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Abstract: Currently, one of the topical areas of application of machine learning methods in the
construction industry is the prediction of the mechanical properties of various building materials.
In the future, algorithms with elements of artificial intelligence form the basis of systems for pre-
dicting the operational properties of products, structures, buildings and facilities, depending on
the characteristics of the initial components and process parameters. Concrete production can be
improved using artificial intelligence methods, in particular, the development, training and applica-
tion of special algorithms to determine the characteristics of the resulting concrete. The aim of the
study was to develop and compare three machine learning algorithms based on CatBoost gradient
boosting, k-nearest neighbors and support vector regression to predict the compressive strength
of concrete using our accumulated empirical database, and ultimately to improve the production
processes in construction industry. It has been established that artificial intelligence methods can be
applied to determine the compressive strength of self-compacting concrete. Of the three machine
learning algorithms, the smallest errors and the highest coefficient of determination were observed
in the KNN algorithm: MAE was 1.97; MSE, 6.85; RMSE, 2.62; MAPE, 6.15; and the coefficient of
determination R?, 0.99. The developed models showed an average absolute percentage error in the
range 6.15—7.89% and can be successfully implemented in the production process and quality control
of building materials, since they do not require serious computing resources.

Keywords: artificial intelligence; machine learning; regression; CatBoost; k-nearest neighbors;
support vector regression; self-compacting concrete

1. Introduction

The construction industry is currently one of the main engines of the economy. The
requirements and levels of responsibility for buildings and structures are increasing; new
cities and districts are growing, and densely populated regions continue to develop their
urbanized territories. In this regard, the processes of production of building materials,
products and structures should be singled out separately. The fact is that the production of
building materials is at the junction between the manufacturing and construction industries.
In particular, a concept such as concrete: concrete mixture refers simultaneously to the
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concept of the construction industry, that is, to the factory sector, and to the concept of
construction technology, for example, in monolithic concreting. Owing to the fact that
concrete is the main building material throughout the world, but at the same time is one
of the most complex artificial composites created by man, the prediction of its properties
is not always fully possible. There are a huge number of factors and criteria that affect
the final quality of concrete, and ultimately, the safety of products, structures, buildings
and structures created from it. Thus, one of the main tasks of process engineers and
scientists in the field of materials science is the search for the most effective prescription
and technological methods aimed at achieving the goals of controlling the structure and
regulating the properties of concrete and products based on them. In this regard, it is
obvious that the problem of modern production and construction requires a high degree
of manual labor and the influence of a strong human factor. Often, the calculations of
technologists, errors in the recipe and probable violations of technology lead to disasters in
construction, accidents during the construction of buildings and structures, and premature
collapse of load-bearing structures. In addition, enclosing structures made of various types
of concrete also suffer significantly. Thus, the problem expressed in the influence of the
human factor is relevant [1-7].

Currently, the construction industry is on the verge of digitalization, which is destroy-
ing traditional ideas about the construction process, and also opens up many opportunities.
The construction industry lags behind other sectors in terms of the implementation of
modern information technologies due to its size and heterogeneity, and it will take many
more years for it to reach the level of automation that has already been achieved today,
for example, mechanical engineering. However, the movement of the industry toward
the introduction of modern information technologies is inevitable. Companies that do not
think about using big data, data analysis and the use of artificial intelligence methods in
their work after the crisis are at risk of leaving the market during the next crisis. Prospects
for improving the quality of manufactured products, services provided, and the formation
of a positive image of modern companies lie in the use of artificial intelligence methods for
digitalization, systematization of accumulated and incoming information, and forecasting
cost, time and technological parameters in construction. Artificial intelligence solutions,
which are already successfully used in other industries, are gradually being introduced
into the construction process at all stages, including quality control in the production of
building materials [8-14].

Table 1 provides an overview of the application of different machine learning methods
to predict various characteristics of concrete and concrete products and structures.

Table 1. Overview of the application of various machine learning methods for predicting the charac-
teristics of concrete and products and structures from it.

Ref. Number Object of Study Pred1cta}) 1? Prediction Method
Characteristics
Compressive strength, .
[15] Geopolymer concrete based on fly ash flexural tensile strength Orthogonal experimental plan
[16] Heavy concrete Search for cracks on the Convolutional neural network
surface of concrete

. . Artificial neural network,

[17] Beams made of ultra-high-quality Shear strength support vector regression,

fiber-reinforced concrete . .
extreme gradient boosting

(18]

Water absorption, water

permeability, density Artificial neural network

Geopolymer concrete




Appl. Sci. 2022, 12, 10864 30f19
Table 1. Cont.
Ref. Number Object of Study Pred1cta}) 1? Prediction Method
Characteristics
Concrete with the addition of Compressive strength, tensile o ragﬁiexzﬁiig{ neural
[19] metakaolin as a partial strength, flexural pProg &
¢ network, M5P model tree
replacement for cement tensile strength .
algorithm, random forest
[20] Heavy concrete Compressive strength M5P model tree algorithm
[21,22] Heavy concrete with Elastic modulus, Model tree algorithm M5,
! secondary aggregate compressive strength artificial neural network
Concrete containing rice husk ash and
[23] reclaimed asphalt pavement as a partial Compressive strength Artificial neural network
replacement for Portland cement and
primary aggregates, respectively
Concrete with partial or complete
[24] replacement of natural aggregate with Compressive strength Artificial neural network
waste rubber
Artificial neural
network algorithm:
[25] Self-compacting concrete with Compressive strength Lever}berg—Marc.{ualjdt,
recycled aggregate Bayesian regularization,
scaled conjugate gradient
back-propagation
Nonlinear dependency model,
[2,26] Self-compacting concrete with fly ash Compressive strength multiregression model,
artificial neural network
Ensemble methods: random
forest, k-nearest neighbors,
[27] Self-compacting concrete with Compressive strength extremely randorruzed t.rees,
recycled aggregates extreme gradient boosting,
gradient boosting, light
gradient boosting machine
Random forest regression,
Double-wall tubular columns with XGBoost regression, AdaBoost
[28] metal and nonmetal Axial compressive strength regression, lasso regression,
composite materials ridge regression,
ANN regression
Compressive streneth Artificial neural network
[29] Geopolymer concrete P . st based on GDX (adaptive LR
flexural tensile strength . .
with gradient descent)
[30] Fresh concrete mix Pl.’.astlc viscosity, Artificial neural network,
yield strength random forest
[31] Round bounded concrete columns Compressive strength MultlthSl.C S programming of
genetic expressions
[32] Reinforced concrete beams with collars Shear strength Artificial neural network
. Plastic viscosity, Hybrid artificial neural
[33] Self-compacting geopolymer concrete compressive strength network combined with bat.
Artificial neural network,
[34] Ash concrete from rice husks Compressive strength artificial neurofuzzy inference
p g y
system
Environmentally friendly concret Hybrid artificial neural
exural tensile strengt network combined wit
[35] onmentally friendly concrete Fl 1 i oth K bined with

containing coal waste

response surface methodology
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Table 1. Cont.
Ref. Number Object of Study Pred1cta}) 1? Prediction Method
Characteristics
[36] Heavy concrete Compressive strength Artificial neural network RBF
[37-39] Recycled concrete Compressive strength Artificial r}eural network.,
gene expression programming
[40] Concrete based on ceramic waste Mobility, compressive Artificial r.1e.ural network,
strength, density decision tree
Artificial neural network
[12] Concrete modified with Compressive strength combined with ANL-SFL
eggshell powder p & metaheuristic
optimization algorithm
[13] Geopolymer concrete based on fly ash Compressive strength Artificial neural network,
with high calcium content P & boosting and AdaBoost ML
[41] Concrete reinforced with c?rbon Compressw'e strength, Artificial neural network
nanotubes/carbon nanofibers flexural tensile strength
Pulse velocity, compressive
[42] Concrete curing in hot weather strength, dePth of Water A%‘tl.f1c1al neur'al network,
penetration, split finite regression model
tensile strength
Multilayered perceptron
artificial neural network
(MLP-ANN), ensembles of
Self-compactin MLP-ANNS, regression tree
[43] -omp 5 Compressive strength ensembles (random forests,
rubberized concrete
boosted and bagged
regression trees), support
vector regression and
Gaussian process regression
Decision tree, artificial neural
[44] Concrete at high temperatures Compressive strength network, bagging,
gradient boosting

In the production of building materials, researchers generate a large amount of data
containing important information about the mechanical properties of the resulting material.
Data such as the volumetric content of various components, together with the description
of the process and results of experiments, often have an unstructured and complex form
(in the form of texts in natural language, tables, graphs) [45]. The introduction of artificial
intelligence methods, in particular machine learning, for the analysis of accumulated data
arrays will improve the quality of construction technology and optimize costs by reducing
time costs [46-54]. In this regard, the purpose of our study is the development and compar-
ison of three machine learning algorithms based on CatBoost gradient boosting, k-nearest
neighbors and support vector regression methods for predicting the compressive strength
of concrete using our accumulated empirical database, and ultimately, improvement of
production processes in the construction industry. The objectives of the study were:

—  Deep analysis of existing machine learning methods in concrete technology, analysis of
the experience of their application, evaluation of such experience and the conclusion
of scientific and practical deficits from the information received.

- Docking of experimental empirical results obtained in the course of real physical
experiments and training on their basis of special tools that allow control of the
properties and predict the performance of concretes and structures based on using
machine learning methods.

—  After processing and applying the data of a physical experiment, the development
of an algorithm is based on three methods of machine learning: CatBoost gradient
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boosting, the k-nearest neighbors method and the support vector regression method,
for processing the empirical base with further comparison of the results based on the
values of the main metrics.

- Assessment of the prospects for applying the developed methods in practice and
the possibility of translating and projecting the results obtained on various types of
concrete, and developing specific proposals for construction industry enterprises.

The proposals developed must be tested and substantiated by verifying them against
real data. Thus, the scientific novelty of our study is new relationships between real physical
experimental data, empirical relationships and values based on them, together with an
assessment of the applicability of machine learning methods in predicting the properties
of similar concretes for given initial parameters comparable to the main and control ones.
The practical significance of the study is the methodology developed for predicting the
strength of concrete using machine learning methods, determining the rational parameters
of such a methodology and identifying factors and criteria that affect the effectiveness of
the proposed solutions.

2. Materials and Methods
2.1. CatBoost Algorithm

In gradient boosting, predictions are made based on an ensemble of weak learning
algorithms, while decision trees are built sequentially. The previous trees in the model
are not changed and the results of the previous step are used to improve the next one.
In gradient boosting, decision trees are iteratively trained in order to minimize the loss
function, as shown in Figure 1.

First Tree } Second Tree ; N - Tree
| O i O O
| 0 @ | ®@ @+ +@ @
|
| © 00 0 | ©000..6000

Figure 1. Iterative training of decision trees in gradient boosting.

In this study, the CatBoost method is used, which is a gradient boosting library created
by Yandex. When implementing decision trees in this method, the same functions are used
to create left and right splits at each level of the tree, as shown in Figure 2.

x1>8 ‘

x2>30 x2>30

Figure 2. CatBoost decision tree for the regression problem.
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Unlike some other machine learning algorithms, CatBoost works well with a small
dataset; however, in such cases, you should be aware of overfitting. To avoid overfitting,
the model parameters should be tuned.

2.2. k-Nearest Neighbors Method

The k-nearest neighbors method is a supervised machine learning algorithm used to
solve a regression problem that performs well with a small amount of data.

In practice, the KNN method is more often used in classification problems, but cur-
rently the regression version of the k-nearest neighbors algorithm is also common. It is a
good basic algorithm to try first before considering more advanced methods.

The algorithm finds the distances between the query and all examples in the data by
choosing a certain number of examples (k) closest to the query, then averages the labels in
the case of a regression problem.

The k-nearest neighbors algorithm follows:

1. Input:
Training examples {x;, y;}
x; are values of training examples attributes;

y; are actual values of the output characteristic.
Test point x for which we are making a prediction.

2. Forecasting:

Calculating the distance D(x, x;) to each training example x;;
Selection of k-nearest instances and their labels y;1, . . ., i
Determination of the mean value ¥ for y;1, . . ., y;x by Formula (1):

7= M

where k is the number of nearest instances, y; is the actual value of the output parameter.

2.3. Support Vector Regression (SVR)

The support vector regression (SVR) was proposed based on the support vector
machine (SVM) for a standard classification problem.

The SVR algorithm in its implementation as a whole is very similar to SRM, but
there are several other features: SVR has an additional adjustable parameter ¢ (epsilon).
The epsilon value determines the width of the “tube” around the evaluated function
(hyperplane). Points falling inside this “tube” are considered correct predictions and
are not penalized by the algorithm. Support vectors are points that extend outside the
pipe, not just those that are on the edge, as in classification problems. The value of the
additional sliding variable (£) measures the distance to points outside the pipe, which can
be controlled by adjusting the regularization parameter C.

3. Materials and Dataset
3.1. Dataset Description

The data set is a table of experimental values (a series of 249 experiments) obtained
from the development of laboratory compositions of self-compacting concretes. The
main raw materials used were: Portland cement grade CEM I 42.5N; quartz sand with
fineness modulus 1.78 (My = 1.78); crushed granite fraction 5-20 mm with a crushability
grade of 1200; ground blast furnace granulated slag (SiO; = 30 & 1%; Al,O3 =9.2 £ 0.9%;
Fe;O3 =0.86 £0.08%; CaO=33+1%; SO; = 1.6 £ 02%; MgO = 5.0 = 0.5%;
Na,O =0.18 = 0.02%, KO = 0.62 £ 0.06%, MnO = 0.82 % 0.08%, TiO, = 0.46 + 0.05%,
P,05 = 0.018 £ 0.002%, CI = 0.003 £ 0.001%). As an additive, a hyperplasticizer based
on polycarboxylate esters “Rheoplast PCE3240” was used. The compressive strength was
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Cement

Crushed stone

Additive

Water

Sand

determined according to GOST 10180-2012 “Concretes. Methods for strength determination
using reference specimens”.

The analyzed data set is presented in Supplementary Materials.

The features of machine learning models are the content of cement (kg/m?), slag
(kg/m?), water (L), sand (kg/m?), crushed stone (kg/m?) and additives (kg). The predicted
parameter is compressive strength (MPa).

Figure 3 shows the correlation between the variables. It is observed that the linear
correlation between the individual input variables and the output variable is strong (>0.5).
There is also a negative correlation, in which an increase in one variable is associated with
a decrease in another. The statistical characteristics of the dataset are shown in Table 2.

=-1.00

=075

- 0.50

-0.75
Compressive strength

- g 5 2 2 2 &

g 3 3 3 5 g g

8 3 2 ®

ﬁ -4

2 2

. 8

[=%

£

Q

)

Figure 3. Correlation matrix.
Table 2. Statistical characteristics of the original dataset.
Variable Cement Slag Water Sand Crushed Additive Compressive
Stone Strength
Unit kg/ m3 kg/ m3 liter kg/ m3 kg/ m> kg MPa
count 249.00 249.00 249.00 249.00 249.00 249.00 249.00
mean 198.04 140.32 171.49 1027.04 805.36 4.26 38.79
std 42.27 99.57 10.47 126.76 104.96 2.16 21.87
min 150.00 47.00 150.00 790.00 715.00 2.31 9.60

max 286.00 309.00 186.00 1143.00 987.00 8.30 85.80
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3.2. Performance Evaluation Methods

When analyzing regression models, it is important to use various evaluation metrics
to evaluate their performance. This study uses five metrics: mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), mean absolute percentage error
(MAPE) and the coefficient of determination R?. These metrics are defined as follows:

1¢ A
MAE = -} |yi — §il )
i=1
1¢ .
MSE =~} (vi = i) ®)
i=1
1 [ )
RMSE = -y [} (i = 1)’ )
i=1
MAPE = 1f Vi Uil 100 )
=2 .
i1l Yi
n _ 2
(Z (vi—v) (]21 _9z)>
R?= = . 5 (6)
—\2 N =
L vi=9" L (0~ 7)

where y; is the actual measured compressive strength; ij; is predicted value of compressive
strength; ; is the average value for y;; j; is the mean value for 7;.

4. Model Building and Training

In this study, algorithms based on machine learning methods are developed in the
Jupyter Notebook interactive computing web platform in the high-level Python program-
ming language.

The search for the optimal values of the main parameters of the model is one of the
key points for achieving the best generalizing ability. In this study, the grid search method
was used in combination with five-block cross-validation, which allows us to analyze all
possible combinations of parameters of interest for each of the implemented models.

The general workflow of the model in the case of using cross-validation and a grid of
parameters is shown in Figure 4.

Grid of parameters Dataset e

l l

5-fold cross
validation

|

Best parameters _____, Newly trained model ____, Final evaluation —»

<« Training set L——»  Testset

Metrics
analysis

Figure 4. Parameter selection and model evaluation process using parameter grid and five-box
cross-validation.

4.1. Model Building

4.1.1. Model Building for CatBoost

For the algorithm based on the CatBoost method, learning rate and tree depth are
selected as adjustable parameters.
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The learning rate factor is a parameter that allows control of the amount of weight
correction at each iteration. In practice, the learning rate coefficient is usually selected
experimentally; its tuning allows for achieving the highest possible quality of the model.

The second adjustable coefficient is the depth of the tree. In most cases, the optimal
value is between 4 and 10, so this range of values is used in the parameter lattice. All
possible combinations form a table-grid of model parameter settings, as shown in Table 3.

Table 3. Parameter grid for the CatBoost model.

Depth =4 Depth =6 Depth =8 Depth =10
leaming ate =003 T ERT 0N leamingrabo008)  leaming rato- 009 leseming rte - 009
lcaming rate =01 0 CENTY g roes ) leoming reen 1) leaeming rare - 0.1
teaming ate =05 700 TIN5 lamingroies09)  leomimg e 09 learning rre <05

As a result of five-box cross-validation, for all combinations of learning rate and tree
depth, we need to train 60 models (3 x 4 x 5).

Figure 5 shows a heatmap for the cross-validation average R? expressed as a function
of two parameters: tree depth and learning rate.

-0.98
0
= -0.96
9
< 0.94
—
oY)
a2 g
£ 0.92
©
Q
—
0.90
o
<
()

0.88

Depth

Figure 5. Heat map of R? value from two parameters: tree depth and learning rate.

Each heatmap value corresponds to an R? value for a specific combination of parame-
ters, where light tones correspond to a high value and dark tones to a low value. It can be
seen from the graph that the implemented CatBoost algorithm is sensitive to parameter
settings, so their optimization is necessary to obtain good generalization ability. Various
combinations of learning rates and tree depths increase R? from 87% (learning rate 0.5, tree
depth 4) to 98% (learning rate 0.1, tree depth 8).

As a result of lattice search and cross-validation, the best parameters of the model
were determined: tree depth equal to 8 and learning rate 0.1.
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4.1.2. Model Building for k-Nearest Neighbors Algorithm

For the k-nearest neighbors algorithm, the following parameters were selected as
adjustable parameters: the number of neighbors, the leaf size and the weight function
(Table 4).

Table 4. Parameters for the k-nearest neighbor model.

Num Parameter Value
1 Number of neighbors 2,5,7,10,15, 20
2 Sheet size 1,3,5,10,20
. . "uniform”
3 weight function »distance”

As a result of the five-block cross-validation, for all combinations of variable parameter
values, we need to check the performance of 60 models (6 x 5 x 2).

An important component of the k-nearest neighbors method is normalization. Dif-
ferent attributes typically have different ranges of represented values in the sample, so
distance values can be highly dependent on attributes with larger ranges. Therefore, the
data were normalized (Z-normalization).

4.1.3. Model Building for SVR Algorithm

For the support vector machine, the following parameters are selected as adjustable

parameters (Table 5):

—  Kernel type: using this parameter, you can determine the type of hyperplane used
for data separation; when using “linear” a linear hyperplane is applied; a nonlinear
hyperplane can also be used.

—  Regularization parameter C: the strength of regularization is inversely proportional to C.

—  Epsilon (¢): acceptable margin of error ¢ allows deviations within some thresh-
old value.

Table 5. Parameters for SVR model.

Num Parameter Value
”linear”
1 Kernel type ””Pr %lfy,,”
”sigmoid”
2 Regularization parameter C 1,2,3,4,5
3 Epsilon 0.1,0.2,05,1,15,2,3

As a result of the five-block cross-validation, for all combinations of variable parameter
values, we need to check the performance of 140 models (4 x 5 x 7).

4.2. Model Training
4.2.1. Model Training CatBoost

Table 6 shows the parameters of the final CatBoost model: the number of iterations
corresponding to the number of decision trees is 500; tree depth and learning rate are
defined in Section 4.1.1; RMSE (3) is used as the loss function; the greedy search algorithm
provides for sequential deepening of the tree; training is stopped when the error value does
not decrease within 30 iterations.
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Table 6. Model parameters based on CatBoost.

Num Parameter Value Optional Description
1 Number of iterations 500 Number of decision trees
2 Tree depth 8 Tree structure depth
A parameter that determines the step size at each
3 Learning rate 0.1 iteration when moving toward the minimum of
the loss function
4 Metric used for learning RMSE Formula (4)
5 Greedy search algorithm Symmetric tree The tree is built level jby level until it reaches the
required depth
Type of overfitting . Stops training when the error value does not
6 detector Early stopping decrease within 30 iterations

Figure 6 shows the training schedule, according to which 65 iterations are sufficient
for the model, determined by setting the overfitting detector.

RMSE
24 —

- a
20 —

16 —

12 —

A

Train

Validation

d
B

JD >

I : I ' I
20 40 60
Iteration

80 100

Figure 6. Model training graph based on CatBoost.

The interpretation of the gradient boosting algorithm is facilitated by the ability to
represent the decision rules in the form of a visual tree structure. Figure 7 shows part of one
of the decision trees. As you can see from the figure, the same functions are used to create
left and right splits at each level of the tree. Owing to the peculiarities of the structure of
decision trees, gradient boosting is able to cope with nonlinearities.

val = 0.000

val = 0.047 val = 0.000

val = 0.003

Figure 7. Visualization of the tree structure.
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4.2.2. Model Training k-Nearest Neighbors

The selection of the number of neighbors parameter affects the generalizing ability
of the developed model. The choice of the parameter k is important for obtaining correct
model results. If the value of the parameter is small, then an overfitting effect occurs when
the decision on the output characteristic is made on the basis of a small number of examples
and has low significance, and it should be taken into account that the use of small values
of k increases the influence of noise on the results. On the contrary, if the value of the
parameter is too high, then objects that poorly reflect the local features of the data set take
part in the process of solving the regression problem. Thus, the choice of the parameter k
significantly affects the generalizing ability of the model.

The leaf size parameter is also significant for the model, as it affects the speed of its
work along with the amount of memory used by the algorithm.

Under some circumstances, it may be beneficial to weight points so that nearby points
contribute more to the regression than distant points. The “uniform” weight function
setting assigns equal weights to all points, while “distance” assigns weights proportional
to the reciprocal distance from the query point.

As a result of the five-box cross-validation in Section 4.1.2, the best parameters for the
k-nearest neighbors model were determined (Table 7).

Table 7. Parameters of the k-nearest neighbors model.

Num Parameter Value
1 Number of neighbors 15
2 Sheet size 5
3 Weight function "uniform”

4.2.3. Model Training SVR

One of the main advantages of SVR is that its computational complexity does not
depend on the dimension of the input space. In addition, it has excellent generalization
capabilities with high predictive accuracy when the parameters are properly tuned.

In practice, for the SVR method, the most commonly used kernel, which provides
good generalization capabilities, is the radial basis function (RBF), also known as the
Gaussian kernel.

There is no rule of thumb for choosing the value of C—it depends entirely on the data.
The best option is to search through a grid of parameters, as in Section 4.1.3, where it is
suggested to use several different values and choose the one that gives the lowest level of
error in testing.

SVR is a powerful algorithm that allows us to choose how error tolerant we are with
an acceptable margin of error. The epsilon parameter defines the dead zone.

Adjustment of the penalty coefficient C and the threshold value of the error ¢ signif-
icantly affect the mean square error in the regression model. After conducting multiple
experiments with the help of cross-validation, better training results were obtained, thereby
choosing the optimal values of the model parameters.

Table 8 presents the parameters of the final SVR model.

Table 8. Model parameters based on SVR.

Num Parameter Value
1 Kernel type "rbf”
2 Regularization parameter C 5

3 Epsilon 0.5
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4.2.4. Parallelization of the Optimization Process and Model Training

Owing to the fact that the search for optimal model parameters using parameter grids
and cross-validation leads to the creation and training of a large number of models, it is
worth evaluating the time spent on the algorithms.

To reduce time costs, the grid search and cross-validation were parallelized across
several processor cores. Tables 9-11 show the values of two characteristics (CPU times
and Wall time) depending on the number of cores involved. Loading eight processor cores
allows you to reduce CPU times~15 times, and Wall time~3 times.

Table 9. The result of parallelizing the learning process across CPU cores for the CatBoost model.

Number of Cores Involved CPU Times, s Wall Time, s
1 16 31.6
2 2.06 22.6
4 1.73 15.2
8 1.1 10.0

Table 10. The result of parallelizing the learning process across CPU cores for the k-nearest neigh-

bors model.
Number of Cores Involved CPU Times, s Wall Time, s
1 8 11.1
2 2.06 10.2
4 0.72 7.2
8 0.4 3.0

Table 11. The result of parallelizing the learning process across CPU cores for the SVR model.

Number of Cores Involved CPU Times, s Wall Time, s
1 9 12.4
2 2.18 9.4
4 0.75 6.1
8 0.6 3.0

5. Comparison of Prediction Results

Prediction error plots (Figure 8) show the actual values from the dataset versus the
predicted values generated by our model. This visualization method allows you to see how
large the variance is in the model.

Table 12 presents the values of the metrics selected to evaluate the developed models.
Figure 9 shows graphs visualizing this table.

Table 12. Metrics of the developed models.

Ne Model MAE MSE RMSE MAPE, % R?

1 CatBoost (CB) 2.17 7.8 2.79 6.84 0.98
K-nearest

neighbors (KNN) 1.97 6.85 2.62 6.15 0.99

3 SVR 2.61 11.39 3.37 7.89 0.98
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Figure 8. Relationship between actual compressive strength and calculated values (a) for the CatBoost
model; (b) for the k-nearest neighbors model; (c) for the SVR model.
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Considering the fact that the developed machine learning algorithms were applied
on a series of experimental data obtained when testing concrete, which is a heterogeneous
material that depends on a large number of factors and significantly differs in properties
and structure in its volume, the following should be noted. The scatter of data when
measuring the characteristics of such a material exists regardless of knowledge about them,
many of the heterogeneities in concrete are uncontrollable either from the point of view of
either the recipe or the technology. Therefore, there is always a data error, which is within
10% and is an acceptable norm in the production of concrete.

The results of the study showed that the coefficient of determination for the developed
models is quite high, 0.98-0.99, while the observed value is higher than that reported
in [27], which is explained by the homogeneity of the initial data set and the tuning of the
hyperparameters of the models.

MAE values are in the range from 1.97 to 2.61, MSE from 6.85 to 11.39 and RMSE
from 2.62 to 3.37, which are consistent with the results of previous studies by other au-
thors [25,26].

The MAPE value (6.15-7.89%) obtained by testing the developed machine learning
models is acceptable; the models can be verified and accepted for use in determining
the compressive strength of self-compacting concrete, considering all available data. The
accuracy of the models is comparable to the normative and technical documents for concrete
in global practice.

3 —

KNN SVR

KNN SVR

(b)

Figure 9. Cont.
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Figure 9. Metric values for the developed regression models: (a) MAE; (b) MSE; (d) RMSE; (c) MAPE.

6. Conclusions

@

@)

®)

4)
©)

Development and comparison of three machine learning algorithms based on Cat-
Boost gradient boosting, k-nearest neighbors (KNN) and support vector regression
(SVR) were used to predict the compressive strength of self-compacting concrete by
applying our accumulated empirical database and data.

It has been established that artificial intelligence methods can be applied to determine
the compressive strength of self-compacting concrete. The developed models showed
a mean absolute percentage error (MAPE) in the range 6.15-7.89%.

Of the three machine learning algorithms, the smallest errors and the largest coefficient
of determination were observed in the KNN algorithm: MAE was 1.97; MSE, 6.85;
RMSE, 2.62; MAPE, 6.15; and the coefficient of determination R, 0.99.

Models can be verified and accepted for use in determining the compressive strength
of self-compacting concrete, taking into account all available data.

The developed methods can be successfully implemented in the process of production
and quality control of building materials, since they do not require serious computing
resources and, in the future, based on artificial intelligence, an expert system can be
created to summarize all of the accumulated experimental data, which can be located
in an electronic environment university and provide data to interested workers and
researchers for the development of the industry.
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