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Abstract: The underwater acoustic target signal is affected by factors such as the underwater envi-
ronment and the ship’s working conditions, causing the generalization of the recognition model is
essential. This study is devoted to improving the generalization of recognition models, proposing
a feature extraction module based on neural network and time-frequency analysis, and validating
the feasibility of the model-based transfer learning method. A network-based filter based on one-
dimensional convolution is built according to the calculation mode of the finite impulse response
filter. An attention-based model is constructed using the convolution network components and full-
connection components. The attention-based network utilizes convolution components to perform
the Fourier transform and feeds back the optimization gradient of a specific task to the network-based
filter. The network-based filter is designed to filter the observed signal for adaptive perception,
and the attention-based model is constructed to extract the time-frequency features of the signal.
In addition, model-based transfer learning is utilized to further improve the model’s performance.
Experiments show that the model can perceive the frequency domain features of underwater acoustic
targets, and the proposed method demonstrates competitive performance in various classification
tasks on real data, especially those requiring high generalizability.

Keywords: underwater acoustics target recognition; deep learning; time-frequency analysis; feature
extraction; data analysis

1. Introduction

Underwater acoustic target passive recognition is a technology that is used to recognize
the target type through a sonar system based on target radiation noise. Generally speaking,
different ship targets have different hull structures, mechanical vibration characteristics
and propeller structures. These factors lead to differences in radiated noise. Furthermore,
due to the difference in ship working conditions and the interference of time-varying and
space-varying underwater acoustic channels and ocean noise, the ship’s radiated noise
collected by hydrophones is complicated and fuzzy. Complexity and fuzziness increase the
difficulty of underwater acoustic target recognition. Therefore, improving the underwater
acoustic target recognition performance of a sonar system can be difficult.

The method based on artificial intelligence enables complex data modelling and is suitable
for algorithm design in complex scenes. Several researchers have applied artificial intelligence
to underwater acoustic target recognition. Nowadays, ship target classification and recognition
methods based on artificial intelligence are mainly divided into two kinds. One is the method
of traditional machine learning, and the other is the method of deep learning. Classical machine
learning methods include feature extraction and classifier design. Researchers extract various
features from the ship’s radiated noise signal based on traditional methods, such as waveform
structure features [1–3], frequency characteristics and time-frequency analysis [4–12], and au-
ditory perception features [13–17]. Then, the extracted features are input into the traditional
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machine learning classifiers, such as the classifier based on the statistical analysis method or the
classifier based on the simple neural network [18,19]. Although traditional machine learning
methods can complete some recognition tasks, recognition accuracy is limited by the complex
underwater environment, diversification of ship target working conditions, feature extraction of
excessive artificial intervention and simple classifier design. To solve these problems, researchers
applied deep learning to underwater acoustic target recognition. Generally speaking, the un-
derwater acoustic target recognition algorithm based on deep learning first inputs the primary
features or original signals into the deep neural network. The neural network then learns from a
large amount of data to generate high-level embedded representations. Finally, these embedded
high-level representations are used for classification. In recent years, a large number of studies
have been conducted on neural network structure [20–23] and learning strategies [24,25] based
on simple feature input or raw signal input. Some studies have been conducted on the perfor-
mance and integration form of multiple feature combinations [26–28] based on the combination
feature method. Furthermore, there are some methods to study data enhancement [29] and
data generation [30] for deep network training. The deep learning method is a data-driven
technology. It learns feature extraction and target representation from training data, avoiding
the inefficiency and information loss of manual feature extraction. However, due to the lack
of underwater acoustic target data, there are still many problems in the application of deep
learning for underwater acoustic target recognition tasks, which are worthy of further study.
When deep learning is used to conduct features on limited data, the neural network may pay
too much attention to information or noise irrelevant to target features but related to dataset
attributes in the learning process, and the features extracted may only apply to the training
dataset and lack interpretability. The random initialization of the neural network model param-
eters, however, introduces many uncertainties, which aggravates the models’ over-fitting on the
limited amount of data. These defects result in the weak generalization ability of the underwater
acoustic target recognition algorithm based on deep learning and limit the practicality of the
underwater acoustic target recognition algorithm. For example, in the case of a limited amount
of training data, the recognition of underwater acoustic targets of the same voyage shows
high accuracy, but the accuracy of underwater acoustic targets of different voyages is seriously
reduced. Similarly, many fields cannot directly use deep learning to model simply because of
data attributes. Researchers try to use domain knowledge or optimization-based strategies to
assist modeling and have made some progress [31–34].

In this paper, to solve the problem of generalization modeling using deep learning,
the design of an interpretable algorithm and the deployment of a transfer learning method
are considered. In terms of interpretable algorithm design, instead of piling up the network
structures, this paper proposes a feature extraction module based on a neural network,
which integrates key technologies of signal processing and neural networks, such as digital
filtering technology, time-frequency analysis technology and attention mechanisms. Using
neural network learning, we try to optimize the design of intelligent algorithms from
an interpretable perspective. In particular, the neural network-based feature extraction
module receives a one-dimensional signal from the time domain and applies a neural
network to realize digital filtering and time-frequency feature extraction. The frequency
band suitable for the current classification task is mined from the signal by the feature
extraction module, and the frequency response of the neural network can be output in
real-time. For the deployment of transfer learning methods, inspired by image recognition,
researchers train the neural network model on the large-scale dataset of ImageNet [35]
and transfer the trained model to downstream image processing tasks, achieving good
results. However, in the field of audio pattern recognition, the performance of pre-trained
audio pattern recognition systems on large-scale datasets is still a problem yet to be solved.
For underwater acoustic target recognition, the feasibility of the pre-trained model needs
to be discussed and verified, especially when the pre-training task is not related to the
underwater acoustic target recognition. The underwater sound recognition performance of
the pre-trained model trained on large-scale audio pattern recognition data is verified in
this paper.
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The following sections are divided into four parts. Section 2 describes the design of the
feature extraction module of an attention-based neural network (FEM-ATNN), including
the design of a time domain filter based on a single convolution kernel and the design
of the Fourier transform module based on the attention mechanism. Section 3 describes
the selection of the network model and the validation of model-based transfer learning.
Section 4 discusses the feasibility and effectiveness of the proposed method in underwater
acoustic target classification tasks and conducts various experiments. Finally, the full text is
summarized in Section 5.

2. Feature Extraction Module of Attention-Based Neural Network

Inspired by time-frequency analysis and the characteristics of neural networks, this
paper constructs a feature extraction module based on neural networks, designing a set of
attention-based digital filters to perform time-domain filtering and extract time-frequency
features. The proposed module can process raw signals end-to-end, which perceives the
optimization parameters according to the specific task and improves the generalization of
the recognition algorithm. Firstly, a time-domain filter based on a single one-dimensional
convolution kernel (1D-CK) is proposed, called a time-domain filter with convolution
kernel (TFCK). TFCK can sense the frequency response of a specific classification task
and implement the equivalent function of a finite impulse response (FIR) filter with the
linear phase. Secondly, a time-frequency analysis module of an attention-based neural
network (TFA-ATNN) is realized using the fully connected network and a set of 1D-CKs.
The Fourier transform component is constructed by 1D-CK. A set of components are
used to construct the time-frequency transposition layer and conduct the time-frequency
information extraction. The information fusion layer is used to fuse the outputs of the
time-frequency transposition layer, and the fusion results are sent to the attention generator
to extract features. A brief description of FEM-ATNN is shown in Figure 1.
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Figure 1. A brief description of the method in this paper: firstly, TFCK is used to filter the raw signal;
secondly, a set of convolution kernels are adopted to extract the time-frequency feature from the
filtered signal; finally, an attention-based network is conducted to features.

2.1. Time-Domain Filter with Convolution Kernel

The FIR filter can retain the target signal and suppress the interference. It performs
weighting processing on the continuous input signal, then obtains the filtered signal by
accumulation. An Nth-order FIR filter multiplies N times and accumulates N-1 times to
complete one filtering operation. This process is expressed as follows:

y(n) =
N−1

∑
k=0

h(k)x(n− k), (1)
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where y(n) and x(n− k) represent the output and input of the filter, h(k) denotes the filter-
ing coefficient, and N denotes the order of the filter. As for one-dimensional convolution
operations with convolution kernels of odd length, it can be expressed as:

y(n) = f

(
N−1

∑
k=0

w(k)x(sn +
N − 1

2
− k) + β

)
, (2)

where y(n) and x(sn + (N − 1)/2− k) denote the output and input of the 1D-CK, w(k)
denotes the weight of the 1D-CK, N denotes the kernel size of the 1D-CK, s denotes the
stride of the convolutional layer, β denotes the bias, and f (·) denotes the activation function.
Therefore, an FIR filter can be designed based on a single 1D-CK that the bias and activation
function of it are removed. When the stride and kernel size of convolution are set to
1 and N, 1D-CK can be treated as a Nth-order FIR filter with a delay of (N − 1)/2. For
the classification task, the FIR filter conducted by 1D-CK can be regarded as an adaptive
filter or a fixed-parameter filter, which can be optimized parameters by gradient descent
adaptively or filtered the raw signal according to fixed optimal parameters, named TFCK.
TFCK is shown in Figure 2.
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Figure 2. The schematic diagram of TFCK.

The parameter design method of TFCK is the same as that of the traditional FIR
filter. For a specific underwater acoustic target recognition task, TFCK can learn the filter’s
frequency response by gradient descent. In other words, it can automatically search for the
frequency range suitable for the current classification task from the data. The adjustment
strategy of TFCK includes two stages: the pre-trained stage and the training stage. In the
pre-trained stage, all parameters of 1D-CK are adaptively learned according to a specific
classification task. By observing the feedback of the neural network, we can analyze
the inner workings and behavior of the models, strengthen the extraction of high-value
information and suppress the perception of noise by the neural network. In the training
stage, we can adjust and fix the parameters of 1D-CK according to the feedback of the
network in the pre-trained stage, optimize the ability of the neural network to suppress
low-value information and make the subsequent network easier to learn the generalized
embedding features. Two stages are shown in Figure 3.
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Figure 4 shows the frequency response of TFCK in the classification task of the
ShipsEar [36] dataset.
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It can be seen that in the classification task of ShipsEar, TFCK is very sensitive to
low-frequency information at the initial stage of training. The training process gradually
amplifies the importance of low-frequency information, and the neural network finds
several peaks with similar intervals. At the last stage of the training process, the perception
of the neural network is finally stabilized within a range, and the redundant information
for the current network architecture and the classification task is fed back. The high-
frequency information of ship radiated noise is seriously lost through the underwater
acoustic channel, and the low-frequency information can spread further in the underwater
environment. Usually, the identifiable information from ship radiated noise received by the
hydrophone is concentrated in the low-frequency of the raw signal. This result means that
the knowledge of TFCK learned from the data is consistent with the cognition of experts
in underwater acoustic target recognition, which is also the same as the objective laws of
physics. According to the result, the differentiated information among categories in the
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data set is mainly concentrated below 600 Hz. Therefore, the parameters of TFCK can
be optimized to complete the classification task better than before. The parameter S of
Equation (2) is set to (4), and the 1D-CK is set according to the traditional low-pass FIR
filter of 1500 Hz cutoff frequency.

2.2. Time-Frequency Analysis Module of Attention-Based Neural Network

As a classical time-frequency analysis method, the short-time Fourier transform (STFT)
can reflect the frequency change of ship radiated noise over time. Firstly, TFA-ATNN uses
a set of 1D-CKs to embed the Fourier transform into the neural network, so that the neural
network is able to extract time-frequency features. Secondly, the attention mechanism is
conducted to improve the perception ability of the neural network for frequency. Discrete
Fourier transform (DFT) can decompose frequency components from complex time-domain
waveforms and is an important method for signal analysis and processing. In this paper,
DFT is realized based on 1D-CK. DFT can be expressed as Equations (3) and (4):

X(k) = DFT[x(n)] =
N−1

∑
n=0

x(n) · e−j 2πk
N n, (3)

x(n) = IDFT[X(k)] =
1
N

N−1

∑
k=0

X(k) · ej 2πk
N n, (4)

where x(n) denotes the time-domain signal sequence, and the discrete Fourier transform
and its inverse transform are DFT[·] and IDFT[·]. In order to realize the discrete Fourier
transform by convolution neural layer, Equation (3) is expressed in matrix form, as follows:

X(0)
X(1)

...
X(N − 1)

 =


W0 W0 · · · W0

W0 W1×1 · · · W(N−1)×1

...
...

...
W0 W1×(N−1) · · · W(N−1)×(N−1)




x(0)
x(1)

...
x(N − 1)

, (5)

where W is used to replace e−j 2π
N . In addition, according to the Euler formula, Equation (3)

can be decomposed into the representation of an imaginary component and a real compo-
nent. The decomposition is as follows:

X(k) =
N−1

∑
n=0

x(n) cos[(
2π
N

)nk]− j
N−1

∑
n=0

x(n) sin[(
2π
N

)nk]. (6)

The typical convolutional neural network layer is represented by Equation (7):

xl
j = f

(
Dl−1

∑
i=1

xl−1
i ∗ kl

ij + bl
j

)
, (7)

where xl
j represents the output feature, kl

ij represents the convolution kernel, Dl−1 rep-

resents the feature set, bl
j represents the bias, j denotes the convolution kernel number, l

denotes the layer number, and ∗ is the convolution operation of the convolutional neural
network. In particular, for the one-dimensional convolution layer that only inputs single-
channel time series signals, when the length of the input signal and the convolution kernel
are equal and the bias, activation function and padding are removed, Equation (7) can be
transformed into Equation (8):

xj(n) = x′(n)wj(n), (8)

where xj(n) represents the output of the convolution kernel, x′(n) represents the input
signal, and wj(n) represents the weight of the convolution kernel. In order to realize the
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Fourier transform, we set two groups of convolution kernels to calculate the imaginary
component and real component of the Fourier transform, respectively. The weights of these
two groups of convolution kernels can be fixed according to the sine basis functions and
cosine basis functions in Equation (6). The number of convolution kernels is constrained
by the number of points in the Fourier transform, and it is also equal to the number of
points in the Fourier transform divided by two and plus one. Therefore, a one-dimensional
convolution layer based on removing bias, activation function and padding can realize
Fourier transform operation. Furthermore, the STFT with different time resolution and
frequency resolution can be realized by optimizing the size, step length and basis function
of the convolution kernel, as shown in Figure 5. This module is called the basic STFT
module based on the convolutional neural network (BSTFT-CNN). In addition, in order to
attenuate sidelobe height and weaken the impact of spectrum leakage, Hanning window
action on convolution kernels. Specifically, the Hanning window with length M is expressed
as Equation (9):

windows(n) =
{

0.5 + 0.5 cos
( 2πn

M−1
)
, 0 ≤ n ≤ M− 1

0, else
. (9)
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Since the parameters of convolution kernels in the BSTFT-CNN are initialized by the
standard sine basis functions and cosine basis functions, the network after the BSTFT-
CNN will learn the frequency components extracted by the BSTFT-CNN indiscriminately.
However, there are obvious frequency domain characteristics in ship radiated noise. The
attention module of the short-time Fourier transform adopts the full connection layer with
shared parameters (FCSP), hoping that the neural network can learn to automatically fuse
the stable frequency components in the input signal and achieve a more stable recognition
effect than before. This paper embeds an attention mechanism into the BSTFT-CNN to
construct a convolution neural network time-frequency feature extraction module with an
attention mechanism, which is called TFA-ATNN, as shown in Figure 6. The TFA-ATNN
adopts the FCSP, hoping that the neural network will automatically extract the stable fre-
quency components in the input signal to improve the stability of the recognition algorithm.

The TFA-ATNN is mainly divided into three stages. In stage 1, the TFA-ATNN uses
two FCSPs to learn the information that stably exists in the imaginary or real component
and combine the components and phase spectrum as a combined features. In stage 2, the
FCSP is used to fuse the combined feature. Feature fusion generates two attention maps,
which are used for enhancement of imaginary and real components, respectively. In the
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last stage, a learnable factor is used to combine the enhanced spectrum generated by the
result of enhancement. Finally, the combination result is the output features that could be
sent to the network for embedding and extracting.
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Specifically, the size of one of the component outputs by the BSTFT-CNN is (T, NF),
where T is the number of time points and NF is the number of frequency points. In order to
make it easier for the model to capture the stable frequency distribution, FCSP is proposed
to constrain the relationship between frequency components. Its operation is expressed as
Equation (10): {

Bi,1 = AiFi,1
Br,1 = ArFr,1

, (10)

where A is one of the output features of the BSTFT-CNN, which includes features of real
components and imaginary components. F is the parameter matrix of the FCSP, and its
size is (NF, NF) in stage 1, which depends on input and output. B is the matrix output
by the FCSP. i represents the imaginary component, r represents the real component, and
subscript 1 represents stage 1. The number of neural units in the single layer of the FCSP is
equal to the number of frequency points.

In stage 2, the TFA-ATNN combines the imaginary component, the real component and
the phase component together, which is different from the classical attention mechanisms,
such as SENet [37] and CBAM [38], to obtain attention information from the current layer
to ensure that the model has sufficient information to extract the relationship between
frequency components. The feature matrix is fused by concat, and the fused matrix is called
C. After the C is obtained, it is input into the FCSP of stage 2, as in Equation (11):{

Bi,2 = f (CFi,2)
Br,2 = f (CFr,2)

, (11)

where f (·) is the gate function, here it is sigmoid. Bi,2 dot multiplication (1 + Ai) to
get D′i, which is called the enhancement imaginary component. Br,2 dot multiplication
(1 + Ar) to get D′r, called the enhancement real component. Finally, the weight factor
p with learning ability is used to fuse enhanced spectrums of the real and imaginary
components. It is convenient for the neural network to initialize the weights of attention
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mechanisms adaptively according to tasks and parameters. Equation (12) describes the
enhancement process: 

M1 =
√

D′ i2 + A2
r

M2 =
√

A2
i + D′r2

M = pM1 + (1− p)M2

, (12)

where M denotes the features extracted by the TFA-ATNN. Except for the parameters in the
BSTFT-CNN, all parameters in the TFA-ATNN are adjusted during the training stage. The
parameters that can be adjusted during the training stage in the TFA-ATNN are presented
in Table 1.

Table 1. Parameters of TFA-ATNN.

Stages Layers Output Shape

Stage 1 FCSP (Imaginary component) (T, NF)
FCSP (Real component) (T, NF)

Stage 2 FCSP (Imaginary component) (T, NF)
FCSP (Real component) (T, NF)

Stage 3 Learnable factor (T, NF)

3. Deployment of Underwater Acoustic Target Recognition Network and Validation of
Model Based Transfer Learning

Deep learning is a data-driven technique where training is performed on datasets and
the trained models can be used to handle specific tasks. Data is scarce for the underwater
acoustic target recognition task, especially in specific application scenarios. Training
the model initialized by random parameters on scarce data always limits the model’s
performance. Initializing the model with pre-trained parameters may improve the model’s
performance, but this improvement depends on the size, type of pre-trained data, and the
way transfer learning is done. The improper use of the pre-trained model will introduce
negative optimization, resulting in a decline in performance. In audio pattern recognition,
many researchers are exploring the effectiveness of the pre-trained model.

Inspired by Large-Scale Pretrained Audio Neural Networks (PANNs) [39], we con-
ducted experiments to verify the applicability of the pre-trained model of the audio pattern
recognition task in the underwater acoustic target recognition task. This paper transfers
the audio pattern recognition model trained on large-scale data (AudioSet [40]) to an un-
derwater acoustic target recognition task. Firstly, a strong audio pattern recognition model
is trained under the condition of large-scale audio pattern recognition data. Then, the pre-
trained model is transferred to the underwater acoustic target recognition task. Specifically,
the parameters of the underwater acoustic target recognition model are initialized by using
the parameters of the audio pattern recognition model. Finally, the transferred underwater
acoustic target recognition model is trained on a specific underwater acoustic signal dataset.
A typical deep neural network for classification is usually composed of two parts. The
first part is the backbone network (Backbone) for extracting high-level features, including
convolutional neural networks (CNN), transformers, time-delay neural networks (TDNN),
etc. The other part is the neural network used for classification, and the fully connected
network (FC) is a classic classification neural network. In order to improve the high-level
feature extraction performance of neural networks, this paper implements model-based
transfer learning on the backbone network. The schematic diagram of the model-based
transfer learning strategy in this paper is shown in Figure 7.

The Visual Geometry Group (VGG) of Oxford University has proposed a backbone
network with superior feature extraction performance called VGGNet [41]. The back-
bone network performs superiorly in image recognition, semantic segmentation, speech
processing and other fields. Since then, researchers have applied VGGNet as a feature
extractor to large-scale audio event detection tasks and achieved excellent results [40,42],
called VGGish. In terms of model selection of the backbone network, this paper designs
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two backbones based on VGGish. VGGish is composed of continuously stacked convolu-
tion kernels, which have strong feature extraction performance and are easy to implement
and expand. Typically, algorithms implemented on the VGGish can easily embed other
deep learning techniques to further improve performance. Therefore, VGGish is suitable as
the backbone for algorithm performance verification. In this paper, we use a pre-trained
model to initialize the parameters in the backbone, and only initialize the common layers
when the layers of different backbones are not completely consistent, to further ensure
the versatility of the algorithm. The method and parameters of pre-training according to
PANNs. Backbone 1 and Backbone 2 are shown in Table 2. In the convolutional layer, the
C(64,3,1) means that there are 64 convolution kernels, the size of each is 3 × 3, and the
stride is 1. Avg-pooling(1,2) means that the average pooling is 1 × 2.
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Table 2. Backbones are used in this paper.

Pre-Trained Backbone Backbone 1 Backbone 2

C(64,3,1)
C(64,3,1) C(64,3,1)C(64,3,1)

Avg-pooling(2,2) Avg-pooling(2,2) Avg-pooling(2,2)
C(128,3,1)

C(128,3,1) C(128,3,1)C(128,3,1)
Avg-pooling(2,2) Avg-pooling(2,2) Avg-pooling(2,2)

C(256,3,1) C(256,3,1)
C(256,3,1)C(256,3,1) C(256,3,1)

Avg-pooling(2,2) Avg-pooling(1,2) Avg-pooling(2,2)
C(512,3,1) C(512,3,1)
C(512,3,1) C(512,3,1)

Avg-pooling(1,1) Avg-pooling(1,2)

After embedding feature extraction of Backbone, the full connected neural network
is used as the classifier to classify the target. The fully connected network structures of
Backbone 1 and Backbone 2 are almost identical, with only slight differences in parameters,
as shown in Table 3. In Table 3, FC(512,256) means that the input size is 512 and the output
size is 256. The x means the number of categories of classified tasks. Connect Backbone
1 and Classifier 1 to construct Network 1, and connect Backbone 2 and Classifier 2 to
construct Network 2. In the training stage of the networks, the classifiers’ parameters are
not initialized with pre-trained parameters, and all parameters need to be adjusted.
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Table 3. Classifiers are used in this paper.

Layers Classifier 1 Classifier 2

Fully Connected FC (512,256) FC (256,256)
Dropout Rate = 0.5 Rate = 0.5

Fully Connected FC (256,x) FC (256,x)
LogSoftmax Sm (x,x) Sm (x,x)

4. Experiments and Discussion
4.1. Experimental Dataset

This paper conducts experiments on ShipsEar that consist of recordings from different
regions of the Spanish Atlantic coastline in northwestern Spain during the autumn of
2012 and the summer of 2013, most of the data was collected at Porto Vigo (42◦14.5′ N
008◦43.4′ W) or nearby. The Port of Vigo is located within the Vigo River, a submerged
river valley 35 km long, 10 km wide at its widest point, and has a maximum depth of less
than 45 m. The recording equipment is the Hyd SR-1 hydroacoustic recorder. The core of
this recorder is a hydrophone with a sensitivity of −193.5 dB re 1 V/1 uPa and a frequency
response range of 1 Hz–28 kHz.

Vigo port is one of the largest fishing ports in the world, and there is a huge flow of
fishing vessels on the waterway. The data-target categories collected in this area are diverse.
Researchers deploy the hydrophones under the water and schedule labels according to
vessel movement information obtained from the port authority and the Automatic Iden-
tification System for vessels. Original recordings were clipped to preserve information
from the beginning to the end of the event or pass-by. ShipsEar comes from these edited
recordings, which included 90 recordings in wav format lasting from 15 s to 10 min. The
recordings contain 11 types of ship radiated noise signals, of which types of ship radiated
noise signals can be divided into five categories based on vessel size according to [36],
as is shown in Table 4. Each recording of ShipsEar contains only one type of vessel. The
records in different recordings may come from different voyages, even if they are the same
vessel type.

Table 4. Target category on ShipsEar.

Category Targets

Class-A Fishing boats, trawlers, mussel boats, tugboats and dredgers
Class-B motorboats, pilot boats, sailboats
Class-C passenger liners
Class-D ocean liners and ro-ro vessels
Class-E ocean noise

4.2. Experimental Methods

This section describes the experimental design and experimental details. This paper
proposed FEM-ATNN to improve the underwater acoustic target recognition model’s
accuracy, robustness and generalization. In addition, we verify the feasibility of applying
the audio data pre-trained model to underwater acoustic target recognition. Due to the
diversity in the speed of vessels, environment and navigation states, there are differences
in ship radiated noise under different voyages. In short, the difference in radiated noise is
closely related to the voyage. The difference in radiated noise at the beginning and end of a
long-term voyage is greater than that in a short period. The difference in radiation noise
between different voyages is more likely than that of the same voyage. For an intelligent
system, the greater the difference between training and test data, the more generalized the
model will be. Generally speaking, there are three ways to divide training data and test data:
random segmentation, front/back segmentation, and different recording segmentation.
Three types of division represent three different task difficulties, from simple to challenging.
The method of evenly segmenting the recordings and randomly selecting the training
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set and test set may obtain high accuracy, but it is too easy and cannot well evaluate the
underwater acoustic target recognition algorithm because the training data and test data
are highly similar in the near seconds. Therefore, this paper designs two classification tasks
according to front/back segmentation and different recording segmentations based on
ShipsEar, selects 88 recordings for experiments, and both tasks divide recordings into five
categories according to Table 4. Task 1 is to construct a fourfold dataset by dividing each of
the recordings into four pieces on average according to the time sequence. This division
method can separate training data and test data to a certain extent, which is suitable for
evaluating the fitting ability of the neural network model. Arranging each recording as
training or test data in a 3-1 ratio is Task 2. Task 2 is difficult because the underwater
acoustic target recognition algorithm should be able to identify the unknown voyages even
if the specific target is not present in the training set. Task 2 is more suitable for evaluating
the algorithm’s generalization and practicability than Task 1. We use Network 1 in Task 1
and conduct Network 2 in Task 2. All data is downsampled to 16 kHz, and 3626 records
of data are obtained through division and simple selection, and the duration of each data
point is 3 s.

Based on two classification tasks, this paper arranges four groups of results com-
parisons to evaluate the proposed method’s performance. The first results compare the
FEM-ATNN with multi-resolution STFT on task 2. The second experiment uses standard
STFT as the primary feature to verify the performance of model-based transfer learning on
task 1. The third experiment conducts the FEM-ATNN and model-based transfer learning
in the same model, evaluates it on Task 1 and Task 2, and compares it with Mel filter bank
energy (FBank), Mel frequency cepstral coefficients (MFCC) and linear frequency cepstral
coefficients (LFCC). The last group of results compares the proposed method with other
methods using ShipsEar in recent years. All the networks are trained by random gradient
descent. Adam is used as the optimizer. The training minibatch is set to 32, the initial
learning rate is set to 0.005, and the learning rate is decreased once every 5000 steps. The
decline factor is 0.1, and a total of 15,000 steps are trained. The extraction methods of FBank,
MFCC and LFCC refer to torchaudio [43]. FBank extracted with window size 2048 and
hop length 1024. For FBank, the number of Mel filters is 128, followed by a logarithmic
operation to extract input features. STFTs also utilize a logarithmic operation to extract
input features in the training stage. For MFCC and LFCC, the number of mfc coefficients is
set to 40, the number of linear filters is set to 128 and the number of lfc coefficients is set to
40. The convolution kernel size of TFCK is set to 63 as a low-pass FIR filter with a 1500 Hz
cutoff frequency, and the parameters are locked in the training stage. The kernel size and
strides of FEM-ATNN are set to 1024 and 512, respectively. Finally, we use recognition
accuracy, recall rate, accuracy, and F1-score to evaluate the performance of the network.

4.3. Experimental Results and Discussion

This paper proposed a time-frequency analysis method based on neural networks, and
our calculation process and implementation were derived from the original Fourier trans-
form. Therefore, the first experiment in this paper compares the proposed method with the
short-time Fourier transform method to consider the advantages of the proposed method.
The STFTs with different parameters carry different information because STFTs with dif-
ferent parameters have different frequencies and time resolutions. It can be predicted
that different pieces of information will lead to different final recognition performances.
Therefore, this paper selects the STFT of a series of typical parameters for comparison to
evaluate the performance of the proposed method. Experiment 1 is carried out on the
most challenging Task 2 to evaluate the generalization of various methods. The STFT with
multi-resolutions as the primary feature is extracted to the same backbone network, and
the classification performance of these primary features is compared with the model based
on the FEM-ATNN. The window length of STFTs is from 512 to 8192, and the hop length is
set to half of the window length. Table 5 shows the result of experiment 1.
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Table 5. Recognition results of the FEM-ATNN and the multi-resolution STFT.

Features Precision Recall F1-Score Accuracy

STFT-512 0.684 0.707 0.690 0.748
STFT-1024 0.720 0.732 0.725 0.755
STFT-2048 0.739 0.761 0.746 0.780
STFT-4096 0.671 0.689 0.656 0.691
STFT-8192 0.650 0.689 0.654 0.680

FEM-ATNN 0.787 0.816 0.797 0.839

The STFT with different resolutions shows different performances in Experiment 1.
Among them, the STFT has the best performance, with a window length of 2048. Its
accuracy rate reaches 78.0%, which is significantly higher than others, especially compared
with the window lengths of 4096 and 8192. The accuracy of the FEM-ATNN reaches 83.9%,
which is 9.1%, 8.4%, 5.9%, 14.8% and 15.9% higher than the STFT with windows lengths
from 512 to 8192, respectively.

Experiment 2 verifies the feasibility of transferring the model, which is pre-trained on
the large-scale audio pattern recognition data, to the underwater acoustic target recognition
task. The advantage of transfer learning is to transfer knowledge from other fields to the
current field. For a simple task with little difference between training data and test data,
the effect is often not noticeable. Therefore, we not only use tasks with differences between
training data and test data but also evaluate the boundary performance of model-based
transfer when the training data and test data are similar. Task 1 provides a variety of test
data and training data combinations, so we conduct experiments on Task 1 to facilitate a
complete evaluation of the algorithm’s performance. Task 1 divides each recording into
four folds in chronological order. The differences between different folds and folds are not
consistent. In other words, it is more challenging to use the head fold as the test set than
the middle fold as the test set because the test data cut from the middle of the recordings
is more similar to the surrounding training data. In order to evaluate it objectively, we
used standard STFT as the primary feature in this experiment to compare the performance
between the pre-trained and the random models. STFT-2048 is input into the backbone
network as the primary feature because it is performed best in Task 2. The results of
Experiment 2 are shown in Table 6.

Table 6. Recognition results of model based transfer learning.

Fold Initialization
Mode Precision Recall F1-Score Accuracy

1
Random 0.875 0.888 0.878 0.870

Pre-trained 0.908 0.909 0.908 0.901

2
Random 0.962 0.955 0.958 0.958

Pre-trained 0.964 0.956 0.960 0.958

3
Random 0.941 0.940 0.941 0.941

Pre-trained 0.950 0.951 0.950 0.944

4
Random 0.886 0.881 0.881 0.875

Pre-trained 0.912 0.919 0.915 0.911

Table 6 shows the performance of the backbone network using pre-trained model
parameter initialization and random initialization. The results show that model-based
transfer learning can improve performance most of the time. The pre-trained model param-
eters can be used to initialize the backbone of the underwater acoustic target recognition
model when the backbone is pre-trained on large-scale audio data unrelated to underwater
acoustics. It is worth noting that the number of layers of the backbone used for underwater
acoustic target recognition is different from that of the pre-trained backbone. We extract
some layer parameters from the pre-training model to initialize all the layer parameters
of the underwater acoustic target recognition backbone. That is, partial layer parameters
are extracted from the pre-training model to initialize all layer parameters of the under-
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water acoustic target recognition network. The simple method effectively improves the
recognition performance.

The previous experiments proved the effectiveness of the proposed method and
the feasibility of model migration, but the experiments were evaluated independently.
Experiment 3 was devoted to the model-based transfer to the FEM-ATNN-based model
(FEM-ATNN-trans) and conducted experiments on Task 1 and Task 2. In addition, the STFT
is only a fundamental time-frequency analysis method used in Experiment 1. Experiment 3
added other mainstream time-frequency analysis methods to the comparison, including
MFCC, LFCC and FBank. The backbone of those methods is consistent with the FEM-
ATNN-based model according to Task 1 and Task 2. The details of those features are
described in the second paragraph of the Experimental Method section. The results are
shown in Table 7.

Table 7. Recognition results of proposed method and methods based on mainstream primary features.

Task Initialization
Mode Precision Recall F1-Score Accuracy

Task 1
(fold 1)

LFCC 0.819 0.826 0.820 0.812
MFCC 0.834 0.838 0.835 0.831
FBank 0.875 0.867 0.879 0.876

FEM-ATNN-trans 0.926 0.939 0.931 0.926

Task 1
(fold 2)

LFCC 0.934 0.932 0.932 0.929
MFCC 0.943 0.941 0.942 0.939
FBank 0.971 0.971 0.971 0.970

FEM-ATNN-trans 0.984 0.978 0.980 0.980

Task 2

LFCC 0.682 0.706 0.684 0.750
MFCC 0.742 0.740 0.739 0.792
FBank 0.747 0.749 0.742 0.793

FEM-ATNN-trans 0.824 0.846 0.833 0.878

For Task 1, fold 1 and fold 2 are selected for the experiment because they are the repre-
sentative subtasks in Task 1, according to challenges. They represent the most challenging
subtasks and the simplest subtasks in Task 1, as shown in Experiment 2. The test data of
fold 1 is in the front of each recording, and the test data of fold 2 is in the middle. The
difference between the test data and the training data of fold 2 is smaller than that of fold 1.

Although the subtask based on fold 2 is easier to achieve high accuracy than the
subtask based on fold 1, it is still meaningful to experiment on the subtask based on fold 2.
An overfitting algorithm may achieve high accuracy in simple tasks and show decadence
in challenging tasks. Conversely, the model with solid generalization may perform both
on complex and simple tasks because it has learned the high-level representation that can
distinguish categories. As shown in Table 7, the FEM-ATNN-trans is superior to other
methods in all tasks, especially in Task 2. The challenge of Task 2 is that it requires the
algorithm to learn adequate generalization information from training data, which must
meet the needs of the underwater acoustic target recognition task. In addition, the accuracy
of the FEM-ATNN-trans is 3.9% higher than that of the FEM-ATNN in Table 5, which further
verifies the effectiveness of the proposed method and model-based transfer learning.

Furthermore, we compare the FEM-ATNN-trans with other existing methods that
have used the ShipsEar dataset, as shown in Table 8. Accuracy is used as a comparative
measure because most papers use it to compare their results. The baseline is a machine
learning method proposed in the ShipsEar research [36] with an accuracy of 75.4%. The
accuracy of our method is the result of the representative subtask of Task 1, according to
Table 7.
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Table 8. Comparison between the proposed method and other methods used ShipsEar.

No. Methods Accuracy

1 Baseline [36] 0.754
2 Optimized Feature Selection based on Genetic Algorithms [44] 0.723
3 DBM [45] 0.903
4 Inter-class and Intra-class [24] 0.840
5 RBM + BP [46] 0.932
6 GAN-based Sample Expansion [47] 0.929
7 CRNN-9 with 3-D Mel and data_aug [29] 0.941
8 ResNet18 for UATR [48] 0.943
9 DAR-AE [49] 0.945
10 Our 0.953

The methods in Table 8 show studies in recent years, and our method shows competi-
tive performance. On the one hand, most of the methods in Table 8 segment the recordings
and randomly sample the adjacent segments as the train or test data, which is lower in clas-
sification difficulty than Task 1 used in this paper. On the other hand, some methods in the
table adopt data augmentation technology, such as methods of No.7 and No.8, which both
used SpecAugment. The FEM-ATNN-trans does not use data augmentation technology
but still performs well.

5. Conclusions

In this paper, a time-frequency feature extraction module based on the attention
mechanism neural network is proposed, which combines the operation mechanism of the
convolutional neural network, time-domain filtering and Fourier transform. The proposed
method can extract the input time domain signal directly, which is an end-to-end training
model. Classic deep learning methods search for features through neural networks such
as black-box models, and it is difficult for researchers to analyze the inner workings and
behavior of the models. The proposed method can output the frequency domain response
of the neural network in real-time. It is convenient for researchers to understand the neural
network learning process, which helps to strengthen the network model and improve
its generalization. In addition, the feasibility of transferring non-underwater acoustic
data as pre-trained data to underwater acoustic target recognition is verified. A series of
classification experiments demonstrate the effectiveness of the proposed method, especially
for tasks with a demand for model generalization ability.
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