers for Arsenicosis Employing

Multiple Kernel Learning Embedded Multi-objective Swarm Intelligence. IEEE Trans. Nanobiosci. 2022; online ahead of print.
22. Chien, C.; Seiler, M.; Eitel, F.; Schmitz-Hübsch, T.; Paul, F.; Ritter, K. Prediction of high and low disease activity in early MS

patients using multiple kernel learning identifies importance of lateral ventricle intensity. Mult. Scler. J. Exp. Transl. Clin. 2022,
8, 20552173221109770. [CrossRef]

23. Jiang, H.; Shen, D.; Ching, W.K.; Qiu, Y. A high-order norm-product regularized multiple kernel learning framework for kernel
optimization. Inf. Sci. 2022, 606, 72–91. [CrossRef]

24. Price, S.R.; Anderson, D.T.; Havens, T.C.; Price, S.R. Kernel Matrix-Based Heuristic Multiple Kernel Learning. Mathematics 2022,
10, 2026. [CrossRef]

25. Alavi, F.; Hashemi, S. A bi-level formulation for multiple kernel learning via self-paced training. Pattern Recognit. 2022, 129, 108770.
[CrossRef]

26. Yang, M.; Wang, Z.; Li, Y.; Zhou, Y.; Li, D.; Du, W. Gravitation balanced multiple kernel learning for imbalanced classification.
Neural Comput. Appl. 2022, 34, 13807–13823. [CrossRef]

27. Archibald, R.; Bao, F. Kernel learning backward SDE filter for data assimilation. J. Comput. Phys. 2022, 455, 111009. [CrossRef]
28. Tian, Y.; Fu, S.; Tang, J. Incomplete-view oriented kernel learning method with generalization error bound. Inf. Sci. 2021, 581,

951–977. [CrossRef]
29. Saeedi, S.; Panahi, A.; Arodz, T. Quantum semi-supervised kernel learning. Quantum Mach. Intell. 2021, 3, 24. [CrossRef]
30. Guo, W.; Wang, Z.; Ma, M.; Chen, L.; Yang, H.; Li, D.; Du, W. Semi-supervised multiple empirical kernel learning with pseudo

empirical loss and similarity regularization. Int. J. Intell. Syst. 2021, 37, 1674–1696. [CrossRef]
31. Hengyue, S.; Dong, W.; Peng, W.; Yi, C.; Yuehui, C. Deep Multiple Kernel Learning for Prediction of MicroRNA Precursors. Sci.

Program. 2021, 2021, 1–9.
32. Shifei, D.; Yuting, S.; Yuexuan, A.; Weikuan, J. Multiple birth support vector machine based on dynamic quantum particle swarm

optimization algorithm. Neurocomputing 2022, 480, 146–156.
33. Han, B.; Ji, K.; Singh, B.P.M.; Qiu, J.; Zhang, P. An Optimization Method for Mix Proportion of Wet-Mix Shotcrete: Combining

Artificial Neural Network with Particle Swarm Optimization. Appl. Sci. 2022, 12, 1698. [CrossRef]
34. Guo, Q.; Chen, Z.; Yan, Y.; Xiong, W.; Jiang, D.; Shi, Y. Model Identification and Human-robot Coupling Control of Lower Limb

Exoskeleton with Biogeography-based Learning Particle Swarm Optimization. Int. J. Control. Autom. Syst. 2022, 20, 589–600.
[CrossRef]

35. Polato, M.; Lauriola, I.; Aiolli, F. A Novel Boolean Kernels Family for Categorical Data. Entropy 2018, 20, 444. [CrossRef]
36. Mirko, P.; Fabio, A. Boolean kernels for rule based interpretation of support vector machines. Neurocomputing 2019, 342, 113–124.
37. Alfaro, C.; Gomez, J.; Moguerza, J.M.; Castillo, J.; Martinez, J.I. Toward Accelerated Training of Parallel Support Vector Machines

Based on Voronoi Diagrams. Entropy 2021, 23, 1605. [CrossRef]
38. Yunsheng, S.; Jiye, L.; Feng, W. An accelerator for support vector machines based on the local geometrical information and data

partition. Int. J. Mach. Learn. Cybern. 2019, 10, 2389–2400.

http://doi.org/10.1088/0022-3727/10/15/007
http://doi.org/10.1093/bioinformatics/btl475
http://doi.org/10.1109/TII.2019.2941868
http://doi.org/10.1007/s10444-004-7622-3
http://doi.org/10.1109/TETCI.2017.2769111
http://doi.org/10.1080/10556780903483349
http://doi.org/10.1007/s10898-009-9488-x
http://doi.org/10.1109/TBME.2015.2466460
http://www.ncbi.nlm.nih.gov/pubmed/26276981
http://doi.org/10.1016/j.patcog.2014.12.015
http://doi.org/10.1177/20552173221109770
http://doi.org/10.1016/j.ins.2022.05.044
http://doi.org/10.3390/math10122026
http://doi.org/10.1016/j.patcog.2022.108770
http://doi.org/10.1007/s00521-022-07187-4
http://doi.org/10.1016/j.jcp.2022.111009
http://doi.org/10.1016/j.ins.2021.10.011
http://doi.org/10.1007/s42484-021-00053-x
http://doi.org/10.1002/int.22690
http://doi.org/10.3390/app12031698
http://doi.org/10.1007/s12555-020-0632-1
http://doi.org/10.3390/e20060444
http://doi.org/10.3390/e23121605


Appl. Sci. 2022, 12, 10876 17 of 17

39. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.

40. Li, J.; Zhang, J.Q.; Jiang, C.J.; Zhou, M. Composite Particle Swarm Optimizer with Historical Memory for Function Optimization.
IEEE Trans. Cybern. 2017, 45, 2350–2363. [CrossRef] [PubMed]

41. Jacot, A.; Gabriel, F.; Clément, H. Neural Tangent Kernel: Convergence and Generalization in Neural Networks. In Proceedings
of the Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 8571–8580.

42. Neal, R.M. Priors for infinite networks. In Bayesian Learning for Neural Networks; Springer: New York, NY, USA, 1996; pp. 29–53.
43. Matthews, A.G.D.G.; Rowland, M.; Hron, J.; Turner, R.E.; Ghahramani, Z. Gaussian Process Behaviour in Wide Deep Neural

Networks. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
44. Arora, S.; Du, S.S.; Li, Z.; Salakhutdinov, R.; Wang, R.; Yu, D. Harnessing the Power of Infinitely Wide Deep Nets on Small-data

Tasks. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
45. Du, S.S.; Hou, K.; Salakhutdinov, R.R.; Poczos, B.; Wang, R.; Xu, K. Graph Neural Tangent Kernel: Fusing Graph Neural Networks

with Graph Kernels. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.
46. Novak, R.; Xiao, L.; Hron, J.; Lee, J.; Alemi, A.A.; Sohl-Dickstein, J.; Schoenholz, S.S. Neural Tangents: Fast and Easy Infinite

Neural Networks in Python. In Proceedings of the 9th International Conference on Learning Representations, Virtual Event,
Austria, 3–7 May 2021.

http://doi.org/10.1109/TCYB.2015.2424836
http://www.ncbi.nlm.nih.gov/pubmed/26390177

	Introduction 
	Our Contributions 
	Article Structure 

	Related Works 
	Background Techniques 
	Particle Swarm Algorithms 
	Multi-Kernel Learning 
	Kernel Functions 
	Boolean Kernel 
	Neural Tangent Kernel 


	Experimental Setup 
	Data Setup and Parameter Selection 
	Multi-Kernel-NTK and Other Multi-Kernel Models 
	Multi-Kernel-NTK Model Robustness Test 
	Multi-Kernel-NTK Model Robustness Test 

	Analysis of Experimental Results 
	Comparison of Multi-Model Results 
	Multi-Kernel-NTK Model Acceleration 
	Multi-Kernel-NTK Robustness Testing 
	Network Parameters and Multi-Kernel-NTK 
	Network Parameters and Multi-Kernel-NTK 


	Discussion 
	Conclusions 
	References

