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Abstract: The Internet of Medical Things (IOMT) is critical in improving electronic device precision,
dependability, and productivity. Researchers are driving the development of digital healthcare
systems by connecting available medical resources and healthcare services. However, there are
concerns about the security of sharing patients’ electronic health records. In response to the prevailing
problems such as difficulties in sharing medical records between different hospitals and patients’
inability to grasp the usage of their medical records, we propose a patient-controlled and cloud-chain
collaborative multi-authority attribute-based encryption for EHR sharing with verifiable outsourcing
decryption and hiding access policies (VO-PH-MAABE). This scheme uses blockchain to store the
validation parameters by utilizing its immutable, which data users use to verify the correctness
of third-party outsourcing decryption results. In addition, we use policy-hiding technology to
protect data privacy so that data security is guaranteed. Moreover, we use blockchain technology
to establish trust among multiple authorities and utilize Shamir secret sharing and smart contracts
to compute keys or tokens for attributes managed across multiple administrative domains, which
avoids a single point of failure and reduces communication and computation overhead on the data
user side. Finally, the ciphertext indistinguishability security under the chosen plaintext attack is
demonstrated under the stochastic prediction model and compared with other schemes in terms of
functionality, communication overhead, and computation overhead. The experimental results show
the effectiveness of this scheme.

Keywords: IOMT; blockchain; multi-authority attribute encryption; medical data sharing; policy
hiding; outsourced decryption; outsourced verification

1. Introduction

A patient’s electronic health record (EHR) is a personal medical health record that
stores patient diagnostic and treatment information, such as medical records, allergy
medications, physical examination reports, family medical history, and other sensitive
information. When a patient visits a doctor, he or she can see the previous medical history
and synthesize the previous diagnosis or treatment results to make a more comprehen-
sive and accurate analysis of the condition and provide a more efficient treatment plan
for the patient. Meanwhile, for major infectious diseases, the sharing of EHR can also
enable excellent teams from various regions to conduct an all-round, accurate and rapid
study of the epidemic situation, improving the efficiency of disposal and public medical
health. However, the existing IOMT system can hardly satisfy the massive EHR data
sharing security.

To satisfy the access control requirements of medical data, we propose ciphertext-policy
attribute-based encryption (CP-ABE) and key-policy attribute-based encryption(KP-ABE)
approaches to protect the security of shared data by encrypting the shared data using a
key, and only the user with the key can decrypt the data. CP-ABE can better solve the
interoperability challenges among the participants. Since data owners can use CP-ABE
to flexibly specify access policies to determine which attributes are required for users to
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decrypt, CP-ABE is considered an ideal solution for securely sharing outsourced data in
public clouds. It is more suitable for access control scenarios for healthcare data.

However, in most existing CP-ABE programs [1–3], all participants trust an authority.
Due to the centralized authority problem, the mischievous attribute authority (AA) even
causes the misuse of private keys. It distributes the attribute keys to illegal users, leading
to unauthorized data access. However, some multi-AA extension schemes did emerge
later, dividing the attribute Universe into multiple administrative domains. Each AA
manages a disjoint set of attributes, which gives rise to trust issues between attribute
domains and does not fundamentally solve the single point of failure, as well as the data
users bearing high computation and communication overheads. Moreover, in conventional
CP-ABE, the access policy embedded in the ciphertext is publicly accessible, so an attacker
can indirectly deduce sensitive identity information about the data owner and the data
user [2]. In addition, CP-ABE schemes contain a large amount of bilinear computation
during encryption and decryption, which consumes many computational resources and
limits the application of CP-ABE [4].

The emerging blockchain technology brings a glimmer of light to these challenges.
Blockchain is a distributed ledger technology with tamper-proof features, which enables
anyone to host a distributed ledger and keep a permanent record of transactions. More-
over, blockchain technology can establish multi-party trust. Smart contracts deployed on
the blockchain enable a collaborative computing process with multiple authorities from
different attribute domains and generate attribute keys for users to decrypt data. Since
there are performance bottlenecks in blockchain at this stage, and EHR usually includes
large-scale, cross-media health data, such as CT, X-ray, and other medical image data, it is
inefficient to store and share EHRs independently using blockchain. Thus, it is necessary to
combine cloud storage and blockchain to complement each other for secure and efficient
EHR sharing.

To address the above issues, we propose an EHR access control scheme (VO-PH-
MAABE) for multi-authority attribute-based encryption with verifiable outsourced decryp-
tion and hidden access policies, which works as follows.

(1) We propose an outsourced decryption method in which the user uses the verification
parameters stored in the blockchain to quickly verify the third-party outsourcing
results, ensuring the correctness of the outsourced decryption results, and reducing
the computational cost at the user’s end;

(2) We hide the access policy to effectively prevent the user’s specific attribute values
from being leaked to third parties and ensure user privacy security;

(3) We use blockchain technology to build trust among multiple authorities and four
smart contracts to compute keys or tokens for attributes managed across multiple
administrative domains, which avoids a single point of failure and reduces the com-
munication and computation overhead on the data user side.

2. Related Work
2.1. Multi-Authority Attribute-Based Encryption

To solve the problem of a single authority and distributed management of attributes.
Lewko and Waters [5] proposed a CA-free stepwise multi-authority design that uses CP-
ABE with no communication among authorities and operates independently. Li et al. [6]
implemented a multi-AA CP-ABE scheme TMACS for public cloud storage using (t, n)
threshold secret sharing. Zhong et al. [7] proposed a decentralized multi-authority CP-ABE
access control scheme. Each AA distributes attributes independently in its management
domain and uses an obfuscated access matrix to protect access policy privacy. Li et al. [8]
proposed a privacy-aware multi-AA CP-ABE scheme with recourse to trace the iden-
tity of dishonest users who share their decryption keys by hiding attribute information
in the ciphertext. Zhang et al. [9] introduced MA-ABE into a smart grid environment,
which adds a test phase to determine whether a client’s attributes conform to access rules.
Li et al. [10] proposed a design for addressing user key misuse and fine-grained access
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supervision of encrypted IoT data on the cloud, which can resist selective plaintext attacks
and overcome clients. Gao et al. [11] proposed a time-sensitive multi-authority attribute
encryption scheme based on time sensitivity, where data users cannot decrypt the cipher-
text before a specific time. The scheme is suitable for data sharing in time-sensitive access
control scenarios.

2.2. Hiding Access Policy

In response to earlier CP-ABEs that only partially hide attribute values in the access
policy but do not protect attribute names, Zhang et al. [12] designed a policy-hiding CP-ABE
solution that performs attribute matching operations before full decryption. The data user
uses a unique ciphertext component to test whether the attribute list satisfies the hidden
access policy. The scheme has selective plaintext security under the DBDH and D-Line
assumptions. Huang et al. [13] designed a CP-ABE scheme for a hiding policy. The CP-ABE
scheme can compress the ciphertext length to a constant. Xiong et al. [14] designed a policy-
hidden broadcast encryption scheme that supports the LSSS access structure and improves
the performance of the policy. Zhang et al. [15] used CP-AB with a hidden access policy
to improve the expressiveness of the policy. The scheme supports large-scale attribute
collections, and the size and decryption cost of the public parameters in the scheme is
constant. Liu et al. [16] used a linear secret sharing scheme to hide part of the policy. They
use multiple privileges to resist the complicity attack caused by joint communication among
users and protect the privacy of data in the IoT environment. Zeng et al. [17] proposed an
effective ABE scheme for partial policy hiding and supporting a large attribute universe in
the context of the internet of medical things (IoMT) ecosystem. The scheme shows only
non-sensitive attributes and hides sensitive attributes, and the scheme can effectively track
any user with the public decryption key. Zhang et al. [18] proposed a partial policy hiding
scheme supporting key revocation and designed an algorithm to check whether the user
attributes to match the access policy.

2.3. Outsourcing Decryption

In existing ABE schemes, the ciphertext size and decryption cost increase with the
complexity of the attribute policy. Therefore, Green et al. [19] first proposed an outsourcing
ABE scheme in 2011. They outsourced the complex ABE decryption computation to a third-
party cloud server for decryption, which reduces the computation of the decryption process
on the user side. Since the third-party cloud server is not fully trusted, the correctness
of the outsourced decryption result needs to be verified. Lai et al. [20] proposed an
ABE scheme that supports the verification of outsourced decryption by introducing a
verification element in the ciphertext. The re-encryption key is generated based on the
user key and sent to a third-party cloud server for decryption. Qin et al. [21] proposed a
method to convert any ABE scheme with outsourced decryption into an ABE scheme with
verifiable outsourced decryption with verifiability. Li et al. [8] proposed an accountable
and verifiable outsourced decryption CP-ABE scheme. This scheme achieves accountability
for the user key leakage problem and the verifiable outsourced scheme by transferring
the key. Fan et al. [22] proposed a CP-ABE scheme for outsourced decryption in the
IoT environment. Fog nodes assist in implementing verifiable outsourced decryption,
which reduces the complexity of user computation. Guo [23] proposed a lightweight
verifiable CP-ABE scheme applied to wireless body-sensing networks, which provides
users with correctness verification of outsourced decryption. Liu et al. [24] proposed a
blockchain-based searchable attribute-based encryption scheme BC-SABE that supports
user outsourcing decryption functions. The blockchain system replaces the traditional
centralized server, responsible for generating threshold parameters and key management.
Zhao et al. [25] constructed an eHealth fine-grained access control system AC-FEH in a fog
computing scenario, which uses fog nodes for data encryption and decryption operations
to minimize the computational cost for data owners and users. Guo et al. [26] proposed a
scheme with fine-grained access control, outsourced decryption, and ciphertext verification
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with the help of cloud servers and blockchain in the IoMT ecosystem. The scheme is based
on the chameleon hash function to construct data user private keys with conflict resistance,
semantic security, and keyless exposure.

3. Preliminaries
3.1. Bilinear Maps

Let q be a large prime, G1 and G2 be two multiplicative cyclic groups of order p
multiplicative cyclic groups, and g be a generating element on G1. A bilinear mapping [27]
e : G1 × G1 → G2 satisfies the following properties.

(1) Bilinear: ∀a, b ∈ Z∗p, u, v ∈ G1, we have e(ga, gb) = e(g, g)ab.
(2) Non-degeneracy: ∀u, v ∈ G1, e(u, v) 6= 1.
(3) Computability: ∀u, v ∈ G1, there exists an efficient algorithm to compute e(u, v).

3.2. Determined Bilinear Diffie-Hellman Problem

The deterministic bilinear Diffie–Hellman (DBDH) problem [28] : G1 and G2 are two
multiplicative cyclic groups of order p and satisfy the bilinear mapping e : G1 × G1 → G2,
and g is the generator of G1. Given random numbers a, b, c, z ∈ Z∗p and group elements
ga, gb, gc ∈ G1, Z ∈ G2, we suppose no algorithm can generate a random number a, b, c, z
with non-negligible distinguish Z = e(g, g)abc in polynomial time with negligible advantage
or Z = e(g, g)z. In that case, the DBDH problem is considered intractable.

3.3. Access Structure

Let U be an attribute Universe. A set A ⊆ 2U is said to be monotone provided that it
satisfies the set X ∈ A and the set Y ⊆ 2U when X ⊆ Y and Y ∈ A. Similarly, a geometric
element in an access structure with monotonicity forms an authorized set, and an element
of a set not in the access structure forms a non-authorized set. A secret sharing scheme
Π over an attribute Universe is called a linear secret sharing scheme when it satisfies the
following conditions:

(1) The segmentation of the secret value s forms a vector. These partitions are all elements
in Z∗p. For Π, a shared generating matrix M exists with l rows and n columns.
Function ρ maps 1, 2, . . . , l mapped to the attribute Universe, given that the vector
v = (s, r1, . . . , rn), s ∈ Z∗p is the secret value to be shared, where r2, . . . , rn are random
elements in Z∗p. Mv is the l secret value partitions over the secret value s. The xth
secret value segmentation is noted as λx, which corresponds to the property ρ(x).

(2) In order to reconstruct the secret value s, the user whose attributes satisfy the ac-
cess policy can find a set of constants {ω1,ω2, . . . ,ωl} in polynomial time such that
∑x∈X ωx Mx = (1, 0, . . . , 0), where X represents the set of rows corresponding to the
user’s attribute set S in the matrix. The secret value is finally reconstructed according
to the following equation.

∑
x∈X

ωxλx = ∑
x∈X

ωx(Mv)x

= ∑
x∈X

ωx(Mx)v

= (1, 0, . . . , 0)(s, r2, . . . , rn)

= s

3.4. Shamir Secret Sharing

Shamir secret sharing [29] requires the following:

(1) Share. To share a secret s ∈ Z∗p with a threshold t among n participants, we first
construct a polynomial of order (t − 1) : f (x) = a0 + a1x + · · · + at−1xt−1, where
a0 = s, a1, . . . , at−1 are the random elements in Z∗p. Then, the sharing of n participants
is si = f (xi)(i = 1, . . . , n), where xi ∈ Z∗p.
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(2) Reconstruct. In order to obtain the results from the n partitions s1, s2, . . . , sn in any t
reconstructed secret values s, computed using Lagrangian interpolation:

S =
t=1

∑
i=1

Si

t

∏
j=1,j 6=i

xj

xj − xi

3.5. Smart Contract

As protocols for executing computer transaction contracts, smart contracts were pro-
posed by Szabo [30] in 1994. It will always exist when a smart contract is integrated into
a blockchain. Any smart contract can be a part of a database with a unique address. Dis-
tributing transactions to its address can enable its functionality to manage each part of the
database. A smart contract is a set of software codes that the deployer specifies the condi-
tions it is intended to implement. Smart contracts are often organized as “if . . . sthen. . . ”.
Smart contracts allow code to execute autonomously, without human intervention and
third-party observation, when conditions are met. The contract deployer sets it up in the
blockchain, and then the user enables it by sending the required parameters to the smart
contract’s address. In this scenario, the smart contract is invoked by a registered transaction
in the blockchain.

4. Scheme Model

This section focuses on the system model, syntax, and security model of the VO-PH-
MAABE scheme.

4.1. System Model

As shown in Figure 1, the VO-PH-MAABE system model includes six entities: certifi-
cate authorities (CAs), multi-attribute authorities (AAs), cloud servers (CSPs), data owners
(DOs), data users (DUs), and Blockchain (BC).

Attribute authorities (AAs): AAs are responsible for publishing attributes to data users
through the blockchain. There is a many-to-many mapping relationship between attributes
and attribute management authorities. Each AA manages multiple attributes in an attribute
domain, and multiple AAs can manage each attribute across domains. A segmentation of
each secret is calculated and sent to the blockchain through secret sharing among AAs.

Cloud service provider (CSP): CSP provides data storage service for data owners (DO)
and pre-decryption service for data users (DU) of cipher text. Because of its honest and
curious nature, CSP is not trusted.

Data owner (DO): DO, also known as the patients themselves being responsible for
encrypting data. They define the attribute-based access policy, encrypt the symmetric key
by the access policy, and upload the resultant verification hash of the outsourced decryption
to the blockchain. Then DO stores the TxID, data cipher, and key cipher returned by the
blockchain to the cloud server.

Data user (DU): Data user wants to view patient cases, such as doctors, medical
researchers, and insurance company managers. DU will register their attributes with AAs.
In order to access the DO’s data, the DU can initiate a pre-decryption request to the CSP.
The decryption will be successful only if the user’s attributes satisfy the access policy
embedded in the cipher text. DU performs a power operation and hash operation on the
pre-decryption result to verify the correctness of the outsourced decryption result.

Blockchain (BC): Blockchain stores public parameters and hashes for outsourced val-
idation. After a user uploads a verification hash, the blockchain returns a transaction
identifier TxID to the user. Blockchain also helps entities perform partially trusted compu-
tations and allows multiple AAs to collaboratively manage user attributes, which enables
distributed management of attributes.



Appl. Sci. 2022, 12, 10812 6 of 19

…

Attribute Authorities
(AAs)

……

BlockChain
(BC)

Certificate authority
(CA)

Data User
(DU)

Data Owner
(DO)

Cloud Service P
(CSP)

VeriHash

TxID
Ciphertext

TxID

Smart contract
GP

Secret  reconstruction

Outsourcing
Decryption

Verification
Decryption

Public key

Secret sharing

Figure 1. The VO-PH-MAABE system model.

4.2. Syntax

This VO-PH-MAABE scheme includes the following nine algorithms.
GlobalSetup(1λ) → GP: CA executes the global setup algorithm. This algorithm

takes as input a security parameter λ and outputs the system public parameter GP.
AASetup(GP) → (pki, ski): Different AAs execute the attribute authority setup

algorithm using the Shamir secret sharing scheme. This algorithm takes as input the public
parameters GP, then outputs the public and private keys(pki, ski) for each AAi.

PAKGen(pki) → PAK: The on-chain contract executes the public attribute key
generation algorithm. This algorithm takes as input the public key pki from AAi, then
outputs the public attribute key PAK.

DUSetup(GP) → (upk, usk): DU executes the data user setup algorithm. This algo-
rithm takes as input the public parameter GP, then outputs public and private keys(upk, usk)
for DU.

U AKGen(GP, Suid) → U AK: AAs and the on-chain contract jointly execute the user
attribute key generation algorithm. This algorithm takes as input the public parameter
GP and an attribute set Suid for the data user with identity uid, then outputs the user
attribute key.

U AKGen(GP, Suid) → U AK: The contract jointly executes the user attribute con-
fused key generation algorithm. This algorithm takes as input the public parameter GP
and an attribute set Suid for the data user with identity uid, then outputs the user attribute
confused key.

Encryption(KEY , Mdata, AP, GP, PAK) → CT: DO executes the encryption algo-
rithm. This algorithm takes as input the symmetric key KEY, plaintext Mdata, access policy
AP, public parameters GP, and public attribute key PAK, then outputs ciphertext CT.

OutDecryption(CT , SKO, AP) → CT ′: CSP executes the outsourcing decryption
algorithm. This algorithm takes as input the ciphertext CT, access policy AP, and outsourc-
ing decryption key SKO, then outputs the outsourcing decryption ciphertext CT′. SKO is
the user attribute key UAK that satisfies the access policy AP.
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FullDecryption(CT ′, usk) → Mdata: DU executes the full decryption algorithm.
This algorithm takes as input the outsourcing decryption ciphertext CT′ and user private
key usk, then outputs the plaintext Mdata.

4.3. Security Model

The challenger generates a DBDH challenge. B is a polynomial-time adversary
attacking the DBDH problem, A is a polynomial-time adversary attacking this scheme, B
uses A to attack the DBDH problem, and B is viewed as A’s challenger. We define the
security concepts to show the security of the VO-PH-MAABE scheme. This scheme uses the
concept of ciphertext indistinguishable security under adaptive selection plaintext attack
(INDS-CPA) in the constructed proof. Including adversary A and challenger B, the specific
game is as follows.

Initialization: Adversary A submits a challenge access policy (M∗, ρ∗) to Chal-
lenger B.

Setup: Challenger B chooses a sufficiently safe parameter λ to run the Setup(1λ)
algorithm to generate the public parameter GP. Challenger B sends GP to adversary A.

Query Phase 1: The adversary adaptively queries the following Oracles.
OAAs: Adversary A specifies a set of corrupted permissions, and for each attribute ω
belonging to the uncorrupted permissions, B runs AASetup(GP, ω) to generate the public
attribute key (e(g, g)αω , gβω ) and returns it to A.
OUAK: Adversary A submits an identity and its corresponding attribute set (uid, S∗) to B.
When the attribute set is insufficient for the challenge access strategy, adversary B runs
UAKGen(uid, (M∗, ρ∗), S∗, GP) to generate the attribute key UAKω,uid, and returns it to A.

Challenge: A submits two equal-length symmetric keys KEY0 or KEY1 to B. B rolls a
coin to determine the value of γ ∈ {0, 1} and executes Encrypt(KEYγ, Mdata, (M∗, ρ∗), GP,
e(g, g)αω , gβω )→ CT∗ and sends it to A.

Query Phase 2: Adversary A receives the challenge ciphertext CT∗ and continues to
follow Queryphase1 adaptive querying.

Guess: Adversary A guesses γ′ ∈ {0, 1} for γ. If γ = γ′ then it is concluded that
adversary A wins. The advantage of adversary A in winning this game is defined as
AdvINDS−CPA

VO−PH−MAABE(A) = |Pr[γ = γ′]− 1/2|.
If no adversary can break the above INDS-CPA game by a non-negligible margin in

polynomial time, then the VOPH-MAABE scheme is considered INDS-CPA safe.

5. Scheme Implementation

This section describes in detail the system’s interaction flow and algorithm design.
Four types of smart contracts are introduced in this scheme: attribute management contract
(AMC), public attribute key generation contract (PAKGC), user attribute key generation
contract (UAKGC), and user attribute confused token generation contract (UACTGC).
As shown in Figure 2, the overall flow of the implementation of this scheme is divided
into four phases: system initialization phase, decryption key generation phase, encryption
phase, and decryption phase.
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BCCA AAs DU CSP DO

System ini�aliza�on phase

Decryp�on key genera�on phase

Encryp�on phase

Decryp�on phase

Figure 2. The overall flow of VO-PH-MAABE.

5.1. System Initialization Phase

As shown in Figure 3, the CA is responsible for global setup, and the AMC is responsi-
ble for managing attributes. AAs calculate the public attribute key segmentation off-chain,
and PAKGC reconstructs the public attribute keys on-chain. DU is responsible for the data
user setup.

BCCA AAs DU

PAKGC

AMC

GP

GP

pki  

upk

GlobalSetup

DUSetup

AASetup

Figure 3. System initialization phase.

Attribute Management Contract (AMC). To enable cross-domain attributes manage-
ment, CA assigns multiple AAs and threshold tω to each attribute by invoking the AMC.
As shown in Algorithm 1, each attribute has two parameters: the number of AAs nω and
the threshold tω for managing attribute ω. The data user must obtain tω authorizations
from the nω attribute authorities to access the attribute.
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Algorithm 1 Attribute management

1: //CA invokes the contract to assign a set of authorities and thresholds to attributes
2: if Assignment(ω, AAs, t) = true then
3: nω ← a set of authorities;
4: tω ← threshold;
5: end if

GlobalSetup(1λ) → GP: CA Select two prime p-order bilinear groups G1, G2, and g
is the generating element of G1. e : G1 × G1 → G2 is a bilinear map. Then CA defines
one-way hash function functions H : {0, 1}∗ → G1, H′ : G2 → Z∗p and chooses random
numbers y ∈ Z∗p to count gy. The global parameters GP = {G1, G2, e, g, H, H′, gy}.

AASetup(GP) → (pki, ski): The AAs collaborate using the Shamir secret sharing
scheme to obtain a key partition {pki,ω , ski,ω}ω∈Si for each attribute jointly managed using
a list of AAs, where Si is the set of attributes managed by AAi. For an attribute ω managed
by nω AAs, AAi randomly chooses αi, βi ∈ Z∗p to generate two (tω − 1) order random
polynomials Fi(x) and Hi(x), and the master secret is defined as

s1 = αω =
nω

∑
i=1

αi, s2 = βω =
nω

∑
i=1

αi (1)

where αi = Fi(0), βi = Hi(0). For each of the other AAj with identity aidj, AAi computes
the subpartition of the master secret sij,1 = Fi(aidj), sij,2 = Hi(aidj), and sends (sij,1, sij,2) to
AAj. AAi receives nω − 1 subsegments (sji,1, sji,2) and then computes the main segmenta-
tion of the main secret.

si,1 = skαω ,i =
nω

∑
i=1

sji,1, si,2 = skαω ,i =
nω

∑
i=1

sji,2 (2)

The segmentation of the public attribute key pki,ω = (e(g, g)skαω ,i , gskαω ,i ). Then AAi
sends the pki,ω to the contract.

Public Attribute Key Generation Contract(PAKGC). AAs collaborate using the
Shamir secret sharing scheme to generate the attribute public key for each attribute and
upload it to the blockchain. Since multiple AAs jointly manage each attribute, the system
needs a contract to collect the public attribute key slice generated by AAs. As shown in
Algorithm 2, after the system initialization phase, the PAKGC collects tω public attribute
key segmentation pki,ω from AAs and automatically invokes Lagrangian interpolation to
calculate the public attribute key PAKω for encryption of data.

Algorithm 2 Public attribute key generation

1: //AAs invoke SSS to generate the segmentation of public attribute key
2: if segPAKGen(AAi, pki,ω) = true then
3: AAi send pki,ω to Contract;
4: Count[ω]++;
5: if Count[ω] = tω then
6: //This contract invokes Lagrangian interpolation method to generate PAKω

7: PAKω ← Lagrangian(tω, pki,ω);
8: end if
9: end if
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PAKGen(pki) → PAK: After receiving tω public attribute key splits pki,ω , the PAKGC
calculates

e(g, g)αω =
tω

∏
i=1

e(g, g)
skαω ,i ∏tω

j=1,j 6=i
aidj

aidj−aidi

gβω = g
skβω ,i ∏tω

j=1,j 6=i
aidj

aidj−aidi

(3)

The public attribute key PAKω = (e(g, g)αω , gβω ), and the secret attribute key SAKω =
(αω, βω).

DUSetup(GP) → (upk, usk): Each data user who joins the system randomly
chooses usk ∈ Z∗p to computes upk = gusk. The user needs to upload upk to the blockchain
to obtain attribute authorization.

5.2. Decryption Key Generation Phase

As shown in Figure 4, AAs collaborate using the Shamir secret sharing scheme to
generate the user attribute key segmentation and user attribute confused key segmentation
off-chain. The UAKGC and the UACTGC reconstruct the user attribute key and user
attribute confused key on-chain.

BCAAs DU

UAKGC

H(�)usk

segUAKGen

UAKi,�,uid

segUACTGen

UACTGC

UACTi,�,uid

UAK�,uid

UACT�,uid

UACKGen

Figure 4. Decryption key generation phase.

User Attribute Key Generation Contract (UAKGC). When DU joins the system, AAs
collaborate using the Shamir secret sharing scheme to generate the segmentation UAKi,ω,uid
of the user attribute key in their respective management domains. As shown in Algorithm 3,
after the UAKGC collects tω UAKi,ω,uid partitions from AAs, it automatically invokes the
Lagrangian interpolation method to calculate the user attribute key UAKω,uid and then
sends it to the user for data decryption.
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Algorithm 3 User attribute key generation

1: //AAs invoke SSS to generate the segment of user attribute key
2: if segUAKGen(AAi, UAKi,ω,uid) = true then
3: AAi send UAKi,ω,uid to Contract;
4: Count[ω]++;
5: if C thenount[ω] = tω

6: //This contract invokes Lagrangian interpolation method to generate UAKω

7: UAKω ← Lagrangian(tω, UAKi,ω);
8: end if
9: end if

U AKGen(GP, Suid) → U AK: This algorithm is classified into the following two phases.

(1) When DU completes registration, AAi calculates the attribute key segmentation
UAKi,ω,uid = gskαω ,i H(uid)skαω ,i , and sends the segmentation to the UAKGC.

(2) After the UAKGC receives at least tω UAKi,ω,uid, we calculate

gαω H(uid)αω =
tω

∏
i=1

UAK
∏tω

j=1,j 6=i
aidj

aidj−aidi
i,ω,uid (4)

The user attribute key UAKω,uid = gαω H(uid)αω .
User Attribute Confused Token Generation Contract (UACTGC). The user computes

H(ω)usk for each attribute and sends it to each AA through a secure channel. As shown
in Algorithm 4, AAs generate the segmentation UACTi,ω,uid of the user attribute confused
token in their respective administrative domains. After the UACTGC receives at least tω

UACTi,ω,uid from the AAs, it automatically invokes Lagrangian interpolation to compute
the user attribute confused token UACTω,uid.

Algorithm 4 User attribute confused token generation

1: //AAs invoke SSS to generate the segment of user attribute confused token
2: if segUACTGen(AAi, UACTi,ω,uid) = true then
3: AAi send UACTi,ω,uid to Contract;
4: Count[ω]++;
5: if C thenount[ω] = tω;
6: //This contract invokes Lagrangian interpolation method to generate UACTω

7: UACTω ← Lagrangian(tω, UACTi,ω);
8: end if
9: end if

U ACKGen(GP, Suid) → U ACK: This algorithm is classified into the following
three phases.

(1) DU computes H(ω)usk∀ω ∈ [Suid], where Suid is the attribute in the user attribute
set, and then sends H(ω)usk to each AA through a secure channel. To verify DU’s
ownership of the attribute, AAs confirm e(H(ω), upk) = e(H(ω)usk, g). After success-
ful verification, AAs share the secret between each other secret sharing, compute the
partition UACTi,ω,uid = H(ω)usk·δi of the confused key token for attribute ω, and send
this partition to the UACTGC.

(2) After the UACTGC collects at least tωUACTi,ω,uid, it computes

H(ω)usk·δ =
tω

∏
i=1

H(ω)
usk·δi ∏tω

j=1,j 6=i
aidj

aidj−aidi (5)

The user attribute confused key UACTω,uid = H(ω)usk·δ.
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(3) The user decrypts with his private key to get the attribute confused key SKC =

UACKω,uid = [UACTω,uid]
1/usk = H(ω)δ.

5.3. Encryption Phase

As shown in Figure 5, the DO is responsible for encrypting the medical data.

DUBC DO

Encryption

GP,PAK�

VeriHash

TxID

TxID,CT

CSP

Figure 5. Encryption phase.

Encryption(KEY , Mdata, AP, GP, PAK) → CT: The data user first encrypts plain-
text with a symmetric key and then encrypts the symmetric key with the linear secret
sharing scheme (LSSS). First, DO generates a symmetric key KEY ∈ G2 to encrypt the data
AESEncrypt(KEY, Mdata) = CTAES. Then DO defines an access policy AP and converts
AP into an LSSS shared generation matrix over the associated attributes and a mapping
function: (Ml×m, ρ), where M is an l ×m matrix. The function ρ maps the xth row of M to
the attributes ρ(x) ∈ {attr1, . . . , attrj}, where j ∈ [J], J is an attribute in the access policy
AP, and attrj is an attribute in the access policy. DO generates the ciphertext according to
the following two steps.

(1) To hide the attributes in the matrix and protect the privacy of the data sharing parties,
DO needs to confuse the attribute mapping function: DO randomly chooses r ∈ Z∗p,
computes σj = e((gδ)r, H(attrj))∀j ∈ [J]. DO substitutes σj for the attributes mapped
by the rows of the shared generation matrix: ρ′(x) = e((gδ)r, H(attrx)), wherex ∈ l.
The access policy AP is then transformed into an LSSS scheme Π : (Ml→m, ρ′) over
the attributes of interest.

(2) For each row of the matrix M, DO randomly selects a set of vectors v = (s, r1, r2, . . . , rm),
where the secret values s ∈ Z∗p, andr1, r2, . . . , rm ∈ Zp∗. Let λx = MxvT where Mx is
the xth row of the matrix M. DO randomly select a set of vectors h = (0, h1, h2, . . . , hm) ∈
Z∗p, compute cx = MxhT. And randomly choosing u1, u2, . . . , ul ∈ Z∗p. Then the cipher-
text is calculated as
CTKEY = KEY · e(g, g)y·s

C1,x = e(g, g)αρ(x) ·ux

C2,x = gux

C3,x = gcx · gβρ(x) ·ux

C4,x = gcx · gy·λx

Cv = H(e(g, g)y·s)

where Cv is used to verify the correctness of the outsourced decryption result. DO uploads
the verification hash Cv to the blockchain, and then the blockchain returns the transaction
identifier TxID. Finally, DO uploads the ciphertext CT = ((M, ρ′), gr, CTKEY, C1,x, C2,x, C3,x,
C4,x, Cv) and TxID to the cloud CSP.
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5.4. Decryption Phase

As shown in Figure 6, CSP is responsible for the outsourced data decryption, and DO
verifies the outsourced decryption results and performs the final decryption.

DU CSP

SKO

CT'

OutDecryption

FullDecryption

Figure 6. Decryption phase.

OutDecryption(CT , SKO, AP) → CT ′: This algorithm is classified into the following
two phases.

(1) To view the data of DO, DU initiates an access request to the blockchain and then down-
loads the CT from the CSP. DU calculates {σω : σω = e((g)r, H(attrω)δ)}∀ω∈[Suid ]

, where
Suid is the number of attributes in the user attribute set, based on (M, ρ′) and gr in the ci-
phertext and UACKuid. DU computes the line number X : {σω}∀ω∈[Suid ]

∩ {ρ′(x)}∀x∈[l],
and sends the outsourced decryption key SKO = UAKρ′(x),uid to the CSP, where
x ∈ X.

(2) If the user satisfies the access policy, then Mx must be a full rank matrix. CSP finds
a set tx ∈ Z∗p in polynomial time such that ∑x∈X tx Mx = (1, 0, . . . , 0), where Mx
corresponds to the set of attributes satisfying the policy Sx, and tx helps to recover the
secret value s. The CSP then performs outsourced decryption based on the received
user attribute key.

CT′ = ∏
x
(C1,x ·

e(H(uid), C3,x)

e(SKO, C2,x)
· e(upk, C4,x))

tx

= e(g, g)usk·y·s
(6)

Then, the CSP returns the outsourced decryption result CT′ to DU.
FullDecryption(CT ′, usk) → Mdata: To verify the correctness of the outsourced

decryption result, DU performs an exponential operation with its private key to get
C′v = e(g, g)y·s and then calculates H′(C′v). Compared with the Cv in the ciphertext, if
H′(C′v) = Cv, the outsourced decryption result is correct. DU continues to compute
the symmetric key KEY = CTKEY/C′v and then performs AES decryption on the data:
AESDecrypt(KEY,
CTAES)→ Mdata.
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6. Scheme Analysis
6.1. Correctness Analysis
6.1.1. The Correctness of CSP Outsourcing Decryption

After the CSP receives the outsourced decryption key from DU, it calculates

CT′ = ∏
x
(C1,x ·

e(H(uid), C3,x)

e(SKO, C2,x)
· e(upk, C4,x))

tx

= ∏
x
(e(g, g)αρ′(x) ·ux · e(H(uid), gcx · gβρ′(x) ·ux )

e(UAKρ′(x),uid, gux )
· e(gusk, gcx · gy·λx ))tx

= ∏
x
(

e(g, g)αρ′(x) ·ux · e(H(uid), gcx ) · e(H(uid), gβρ′(x) ·ux ) · e(gusk, gcx ) · e(gusk, gy·λx )

e(gαρ′(x) , gux ) · e(H(uid)βρ′(x) , gux )
)tx

= ∏
x
(e(g, g)usk·y·λx · e(H(uid), g)cx · e(g, g)usk·cx )tx

(7)

Since λx = MxvT , cx = MxhT , vT = (s, r1, r2, . . . , rm)T , hT = (0, h1, h2, . . . , hm)T

λx · tx = Mxtx · vT = (1, 0, . . . , 0) · (s, r1, r2, . . . , rm)
T = s;

cx · tx = Mxtx · hT = (1, 0, . . . , 0) · (0, h1, h2, . . . , hm)
T = 0

(8)

Therefore, the outsourced decryption ciphertext CT′ = e(g, g)usk·y·s, and the CSP
outsourcing decryption algorithm satisfies the correctness.

6.1.2. The Correctness of DU Decryption

After receiving the outsourced decryption cipher, DU calculates

KEY =
CTKEY

[CT′]1/usk

=
KEY · e(g, g)y·s

[e(g, g)usk·y·s]1/usk

=
KEY · e(g, g)y·s

e(g, g)y·s

(9)

Therefore, DU can obtain the symmetric key, and the DU decryption algorithm satisfies
the correctness.

6.2. Security Analysis
6.2.1. Policy Hidden Security

The patient uploads the encrypted data to the cloud server and replaces the attribute
attrj in the access policy matrix with an implicit bilinear mapping expression σj = e((gδ)r,
H(attrj)), which is embedded in the ciphertext using a one-way hash function. Only
an authorized user with the key H(ω)δ can compute e(gr, H(ω)δ). Since δ is a ran-
dom value, the cloud server and other users cannot guess the attribute ω from the
value e(gr, H(ω)β). Without knowing the corresponding H(ω)δ, no one can compute
e((gδ)r, H(ω)) = e(gr, H(ω)δ) and hence cannot construct the attribute in the access policy.

6.2.2. System Robustness

We use the Shamir secret sharing scheme (t, n) to manage user attributes and dis-
tribute user attribute keys, so there is no single point of failure in the system. However,
the adversary may bring the system down by attacking multiple AAs. If there are fewer
than t AAs in the system, the system will go down. The system’s robustness is affected by
the threshold t and the total number n. A threshold t that is too large introduces additional
overhead. Considering the system’s security, we can set a suitable threshold value to make
the system resist the attack with a high probability.
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6.2.3. Security against Collusion Attack

Multiple malicious users conspire with each other to share their own attribute keys
e(H(uid), g)cx in an attempt to decrypt other secrets. Suppose two users with identi-
ties uid and uid′, respectively, try to conspire to merge their secrets e(H(uid), g)cx and
e(H(uid), g)c′x . They cannot cancel each other and thus cannot continue to recover out
e(g, g)usk·y·s.

6.2.4. Adaptive Selection of Ciphertext Indistinguishable Security under Chosen Plaintext
Attack (INDS-CPA)

Let G1 and G2 be two multiplicative cyclic groups of order p and satisfy the bilinear
mapping e : G1 × G1 → G2, g is the G1 generating elements, and randomly selected
a, b, s, z ∈ Z∗p. No probabilistic polynomial-time algorithm can distinguish the tuples
[g, ga, gb, gs, e(g, g)abs] and the tuples [g, ga, gb, gs, e(g, g)z] by a non-negligible advantage,
called the DBDH assumption. If the DBDH problem is intractable, then the VO-PH-
MAABE scheme satisfies the indistinguishable security under the chosen ciphertext attack.
It includes adversary A and challenger B, as follows.

Initialization: Adversary A submits a challenge access policy (M∗, ρ∗) to Chal-
lenger B.

Setup: Challenger B chooses a sufficiently safe parameter λ to run the Setup(1λ)
algorithm to generate the public parameter GP. Challenger B sends GP to adversary A.

Query Phase 1: The adversary adaptively queries the following Oracle.
OAAs: Adversary A specifies a set of corrupted permissions, and for each attribute ω

belonging to the uncorrupted permissions, B runs AASetup(GP, ω) to generate the public
attribute key (e(g, g)αω , gβω ) and returns it to A.

OUAK: Adversary A submits an identity and its corresponding attribute set (uid, S∗)
to B. When the attribute set is insufficient for the challenge access strategy, adversary B

runs UAKGen(uid, (M∗, ρ∗), S∗, GP) to generate the attribute key UAKω,uid, and returns it
to A.

Challenge: A submits two equal-length symmetric keys KEY0 or KEY1 to B. B rolls
a coin to determine the value of γ ∈ {0, 1} and executes Encrypt(KEYγ, Mdata, (M∗, ρ∗),
GP, e(g, g)αω , gβω ). B computes CTKEY = KEY · e(g, g)abs, and for each row M∗ in the
matrix M∗x , B randomly chooses v = (s, r1, r2, . . . , rm) ∈ Z∗p, h = (0, h1, h2, . . . , hm) ∈ Z∗p,
where r1, r2, . . . , rm, h1, h2, . . . , hm are chosen randomly from Z∗p, and computes λx = MxvT

and cx = MxhT . In addition, B randomly chooses z, u1, u2, . . . , ul ∈ Z∗p and computes

C0 = e(g, g)z, C1,x = e(g, g)αρ(x) ·ux , C2,x = gux , C3,x = gcx · gβρ(x) ·ux , C4,x = gcx · gy·λx .
The challenge message CT∗ = ((M∗, ρ∗), gr, CTKEY, C1,x, C2,x, C3,x, C4,x) and sends it to A.

Query Phase 2: Adversary A continues the adaptive query according to Query Phase 1.
Guess: Adversary A makes a guess γ′ ∈ {0, 1}for γ. If γ = γ′, then challenger B

returns 1, and Z = e(g, g)abs; if γ 6= γ′, then B returns 0, and Z = e(g, g)z. If Z = e(g, g)abs,
then Pr[γ = γ′] = 1/2 + ε; if Z = e(g, g)z, then Pr[γ = γ′] = 1/2. Thus, the probability
that B solves the problem is PrB,DBDH = 1/2Pr[γ = γ′|Z = e(g, g)abs] − 1/2Pr[γ =
γ′|Z = e(g, g)z] = ε/2.

In polynomial time, the advantage of challenger B in breaking the DBDH puzzle is
negligible, and similarly, the advantage of A in winning the game ε is also negligible. Thus,
this scheme (VO-PH-MAABE) is INDS-CPA safe.

6.3. Performance Analysis

This section compares and analyzes the existing scheme with this paper’s scheme
in terms of pass-through feature, communication overhead, and computation overhead.
The experiments of this scheme are conducted on Windows 11 with Intel(R) Core(TM)
i5-10505CPU @ 3.20 GHz and 16GB RAM. We use Java18 developed by Oracle Corpora-
tion of America and a 256-bit elliptic curve-based JPBC cryptography library to simulate
this scheme.
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6.3.1. Feature Comparison

As shown in Table 1, we compare our scheme with schemes [6,7,21,24] and [26] in
terms of how attribute authority works, underlying blockchain architecture, policy hiding,
outsourcing decryption, outsourcing verification, and smart contracts. In terms of attribute
authority, schemes [21,26] have assumed trusted CAs and suffer from concentration of
power. Although there is no centralization problem in scheme [7], each AA in the scheme
manages the attributes in the domain independently of each other, so the failure of any
AA affects the attribute management. The attribute Universe in other schemes is managed
by a group of AAs through joint negotiation, which can effectively avoid a single point
of failure and enhance system security. Scheme [24] and our scheme combine blockchain
systems. In terms of protecting sensitive attributes, only scheme [6], scheme [7], and
our scheme implement policy hiding to protect users’ privacy. In terms of outsourcing,
schemes [21,24,26] and our scheme implement outsourced decryption, outsourcing the
complex decryption operations to cloud servers to reduce the computational overhead at
the user side. However, schemes [24,26] are unable to verify the correctness of the results
after outsourcing decryption. Besides, only this scheme achieves distributed management
of attributes and cross-domain computation of keys by using smart contracts.

Table 1. Feature Comparison.

Scheme Attribute Authority Blockchain Policy
Hiding

Outsourcing
Decryption

Outsourcing
Verification Smart Contracts

Qin [21] Single × ×
√ √

×
TMACS [6] Multi-Common ×

√
× × ×

dec-ABE [7] Multi-Common
√

×
√

× ×
BC-SABE [24] Multi-Exclusive ×

√
× × ×

O3-R-CP-ABE [26] Single × ×
√

× ×
Our scheme Multi-Common

√ √ √ √ √

6.3.2. Communication Overhead

Let |G1| and |G2| be the size of the elements in the multiplicative cyclic groups G1,
G2, |Z∗p| denote the size of the elements in the domain Z∗p, Nattr denotes the number of
attributes contained in the parameters, Nu denotes the number of user attributes, U denotes
the number of attributes in the attribute space, Lv denotes the size of the authentication
parameters, and N and n denote the number of representative users and AAs, respectively.
As shown in Table 2, we compare our scheme with existing schemes in terms of public
parameters GP, size of DU complete attribute key SK, size of ciphertext CT, and size
of outsourced decryption ciphertext CT′. During the system initialization phase, our
scheme generates a public parameter GP with a size of 3|G1|+|G2|, which is constant
compared to the scheme [21] and scheme [6]. In our scheme, the complete attribute
private key of DU is SK = {SKC, SKO, usk}, so the length of SK is 2|G1|+|Z∗p|, which is
constant compared to schemes [6,21,24,26]. The size of the ciphertext CT in our scheme
is (3Nattr + 1)|G1|+ (Nattr + 1)|G2|, and our scheme hides the access policy, so it has a
slightly higher communication burden relative to the other parties. Since the encryption
algorithm is only a one-time operation, our scheme does not affect the user experience.
Moreover, the size of the outsourced decryption ciphertext in our scheme is |G2|, and the
size of the outsourced decryption ciphertext sent to DU is shorter compared to scheme [21].
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Table 2. Communication overhead.

Scheme GP SK CT CT ′

Qin [21] (2 + U)|G1|+ |G2| 2|G1|+ Nu|G2| (2Nattr + 1)|G1|+ |G2|+ Lv 2|G2|
TMACS [6] (2U + 2N + n + 10)|Z∗p| (2Nu + 5)|Z∗p| (2Nattr + 1)|G1|+ |G2| −
dec-ABE [7] 2|G1|+ |G2| (Nu + 3)|G1| (2Nattr + 2)|G1|+ (Nattr + 1)|G2| |G2|

BC-SABE [24] 12|G1|+ |G2|+ |Z∗p| |Z∗p| (3Nattr + 2)|G1|+ |G2| −
O3-R-CP-ABE [26] 3|G1|+ |G2| (Nu + 2)|G1|+ |G2| 2Nattr|G1|+ |G2| |G2|

Our scheme 3|G1|+ |G2| 2|G1|+ |Z∗p| (3Nattr + 1)|G1|+ (Nattr + 1)|G2| |G2|

6.3.3. Computation Overhead

As shown in Figure 7, we compare our scheme with schemes [6,7] and scheme [24] in
terms of the computational overhead of decryption on the user side. The horizontal axis is
the number of attributes for which the DU satisfies the access policy, and the vertical axis is
the time consumed for decryption. Assume that before decryption, the DU has calculated
the attributes needed for decryption by the attribute confused key and gr. For the same
gr, the overhead in the subsequent decryption process is negligible since the process only
needs to be calculated once permanently. During the decryption process, the DU only
needs to perform a power operation to recover the symmetric key because the cloud server
performs the outsourced decryption process. With the number of attributes increasing,
compared with scheme [6,7] in which the decryption time increases linearly with the
increase of attribute number, our scheme revolves around 0.043 s. So, our scheme has
higher decryption efficiency compared with schemes [6,7].
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Figure 7. The comparison of our scheme with the TMACS scheme [6], dec-ABE scheme [7], and
BC-SABE scheme [24] in terms of user decryption time.The comparison of user decryption time.

6.3.4. Blockchain Simulation Experiments

To verify the effectiveness of smart contracts, we test the performance of smart con-
tracts using the private chain simulation of Ethereum.

In this experiment, we set the number of authorities to five. As shown in Figure 8,
the horizontal axis is the attributes managed by AAs and the vertical axis is the response
latency of the smart contract. The AMC does not have any computation and only involves
the assignment of attributes, so it does not grow linearly with the number of attributes but
always remains around 0.45 s. The other three contracts run a Lagrangian interpolation
algorithm each time the key is reconstructed, so the response latency of the PAKGC,
the UAKGC, and the UACTGC grows slowly with the number of attributes. The other three
contracts run a Lagrangian interpolation algorithm each time the key is reconstructed, so
the response latency of the PAKGC, the UAKGC, and the UACTGC grows slowly with the
number of attributes. At the number of attributes of 50, the response latencies of PAKGC,
UAKGC, and UACTGC are 1.818 s, 1.702 s, and 1.659 s, respectively. Since it does not affect
the user experience, it is acceptable.
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Figure 8. Response latency of the four contracts in our scheme.

7. Conclusions

In this paper, we proposed a blockchain-based multiple authority attribute-based
encryption EHR access control scheme to solve the access control and security problem
of data in the IOMT environment. Using blockchain smart contracts, we have achieved
cross-domain distributed management of attributes and cross-domain computation of
different authorities, which reduces the cost of cross-domain computation and eliminates
the single-point bottleneck problem of traditional CP-ABE schemes. In the encryption
phase, DO hid the access policy to ensure that the privacy of data users is not leaked to
third parties. In the decryption phase, the computational cost on the user side is reduced
by outsourcing the decryption algorithm. Under the random oracle model, the ciphertext
indistinguishability security under the adaptive selection of plaintext attacks has been
proven. In addition, the scheme algorithm’s efficiency has been analyzed using the JPBC
cryptography library, and the feasibility of smart contracts has been demonstrated using
blockchain simulation experiments.
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