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Featured Application: Machine Learning-based diagnostic tool to predict SARS-CoV-2 positivity
and the need of hospitalized patients for oxygen therapy when managing constrained resources
in emergency departments in contingency periods.

Abstract: The COVID-19 pandemic highlighted an urgent need for reliable diagnostic tools to min-
imize viral spreading. It is mandatory to avoid cross-contamination between patients and detect
COVID-19 positive individuals to cluster people by prognosis and manage the emergency depart-
ment’s resources. Fondazione IRCCS Policlinico San Matteo Hospital’s Emergency Department (ED)
of Pavia let us evaluate the exploitation of machine learning algorithms on a clinical dataset gathered
from laboratory-confirmed rRT-PCR test patients, collected from 1 March to 30 June 2020. Physicians
examined routine blood tests, clinical history, symptoms, arterial blood gas (ABG) analysis, and lung
ultrasound quantitative examination. We developed two diagnostic tools for COVID-19 detection and
oxygen therapy prediction, namely, the need for ventilation support due to lung involvement. We
obtained promising classification results with F1 score levels meeting 92%, and we also engineered
a user-friendly interface for healthcare providers during daily screening operations. This research
proved machine learning models as a potential screening methodology during contingency times.

Keywords: blood tests; diagnosis; dyspnoea; lung ultrasound; machine learning; SARS-CoV-2

1. Introduction

On 11 March 2020, the World Health Organization (WHO) declared the SARS-CoV-2
(i.e., COVID-19) pandemic [1]. The virus causes bilateral multi-focal interstitial pneumonia,
which can quickly evolve into acute respiratory distress syndrome (ARDS). Infected subjects
present a heterogeneous and changing clinical picture, ranging from asymptomatic cases to
either focal or multi-focal lung patterns, commonly referred to as the white lung pattern [2].
Symptoms include fever, dry cough, fatigue, and shortness of breath [3]. Epidemiological
data report droplets spread with face-to-face exposure as the most probable cause of virus
transmission. It is mandatory to live upon social distancing rules, rapidly identify and
isolate infected subjects, and track the most recently infected people to prevent the virus
from scattering [4]. Therefore, it is fundamental to promptly diagnose SARS-CoV-2 infection
to appropriately treat the patients according to the highest healthcare standards and quickly
operate contact tracing. The gold standards to diagnose the SARS-CoV-2 condition are the
amplification of viral RNA by real-time reverse transcription-polymerase chain reaction
(rRT-PCR), IgM–IgG coupled immunoglobulin and rapid antigenic analyses. However,
all suffer from several drawbacks, thus having the need for expensive equipment, trained
personnel, long processing times, and both preanalytical and analytical vulnerabilities,
namely poor sensitivity and overall detection accuracy [5,6].
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The need for quick and reliable tools to diagnose and stratify patients’ prognoses
to optimize resource allocation is of the utmost importance. Splitting the emergency
department (ED) into clean and dirty areas during a pandemic is fundamental to preventing
patient-to-patient spreading.

During the last decade, the number of research articles on artificial intelligence (AI) as
a resource for all kinds of medical specialties highly increased, proving machine learning
(ML) algorithms to be successful [7]. Notably, several studies report medical instruments
supported by AI concerning applications ranging from stroke management to cancer detec-
tion [8–13]. AI is reshaping how biomarkers and biosignals are defined and managed [8,9].
AI-enabled support systems might aid clinicians in decision making, especially during
ED triage. Indeed, most studies aim to develop models to schedule patients according
to their triage acuity level, assessing the severity of their conditions and deciding upon
hospital admission [14]. SARS-CoV-2 studies comprise algorithms exploiting computed
tomography (CT), lung ultrasound (LUS), and X-ray imaging techniques to diagnose and
examine COVID-19 evolving patterns [2,15–18]. On the other hand, researchers exploited
ML- and AI-based techniques to tackle contact tracing, the prediction and forecasting of
epidemiological measurements, and SARS-CoV-2 drug development [19–21].

During the first heavy pandemic waves, several governments limited swab testing
due to the unfeasible number of them to be carried out. Therefore, from that period on-
ward, research has focused on machine learning algorithms to quickly assess patients for
COVID-19 positivity and mortality [20–25]. The studies confirmed the feasibility of the
statistical learning-based approach. Nonetheless, only 8% of the studies observed by litera-
ture reviews focused on blood test analyses [21]. Researchers produced statistical models
having different goals ranging from COVID-19 to mortality prediction, with classification
results having sensitivity levels of approximately 80–89% [21,26].

Fondazione IRCCS Policlinico San Matteo Hospital’s Emergency Department (ED) of
Pavia let us evaluate the exploitation of machine learning algorithms on a clinical dataset
gathered from laboratory-confirmed rRT-PCR test patients, collected from 1 March to
30 June 2020. The main goal was to quickly stratify patients and employ cross-contamination
procedures, avoiding extensive swab testing and leveraging physicians’ workload. We
gathered patients’ data based on two primary principles. First, we engaged features readily
available in every ED triage, such as anamnesis, symptoms, and vital signs. Moreover,
we collected data concerning patients’ respiratory failures, routine blood tests, arterial
blood gas (ABG) analysis, and lung ultrasound quantitative evaluations [2,27]. We adopted
support vector machine (SVMs) and random forest (RF) [28] algorithms to assess patients’
COVID-19 positivity. Furthermore, we predicted whether a patient would need oxygen
therapy, such as continuous positive airway pressure (CPAP) or invasive ventilation. In-
deed, we must organize and wisely engage limited resources during contingency times.
The diagnostic tools allowed to meet promising results with F1 score levels at 92% and
sensitivity—i.e., recall—ones at 96%.

We believe the novelty of our designed methodology, summarized in Figure 1, stands
in the following lines:

• A careful clinical features collection: we based our classifiers on the features that
physicians employed during triaging and daily clinical operations;

• Extensive and robust data analysis before ML clustering;
• Exploitation blood tests to assess patients, rather than imaging data;
• Assessment of patients’ need for oxygen therapy to carefully engage limited resources

in contingency scenarios [21];
• A quantitative lung involvement examination to produce robust results: studies report

lung ultrasound examination as a fast, cheap, and agile tool to assess patients’ lung
involvement [2].
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Figure 1. Summary of the machine learning approach: the data analysis workflow.

2. Materials and Methods

This section provides a detailed description of the data collection, cleaning processes
and exploration. Furthermore, we describe the selection and the design of the machine
learning methodologies to diagnose SARS-CoV-2 and predict the need for assisted ventilation.

2.1. Data Collection

Fondazione IRCCS Policlinico San Matteo’s Emergency Department of Pavia estab-
lished a strict protocol during triage operations to diagnose patients who might have poten-
tially been infected by SARS-CoV-2. The procedure was mandatory to stratify patients and
avoid cross-contamination during hospital operations. To apply ML methodologies and
aid physicians during the pandemic, we mainly looked at clinical characteristics available
in any ED triage, such as history taking, symptoms, and vital signs. Furthermore, we
gathered information that is not only associated with patients’ respiratory malfunctions,
but also satisfies the constraint of being promptly available and cheap, such as routine
blood tests, arterial blood gas examination (ABG), and lung ultrasound quantitative evalu-
ation [2,27,29]. We collected data from patients complaining about potential SARS-CoV-2
symptoms, whom the physicians swabbed to diagnose the disease. The collection process
lasted from March 1 to 30 June 2020. In the end, we acquired the list of features shown in
Figure 2 for 1355 patients, where we report the correlation coefficient between each feature
and the outcome to be predicted, namely both COVID-19 positivity assessment and oxygen
therapy potential need.

Several studies reported the presence of typical SARS-CoV-2 pneumonia patterns dur-
ing LUS examination. We collected quantitative information regarding lung injuries due to
their usefulness in the diagnosis and the prognosis of patients affected by
COVID-19 [2,27,29–33]. LUS presents advantages compared to other tools: a fast, non-
ionizing, radiation-free, cheap, and bedside technique. Not only can we perform an
ultrasound for unstable patients, but also it is easily repeatable. Therefore, we extensively
exploited a strict acquisition protocol [34] and assigned a standardized LUS Score to get
a quantitative analysis of patients’ lung health conditions. Hence, we studied each lung
in six different areas with a high-frequency linear probe (5 MHz) and scored each of the
lung portions [34]. Furthermore, we defined the modified LUS score as the sum of the
scores assigned to each lung’s region, thus ranging from 0, namely when the lung is well
aerated, to 36, describing a lung in which all the regions present a tissue-like consolidated
pattern. Hence, as reported in Figure 2, we included the 12 scores associated with each
lung’s region, ranging from 0 to 3, and the overall modified LUS score. Figure 2 reports
that quantitative lung evaluation positively correlates with the estimation targets.
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Figure 2. Examined features and their correlation with targets.

We performed data cleaning and pre-processing operations, comprising categorical
features transformation into dummy variables, namely the conversion of textual features
into discrete and numerical values and the handling of missing values. Values could have
been missing due to a variety of reasons. The first reason is machinery malfunctioning: the
device performing the test needed might not have written certain information well. Sec-
ondly, the physicians’ workload and pace. If a subject was visibly affected by SARS-CoV-2,
and there was not enough time to assist other patients according to the highest healthcare
standards and complete the data acquisition protocol, the personnel interrupted the process
to respect the hard time constraints demanded by the pandemic. Unfortunately, there is no
quick way to fix missing values.

Hence, we adjusted the dataset to 443 patients by excluding all the patients whose
values were missing.

In conclusion, we split 90% of the data into the training set and the remaining 10% into
the test set. Experts usually suggest these percentages to be 70% and 30% [35]. However,
because our dataset size was insufficient to keep relevant information in the training set
at the end of the data-cleaning process, we decided to opt for this kind of subdivision.
Moreover, to meet reliable results free from overfitting problems, we performed a 10-fold
cross validation. At each learning step, we randomly split the training set into 10 subsets
such that the 10th one was used to validate our data, whilst the remaining four optimized
the models’ weights. K-fold cross validation is a common practice used by data scientists
facing dataset size problems [35].

2.2. Data Exploration

We conducted the study in the ED outline. It is usually highly recommended to exhibit
the patients’ statistical characteristics of the dataset to explain what features a study stands
upon and to compare the dataset to others [24,25]. Not only did we consider in Table 1 the
median value of the features in Figure 2, but we also divided the statistics for the people who
resulted as either positive or negative from the RT-PCR swab. Furthermore, we also dealt
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with dyspneic patients. Namely, we predicted if the considered subjects would need aided
ventilation, either with CPAP or something more invasive. However, since the dyspnoea
we look at comes from SARS-CoV-2, there is no need to stratify the displayed statistics
further. In Table 1, we reported some statistical characteristics of one of the datasets used
by our colleagues to highlight the similarities, except for the percentage of positive patients,
61.2% in our case vs. 48.4% in that of Cabitza et al. [36]. Concerning oxygen therapy,
only 20.8% of subjects needed CPAP or invasive ventilation, whereas 79.2% of patients
required either an oxygen mask, nasal cannula, or no oxygen therapy. We evaluated the
correlation coefficients between each input feature and either target to examine the elements
and the machine learning models. The data exploration procedure, reported in Figure 3,
helped us to extract the clinical picture of people affected by COVID-19. Indeed, we can
cluster SARS-CoV-2 positive subjects by age and comorbidities, particularly hypertension,
diabetes mellitus and cardiovascular diseases. They clinically present themselves with
fever, dry cough, and dyspnea, along with an increase in respiratory rate and a reduction in
hemoglobin and oxygen saturation. Concerning the blood analyses, we report COVID-19
positivity related to lymphopenias, an increase in white blood cells, neutrophils, lactate
dehydrogenase, cardiac troponin, and C-reactive protein. Furthermore, ABG test results
present alterations, such as an elevated oxygen alveolar–arterial gradient (A-a) and reduced
pO2, pCO2 and P/F ratio [27].

Table 1. Dataset statistics. Bp stands for blood pressure, pp means partial pressure, and A-a-g is the
arterial–alveolar gradient.

Negative
(172 Patients)

Positive
(271 Patients)

Positive and Negative
(443 Patients)

[36]. 838 Negative.
786 Positive

25–75 Percentile
(Median)

25–75 Percentile
(Median)

25–75 Percentile
(Median)

25–75 Percentile
(Median)

Age (years) 37.0–67.5 (54) 51.0–75.0 (63) 47.0–73.0 (60) 48.0–77.0 (62)
Systolic bp (mmHg) 125.0–150.0 (135) 115.5–144.0 (130) 120.0–145.0 (130)
Diastolic bp (mmHg) 70.0–90.0 (80) 70.0–85.8 (80) 70.0–90.0 (80)

Mean bp (mmHg) 91.6–106.7 (100) 88.3–104.3 (95) 90.0–105.0 (96.7)
Respiratory rate 16.0–22.0 (20) 16.0–26.0 (20) 16.0–24.0 (20)

Oxygen saturation (%) 94.0–98.0 (97) 90.0–97.0 (94) 91.0–98.0 (95)
Body temperature (◦C) 36.2–37.6 (36.7) 36.5–38.0 (37.1) 36.3–37.9 (37)

Hemoglobin (g/dL) 12.2–14.9 (13.5) 12.8–14.9 (13.9) 12.6–14.9 (13.7) 11.8–14.6 (13.4)
White blood cell (109/L) 6.3–11.5 (8.2) 4.8–8.1 (6.3) 5.2–9.2 (6.9) 5.7–10.7 (7.8)

Neutrophils (109/L) 3.7–9.2 (5.6) 3.2–6.6 (4.6) 3.4–7.1 (4.9) 3.7–8.1 (5.3)
Lymphocytes (109/L) 0.9–2.2 (1.6) 0.6–1.1 (0.8) 0.7–1.6 (1) 0.8–1.7 (1.2)

Platelets (109/L) 179.5–272.5 (224.5) 146.0–239.0 (184) 157.0–256.8 (204) 171.0–282.0 (222.3)
C-reactive protein (mg/dL) 0.1–10.5 (1.3) 2.6–15.2 (7.9) 0.9–14.4 (5.3) 0.6–10.2 (3.9)

Lactate dehydrogenase (U/L) 182.0–290.0 (222) 243.5–428.0 (326) 211.3–399.8 (286) 218.4–388.8 (278)
Creatine phosphokinase (U/L) 51.0–143.0 (86) 68.0–293.5 (113) 62.0–217.8 (99) 53.0–162.5 (86)

PH 7.4–7.5 (7.4) 7.4–7.5 (7.5) 7.4–7.5 (7.4)
O2 pp (mmHg) 69.5–102.0 (84.8) 58.7–82.2 (68.7) 62.6–92.8 (74.1)

CO2 pp (mmHg) 31.4–38.6 (35.7) 29.6–35.8 (33) 30.3–37.0 (33.9)
PaO2/FiO2 317.6–462.9 (392.2) 226.4–352.7 (299.5) 256.1–405.8 (323.8)

A-a-g of O2 (mmHg) 9.6–42.6 (22.5) 33.6–93.1 (47.3) 20.8–60.9 (40.4)
LUS Score 0.0–7.5 (2) 6.0–16.0 (11) 2.0–13.0 (7)

We further validated such clustering by examining the scatter plot matrix of the
features, studied both by coronavirus positivity and patients who needed aiding ventilation.
For simplicity, we only expose the selected patterns in Figure 3. Overall, we can see that
none of the scatter plots show a clear separation between patients affected by COVID-19
and those with other diseases, but only a smooth transition. Nonetheless, there are some
recognizable patterns. COVID-19 patients with severe conditions are older than the ones
presenting healthier patterns, have higher LUS scores and have lower P/F ratios. We
observed the same but a more pronounced pattern comparing patients who needed CPAP
or invasive ventilation with those who did not. To decide whether we should consider
all the features to cluster the patients for both classification scenarios, we performed
principal component analysis (PCA) [37]. We computed the number of input values needed
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to maintain the 95% statistical variance in our dataset. We report that to keep 95% of
information while reducing the number of input features, we should keep 48 principal
components instead of 58 (Figure 4). The reduction was not significant enough to justify
a further level of complexity. Therefore, the models described in the next section do not
perform any feature selection process prior to prediction. Additionally, physicians asked
for a fast answer. Hence, we kept all the input features without a further pre-processing
step beside the classical ones, which comprise feature rescaling and cleaning.

Figure 3. Scatter plot matrices for COVID-19 and oxygen therapy prediction. On the left, orange
points indicate positive patients, whereas blue points indicate negative ones. On the right, orange
points indicate patients who needed CPAP or invasive ventilation, whereas blue points indicate
patients who needed either an oxygen mask, nasal cannula, or no oxygen therapy.

Figure 4. The number of components needed to explain 95% of statistical variance.
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2.3. Machine Learning Models

We chose random forest (RF) and support vector machines (SVMs) [38] to advance
the state-of-the-art results [23–25]. The exploration process we reported in the previous
sections encouraged this choice.

Random forest is an ensemble learning methodology to classify by designing a cluster
of decision trees throughout the training. The hyperparameters describing an RF algorithm
are the number of estimators composing the forest, the tree’s maximum depth, the highest
number of levels we let each tree reach, and the estimator’s minimum number of data
points placed in a node before splitting it. Moreover, we usually tune the maximum number
of features to be considered for splitting a node and the minimum number of data points
allowed in a leaf. Finally, we also choose whether to bootstrap our data; namely, we can
choose to either resample data points or not. Data scientists usually recommend exploiting
bootstrap when the dataset size is small. In Table 2, we present such parameters as we
find them in the Python Scikit-Learn library [39], respectively: n_estimators, max-depth,
min_samples_split, max_features, min_samples_leaf and bootstrap.

Table 2. RF and SVM hyperparameters for each classification task.

Model Hyperparameter COVID-19
Prediction Dyspnea Prediction

RF

n_estimators 550 500
max_depth 2 2

min_samples_split 1 1
max_features 50 None

min_samples_leaf Auto Auto
bootstrap True True

SVM
C 1 1
γ 0.01 0.01

kernel RBF Sigmoid

SVM is also a supervised learning methodology, representing one of the most robust
prediction algorithms. An SVM acts by representing the data points in a p-dimensional
feature space and dividing them such that there exists a hyperplane clustering the points.
The gap between the hyperplane and the data points belonging to each class must be the
widest. There are fewer hyperparameters compared to the RF algorithm. First, we need
to determine the kernel function, the nonlinear function enabling us to fit the maximum-
margin hyperplane, mapping the data points in the p-dimensional space. Data points
cannot be linearly separable. Therefore, we transform them through a kernel function
acting as a degree of closeness measure, mapping the data into another feature space. One
of the most used functions is the radial basis function (RBF), featuring the hyperparameter
γ. The hyperparameter γ controls the distance of influence of each training point. The
lower its value, the higher the similarity radius, resulting in more points grouped. Similarly,
it exists also for other kernels. Moreover, we choose the C hyperparameter, a penalty we
assign for each misclassified data point. The smaller C is, the lower the error penalty.
Typically, we look for γ ⊂ [1 × 10−4, 10] and for C ⊂ [1 × 10−1, 100].

Both models exploit hyperparameters to classify the data—Table 2. We adopt hyper-
parameter tuning procedures to boost our classification performance, evaluated in terms
of ROC-AUC, accuracy, precision, recall and F1-score. The first one is called grid search
cross validation. We list the values of the hyperparameters which we would like to test our
models with, and we evaluate every combination. At the end of the process, we choose the
values attaining the best classification performance on the K-fold cross-validation. The sec-
ond one is called random search cross-validation. The process is like grid search. However,
we choose the hyperparameters utilizing a heuristic search over random values. We present
the best-identified hyperparameters chosen after either of these methodologies in Table 2.
The hyperparameter tuning processes rely upon pseudo-random number generation, such
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as selecting the data points belonging to the training and test sets or the K-fold cross
validation. We set the random seed on 19 for all the experiments to make the experiments
reproducible and to look at the improvements derived from tuning the hyperparameters.
The test systems used to conduct our experiments, both for the training phase and the
hyperparameters tuning, are equipped with an Intel-i9-9900X CPU, working at 3.5 GHz,
128 GB of RAM and two 2944-cores NVIDIA RTX 2080 GPU. We wrote the code to attain
our classification goals using Python and the latest version of the Scikit-Learn library.

3. Results and Discussion

Several studies and reviews highlighted the importance and the role of AI-based
medical instruments to aid physicians and engage limited resources [12,21,22]. Researchers
are producing novel methodologies to define biomarkers and process signals, reshaping
how we address clinical tools [9,10,20–22]. Here, we propose two diagnostic tools for
COVID-19 detection and oxygen therapy prediction, namely, the need for ventilation
support due to lung involvement. The models chosen for the two classification tasks steadily
seized convergence throughout optimization concerning the hyperparameters displayed in
Table 2. We assessed the gathered results by evaluating accuracy, precision, sensitivity—i.e.,
recall—and the F1-score [28]. The first metric informs the reader about how good we are
at diagnosing the absence of SARS-CoV-2, whilst the latter is the degree of accuracy we
have over an unbalanced dataset, measured employing precision and recall. Indeed, the
consequences of incorrectly diagnosing a patient as healthy are the inappropriate lack of
treatments and cross-contamination among subjects presenting other pathologies.

Considering both clustering scenarios, we found area under the curve levels
(Figures 5 and 6) exceeding 93%. At the same time, we measured 96% recall when consider-
ing COVID-19 detection. We found an overall F1-score of 92% for the first task and 83% for
the second one, and we also measured precision continuously above 80% (Table 3). These
results are particularly worthy of notice when compared to the rRT-PCR test. Indeed, the
nasopharyngeal swab attains 73.3% sensitivity (95% CI 68.1–78.0%).

Furthermore, currently, no metric exists to determine if the ED will need other re-
sources [40]. Therefore, we provided a valuable tool to wisely manage the hospital’s limited
resources by predicting whether the considered patient will need CPAP or invasive ven-
tilation. Physicians usually make decisions by looking at the patients’ continuous vital
signs, whilst we predict future needs concerning a particular time, namely when the patient
arrives at the ED. This process implies that the clinical picture we consider could change
abruptly at any moment. Nonetheless, we measured an 83% F1-score and ROC-AUC values
above 90%, reported in Figure 5.

Figure 5. ROC curve of the SVM model for oxygen therapy classification (on the left) and the ROC
curve of the RF model for oxygen therapy classification (on the right).
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Figure 6. ROC curve of the SVM model for COVID-19 classification (on the left) and ROC curve of
the RF model for COVID-19 classification (on the right).

Table 3. Test set classification results.

Classification Task Model AUC Accuracy Precision Recall F1 Score

COVID-19
RF 93.0% 91.0% 89.0% 96.0% 92.0%

SVM 95.0% 91.0% 89.0% 96.0% 92.0%

Oxygen Therapy RF 96.0% 91.0% 83.0% 83.0% 83.0%
SVM 93.0% 87.0% 80.0% 67.0% 73.0%

Comparing our classification performance with our colleagues, which is reported in
Table 4 [23,24,26,41], we not only managed to improve their results while considering a
more significant number of features, but also handled a smaller and particularly unbalanced
dataset. Indeed, concerning COVID-19 detection, we reached 96% of recall, whilst others
could exceed 90% only using a three-way model [36]. Namely, a model abstains from
prediction when the confidence score is below 75%. Other researchers reached 95.9%
sensitivity with 41.7% specificity [41]. Their model represents a valuable screening tool to
rule out COVID-19 infection. However, such a low specificity can be dangerous in facing
an infectious disease. Indeed, it is more important to identify positive patients and isolate
them than to rule out negative ones.

Table 4. State-of-the-art classification results from [23,26,36,41].

Models Features Patients AUC. Accuracy Specificity Recall F1 Score

Cabitza et al.
Knn, Naïve Bayes, RF,

SVM,
Logistic Regression

72 1624 76.0% 78.0% 82.0% 74.0% -

Goodman-Meza
et al.

Multilayer Perceptron,
Naïve Bayes, RF, SVM,

Logistic Regression,
XGBoost, ADABoost

12 1455 91.0% - 64.0% 93.0% -

Plante et al. XGBoost 15 192,779 91.0% - 42.0% 96.0% -

On the one hand, we collected a dataset whose features represent the daily clinical
scenario that the physicians are given. Namely, we inserted the quantitative LUS examina-
tion together with blood and ABG tests. We believe that this process allowed the robust
classification performance obtained. On the other hand, our dataset is smaller than that
of our colleagues [23,26,36,41], although we managed to handle both its size and class
imbalances, and the LUS examination requires trained personnel to be performed.
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Finally, we also designed a graphical user interface (GUI) shown in Figure 7, targeting
assistance to the medical personnel during contingency times at the emergency department.
The GUI presents five sections for each data group: anamnesis, vital signs, blood gas
analyses (BGA), blood tests and LUS score. Completing them with patient’s data, we obtain
the probability of being a COVID-19-positive patient according to our classification model.

Figure 7. Graphical user interface (GUI).

4. Conclusions

Concerning the data collected from the routine hospital operations between 1 March
and 30 June 2020, our research proved the feasibility of developing reliable algorithms to
diagnose SARS-CoV-2 with high classification performance. Furthermore, in addition to
what our colleagues had already studied, we demonstrated how to estimate dangerous
dyspneic scenarios. Namely, whether the patients need CPAP or invasive aided ventilation,
this prediction is noteworthy to manage resources in contingency times. On the grounds of a
close and stable collaboration with IRCCS Policlinico San Matteo’s Emergency Department
of Pavia, we based the study on highly reliable clinical data to develop two artificially
intelligent systems, one of which is equipped with a GUI and was tested by the medical
personnel as a supporting decision-making device in a real-world clinical scenario.
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Abbreviations

Acronym Description
A-a-g/A-a Arterial–Alveolar Gradient
ABG Arterial Blood Gas
AI Artificial Intelligence
ARDS Acute Respiratory Distress Syndrome
AUC Area Under the Curve
BGA Blood Gas Analyses
Bp Blood Pressure
CPAP Continuous Positive Airway Pressure
CT Computed Tomography
ED Emergency Department
GUI Graphical User Interface
LUS Lung Ultrasound
PCA Principal Component Analysis
Pp Partial Pressure
RBF Radial Basis Function
RF Random Forest
ROC Receiver Operating Characteristic
rRT-PCR (real-time) Reverse Transcription-Polymerase Chain Reaction (rRT-PCR)
SVM Support Vector Machine
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