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Abstract: Autonomous exploration of autonomous mobile robots in unknown environments is a hot
topic at present. Object detection is an important research direction in improving the autonomous
capability of autonomous mobile robots in unknown environments. In object detection, doors
and windows have many similar features and are difficult to distinguish. Therefore, improving the
detection accuracy of doors and windows is helpful to improve the autonomous ability of autonomous
mobile robots. Aiming at the problem of insufficient doors and windows detection accuracy caused
by the large difference between the receptive fields of doors and windows, this paper proposes
DSPP-YOLO (DenseNet SPP) algorithm. Firstly, on the basis of deepening the network addition,
to prevent the loss of shallow location feature information, some residual blocks in YOLOV3 are
improved to dense blocks by using the idea of DenseNet. Secondly, the spatial pyramid pooling (SPP)
structure is fused into the YOLOV3 feature extraction network to realize multiscale receptive field
fusion. Finally, K-means ++ algorithm is used to re-cluster the size of candidate boxes to reduce the
error caused by candidate boxes. DSPP-YOLO realizes the position detection of doors and windows
by an autonomous robot in an unknown, complex environment. This method is tested. Under the
condition of the same data set, the detection accuracy of the DSPP-YOLO algorithm is 77.4% for doors
and 38.1% for windows. Compared with YOLOV3 algorithm, the calculation consumption time of
the DSPP-YOLO algorithm does not increase, and the detection accuracy of doors is improved by
3.3%, the detection accuracy of windows is improved by 8.8%, and the average accuracy of various
types is improved by 6.05%.

Keywords: target detection; DenseNet; YOLOV3; spatial pooling pyramid

1. Introduction

When autonomous mobile robots perform tasks in unknown and complex environ-
ments, the following accidents may occur: navigation system failure due to collision, or the
inability to accept a GPS signal leading to a loss of communication, which requires it to
have greater autonomy to deal with this situation [1]. In order to improve the autonomous
performance of autonomous mobile robots, many research teams have developed various
advanced technologies. SLAM was first proposed in the 1980s. SLAM technology is now
being used in many scenarios, including simultaneous localization [2,3] and mapping [4].
There is also a VIO algorithm, VINS-Mono, which is an open source by the Hong Kong
University of Science and Technology [5]. Both of them can make autonomous mobile
robots realize an autonomous exploration function.

Object detection is also very important for autonomous exploration of autonomous
mobile robots. With the development of machine learning technology, object detection
and recognition based on deep learning [6,7] has become the mainstream method. Target
detection methods based on deep learning are mainly divided into two types: two-stage
detection and one-stage detection. After entering the deep era, people use candidate boxes
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as target detection methods based on prior knowledge, such as Selective Search [8] and
CPMC [9]. In the subsequent development, people generated candidate regions by the
network itself, and gave them a new name anchor box, which formed a new direction for
object detection task development. However, for some objects with many common features,
such as doors and windows, the target detection results are still not ideal. Therefore, this
paper proposes DSPP-YOLO algorithm based on YOLOV3 algorithm improvement.

The object detection algorithm based on the convolutional neural network (CNN) can
detect the location of doors and windows in unknown complex environments, and meet
the requirements of fast detection speed, strong generalization ability and high accuracy
of autonomous mobile robots in unknown complex environments. In 2014, Girshick
et al. proposed R-CNN algorithm [10], which combines CNN with a selective search
algorithm and uses Support Vector Machine [11] (SVM) for feature classification and region
regression. In 2015, Girshick et al. optimized the structure of R-CNN based on SPP-Net [12],
and improved the Fast R-CNN algorithm [13]. Ren et al. further generated the Faster
R-CNN algorithm based on the Fast R-CNN algorithm, which realized the end-to-end
training through Region Proposal Network [14] (RPN). In order to improve the detection
performance of small targets, T. kong et al. proposed HyperNet [15], which integrates the
information of shallow, middle and deep layers. Dai et al. proposed region-based Fully
Convolutional Network [16] (RFCN) on the basis of Fully Convolutional Networks (FCN).
Despite the high detection accuracy of the two-stage algorithm, it is difficult to improve the
detection rate effectively due to the large amount of computation in selecting candidate
boxes. The one-stage algorithm realizes feature extraction, classification, and regression
in one CNN, treats the whole image as a complete candidate region as input data, and
then regresses the position and category information of the target in the graph. In 2016,
W. Liu et al. put forward the SSD algorithm [17], which improves the detection accuracy
of single-stage detector by multireference and multiresolution detection technology. The
YOLO algorithm proposed by Redmon et al. makes YOLO detection network have the
functions of classification, localization, and detection simultaneously by dividing the
image into multigrid mosaics [18]. In 2017, Cheng et al. proposed the DSSD algorithm
to replace the VGG16 backbone network with ResNet101 to optimize the SDD algorithm.
The YOLO algorithm was optimized to generate the YOLOV2 algorithm [19], and the
anchor box mechanism of the fast R-CNN algorithm was used to make the network have
fine granularity. In 2018, a new algorithm called YOLOV3 was proposed in the backbone
network-Darknet53 [20], which abandoned the idea of full connection layer and fused
residual error.

However, the YOLOV3 algorithm still has the following three problems when the
autonomous mobile robot detects the position of doors and windows: (1) Since windows
with different backgrounds have different features, the features learned by CNN will
change with the background, and it is difficult to find general features. (2) Certain types of
windows and doors have common features that will confuse the network when learning
labels. (3) The size and area of different windows vary greatly, even some remote windows
have the feature of small targets. Therefore, in this paper, we propose the DSSP-YOLO
framework based on YOLOV3 that can help to address these three challenges in the position
detection of doors and windows. Our contribution can be summarized as below:

(1) We propose the DSPP-YOLO algorithm to detect doors and windows in an unknown
environment and optimize the SLAM algorithm to realize the classification of an
unknown environment.

(2) We add down the sampled layer to deepen the Darknet53 network structure to enhance
the learning of target semantic features and integrate the YOLOV3 network framework
with the idea of DenseNet and spatial pooling pyramids to achieve optimization.

(3) We use K-means++ clustering method to generate anchor boxes to improve the
training accuracy. After training, according to the experimental results of the improved
network, we can know that the detection accuracy of doors is improved by 3.3%, the
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detection accuracy of windows is improved by 8.8%, and the average accuracy of
various types is improved by 6.05%.

2. The Algorithm Principle of Yolov3

The YOLOV3 network architecture is shown in Figure 1. It is divided into a feature
extraction part and a target detection part. In the feature extraction part, it continues and
deepens the YOLOV2 backbone network Darknet19. The convolution layer and the batch
normalization layer (batch normalization, BN) and the Leaky ReLU activation function
layer [21] are connected to the basic unit of the network, CBL. Many 1 × 1 and size
3× 3 CBL units are alternately connected to form Darknet53, and a skipping connection
structure is adopted to ensure that the gradient explosion and the training convergence
cannot occur while deepening the network. And in the target detection network part, the
idea of the feature pyramid network (Feature Pyramid Network, FPN [22]) is used for
reference, and the feature maps with sizes of 13× 13, 26× 26, 52× 52 are passed on. After
sampling, it is fused with the upper-layer feature map of the corresponding size to achieve
multi-scale output. The output feature map with the size of 13× 13 has a larger receptive
field and is suitable for larger targets, whereas the output feature map with the size of
52× 52 is suitable for the detection of small targets.
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Figure 1. YOLOV3 network model. 
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Figure 1. YOLOV3 network model.

The basic idea of YOLOV3 algorithm is to divide the input image into S× S grid, when
there is a target center point in the grid, the center point is responsible for predicting the class
position of the target. In order to help predict the size of priori boxes, three sizes of anchor
boxes are set up by K-means algorithm. The detection frames are filtered according to the
threshold of the intersection over union (IOU), and the detection frames with the highest
confidence are output as the final detection results by non-maximum suppression (NMS).

In YOLOV3 algorithm, multi-label training is realized by using a logistic classifier,
and binary cross entropy is used to describe the classification loss function. The smaller
the binary cross entropy is, the smaller the value of the loss function is, and the more the
learning result of the network model is close to the actual result. The expressions of the
loss function are given in (1).
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where, the first line is the error term of center coordinates; The second line is the coordinate
error term of the height and width of the border; The third line is the bounding box
confidence loss of the existing object. The fourth line is the bounding box confidence
loss of non-existent objects. The fifth line is the classification loss of the cell in which the
object resides. S2 is the number of cells, B is the number of bounding boxes predicted
by each grid. Iobj

ij indicates whether the bounding box j in grid i is responsible for the

object; Inoobj
ij indicates that the bounding box j in grid i is not responsible for the object, Ĉj

i

is the parameter confidence, which is jointly determined by Iobj
ij and Inoobj

ij , and λcoord is the
scaling factor to ensure stable convergence in the initial stage of training.

3. DSPP-YOLO
3.1. The Algorithm Design

Applying YOLOV3 algorithm to door and window position detection, the precision of
door and window position detection is much higher than that of window position detection.
There are three reasons for this: (1) compared with the door, the window is a transparent
object, there is no obvious large area, fixed color and other characteristics. Therefore, in the
process of network learning, the features learned by CNN in the window will change with
the change of the background, and it is difficult to find a universal feature as a symbol to
identify the type and location of the window. (2) certain types of windows and doors have
some common features, such as glass doors and French windows, doors with windows.
(3) some high-rise building sample image window size is too small, resolution is too low,
with small target features, less than 32× 32 pixels. Because of the size difference, the
detection network should consider not only the recognition of door semantic information,
but also the determination of remote window position information. If the network depth is
only increased, the feature information of the small-size remote window will disappear in
the deep network due to the down sampled, and the detection accuracy will decrease.

In order to solve these problems, based on the YOLOV3 network structure, this paper
optimizes the network structure of Darknet53 by combining DenseNet [23] and SPP module,
as shown in Figure 2. Firstly, add the Res·4 module between Res·2 and Res·8 models in
Figure 1 to deepen the network hierarchy for more semantic features. Secondly, combining
DenseNet’s idea of dense block and residual block, dense block is used to replace Res·1,
Res·2, Res·4 and Res·8 models. Thirdly, based on the original 3rd output scale 52× 52 feature
map, the 4th output scale 104× 104 is generated by connecting the 3rd output scale with the
24th layer feature map by up sampling. As mentioned above, large-scale feature maps have
smaller receptive fields and are suitable for detecting smaller targets; four-scale output feature
mapping can consider the position detection between the door, the near window and the far
window. Finally, the SPP module is added after the feature extraction network.
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3.2. Improvement of Darknet53

The improvement of the feature extraction network focuses on learning more door
semantic features, while maintaining the original position and semantic information of the
remote window in shallow network. DenseNet’s idea is applied to the feature extraction
network, and dense block des n is added to the feature extraction network.

DenseNet consists of dense blocks, bottleneck layers, and transition layers. The dense
block is similar in structure to the CBL module and consists of a BN Layer, a ReLU Layer,
and a convolution Layer; it is a collection between layers of dense connectivity, as shown in
Figure 3. The dense connection will lead to the repeated use of the feature map, which will
result in the operation load. Therefore, bottleneck layers are set up and a transition layer is
added after each dense block to reduce the dimension of the output feature map, to solve
the problem that the output information is too wide. DenseNet optimizes the learning
result by repeatedly using the feature graph to reduce the number of parameters used. Its
parameter passing mechanism is to let all the convolution layers in the network have a
direct connection, and the convolution input of each layer is the sum of all the convolution
outputs of the upper layer, at the same time, its output will be used as part of the input
of each later convolution layer, which can be connected directly to each other to achieve
maximum information transfer.
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In summary, DenseNet has the advantages of a narrow network structure, few learning
parameters, alleviating gradient disappearance, enhancing feature propagation, and reusing
learned features. Therefore, the first four Res·n modules are improved into Des·n modules
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and the last two Res·n modules are kept unchanged. This change is to superimpose the
remote window position information learned in the shallow network to the deep network.
In the input features, the problem of missing remote window position information after
multiple down sampled is solved, so that the shallow features can be used multiple times
and more effectively while ensuring the depth of the network.

3.3. SPP Module

The SPP module draws on the idea of the image pyramid, as shown in Figure 4. It
consists of multiple pooling layers with different steps. In the network framework designed
in this paper, it consists of three sizes of 5× 5, 9× 9, 13× 13 max pooling layer with stride
1 and a skip connection. The emergence of the SPP module enables the network to ensure
the learning accuracy while ensuring multi-size input. At the same time, the size of the
maximum pooling kernel in the SPP module is the same as the feature map size of the last
Des·n output, which can make local features and global features. Feature fusion enriches
the expressive ability of feature maps, realizes fusion of multiple receptive fields, and
optimizes the large difference in door and window sizes in the data set in this paper. The
SPP module is an independent structure, only at the end of the backbone Darknet53 Partial
addition, no more impact on the overall network structure.
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3.4. K-Means++ Algorithm

Anchor boxes can solve the problem of multiple target objects in the same grid. In
the DSSP-YOLO algorithm, the IOU between the actual detection boxes and the initial
bounding boxes is used as the clustering basis. As shown in (2), the K-Means++ algorithm
is used to cluster the labels in the data set used in this paper. To improve the accuracy of
training and detection. The K-Means++ algorithm is optimized on the basis of the K-Means
algorithm. Assuming that there are already n points as the initial cluster center, when
selecting the n + 1th initial cluster center, the K-Means++ algorithm will preferentially



Appl. Sci. 2022, 12, 10770 7 of 14

select the same as the previous one. The points farther from the center point are used as the
initial cluster center.

d(box, centroid) = 1− IOU(box, centroid)
IOU = Predicted box ∩ Groundtruth box

Predicted box ∪ Groundtruth box
(2)

In the type, centroid is the anchor box. The K-means ++ algorithm has three steps:

(1) A random sample is selected as the initial cluster center in the dataset c1;
(2) Calculate the shortest distance between each sample and the current cluster center, and

calculate the probability that each sample will be selected as the next cluster center,
D(x)2/∑ x∈χD(x)2, and then get the next cluster center through the wheel method;

(3) Repeat the previous step until a given number k of cluster centers are selected and
stop the calculation.

According to the improvement of the output scale in Section 3.1, the number of anchor
boxes are correspondingly increased from 9 to 12. The clustering results are shown in
Table 1. The average IOU value of the new anchor boxes generated after re-clustering is
the same as that of YOLOV3. Compared with the original anchor box, the average IOU is
increased by 10.85%, which is more suitable for the dataset used in this paper.

Table 1. Anchor box size after clustering based on K-Means++.

Feature Map 13 × 13 26 × 26 52 × 52 104 × 104

Receptive field Big Medium Small Smaller

Anchor box
(199× 279) (61× 167) (44× 90) (24× 32)
(145× 195) (83× 102) (16× 105) (18× 16)
(97× 218) (36× 102) (26× 55) (6× 24)

3.5. Pseudocode

In Figure 2, the flow of DSPP-YOLO algorithm is introduced. This section presents the
pseudocode of feature extraction in Algorithm 1 and training model in Algorithm 2.

Algorithm 1 The pseudocode of feature extraction

1. For X = 1; X <= (total number o f training images); X ++

2. Read photos of doors and Windows

3. Divide the picture into n× n areas for use

4. Search for areas with possible target centers

5. Generate bounding boxes in possible regions

6. Predict target width and height

7. According to anchor boxes size and object size adjust bounding boxes size

8. Predict the target category

9. Calculate the confidence score of bounding boxes

10. Output the center coordinates, width and height, and object category of the bounding box
with the highest confidence

11. end for
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Algorithm 2 The pseudocode of training model.

Input: I: set of n training images

M: the width of anchor boxes

N: the height of anchor boxes

Output: P: the target category

(X, Y): coordinates of the center of the bounding boxes

W: the width of the bounding boxes

H: the height of the bounding boxes

1. For n = 1 to I do:

2. According to the feature extraction algorithm to extract the training picture: P, X, Y, W, H

3. Calculate the error between the target center coordinates predicted by the model (X, Y) and
the real training images (Xn, Yn)

4. Calculate the error between the width-height coordinates of the model predicted detection
box (W, H) and the real detection box (Wn, Hn)

5. Calculate the confidence errors of the objects in the predictive detection boxes of models Cn

6. Calculate the confidence errors of the objects is not found in the predictive detection boxes of
models

7. Calculate the error between the prediction categories Pn and P

8. The training model adaptively adjusts learning according to the loss function

9. Convergence of loss function

10. Obtain the training model with the minimum loss function to achieve target detection

4. Experimental Analysis
4.1. Experimental Data Set and Environment

Data set: the experimental data used in this experiment is divided into two parts,
one part is the public images collected on the internet, the other part is the multi-angle,
multi-state images collected by different devices based on the experimental scene, which
are taken in the classrooms and laboratory. There are 1105 samples. The data set of this
experiment covers rich picture information of different shapes, different shooting angles,
different sizes and different scenes of the target, which can increase the generalization
ability of the network. However, some pictures are not clear enough. As shown in Table 2
are the hardware configuration. The total samples are proportionally divided into training
set and test set, and 25% of the training set is divided into cross-validation set, which is
used to verify the periodic learning results in the training process. Figure 5 shows part
of the dataset from different sources. (a) It’s some pictures we found from the Internet.
(b) It’s some pictures we had taken with a mobile phone from different angles. (c) It’s some
pictures we had taken with a car from different angles. All images are not preprocessed
and in rgb format.

Table 2. The hardware configuration of the experiment in this paper.

Hardware Correlation Configuration

Central processing unit Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz
GPU NVIDIA GTX 1080TI

GPU acceleration library CUDA10.1, CuDNN7.6.5
Operating system Ubuntu16.04

Deep Learning Framework Darknet53
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Figure 5. The dataset used in the experiment. (a) Public image. (b) Mobile phone camera shot.
(c) Binocular camera (left eye) shot.

This experiment is trained by GPU acceleration. The relevant configuration of the
experiment is shown in Table 2. The training parameters are selected according to the
experience of multiple experiments. In training, batch refers to the number of samples
for updating training parameters in each batch of batch training, and subdivisions are
subdivisions. The number of batches is used to reduce the burden on the graphics card.
The batch is set to 32, and the subdivisions are set to 8; the momentum parameter is set
to 0.9; the weight decay regular coefficient is set to 0.0005; the initial learning rate is set to
0.01; and the threshold value of IOU in NMS is 0.5.
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4.2. Experimental Results

The loss function of DSPP-YOLO algorithm in training is shown in Figure 6 When the
DSPP-YOLO algorithm has been trained for 22,000 times, the loss function has dropped
below 0.1, and gradually becomes flat, but the loss function fluctuates greatly, due to the
DSPP-YOLO algorithm changing some Res·n modules to Des·n modules.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 14 
 

 

the weight decay regular coefficient is set to 0.0005; the initial learning rate is set to 0.01; 
and the threshold value of IOU in NMS is 0.5. 

Table 2. The hardware configuration of the experiment in this paper. 

Hardware Correlation Configuration 
Central processing unit Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz 

GPU NVIDIA GTX 1080TI 
GPU acceleration library CUDA10.1，CuDNN7.6.5 

Operating system Ubuntu16.04 
Deep Learning Framework Darknet53 

4.2. Experimental Results 
The loss function of DSPP-YOLO algorithm in training is shown in Figure 6 When 

the DSPP-YOLO algorithm has been trained for 22,000 times, the loss function has 
dropped below 0.1, and gradually becomes flat, but the loss function fluctuates greatly, 
due to the DSPP-YOLO algorithm changing some Res·n modules to Des·n modules. 

 
Figure 6. DSPP-YOLO loss function. 

Under the same experimental conditions, the YOLOV1 algorithm, the YOLOV2 algo-
rithm, the YOLOV3 algorithm, the YOLOV3-Tiny algorithm, the YOLOV3-144884 algo-
rithm after extending the Darknet53 backbone network, and the DSPP-YOLO algorithm 
in this paper were trained separately, and the test results are shown in the Table 3 shown. 

Table 3. Comparison of detection indexes between YOLOV3 and DSPP-YOLO. 

  AP 
(Average Precision) 

mAP 
(Mean Average Precision) 

Detection Time  
(136 Images) 

YOLO 
door 70 2. %  45 85. %  7 7032. s  window 21 5. %  

YOLOV2 
door 72 6. %  48%  7 7124. s  window 23 4. %  

YOLOV3-Tiny door 73 9. %  50 7. %  5 34. s  
 window 27 5. %  

YOLO-144884 door 71 3. %  48 35. %  8 0031. s  
 window 25 4. %  

Figure 6. DSPP-YOLO loss function.

Under the same experimental conditions, the YOLOV1 algorithm, the YOLOV2 algo-
rithm, the YOLOV3 algorithm, the YOLOV3-Tiny algorithm, the YOLOV3-144884 algorithm
after extending the Darknet53 backbone network, and the DSPP-YOLO algorithm in this
paper were trained separately, and the test results are shown in the Table 3 shown.

Table 3. Comparison of detection indexes between YOLOV3 and DSPP-YOLO.

AP (Average
Precision)

mAP (Mean
Average Precision)

Detection Time
(136 Images)

YOLO
door 70.2%

45.85% 7.7032 swindow 21.5%

YOLOV2
door 72.6%

48% 7.7124 swindow 23.4%

YOLOV3-Tiny door 73.9%
50.7% 5.34 swindow 27.5%

YOLO-144884
door 71.3%

48.35% 8.0031 swindow 25.4%

YOLOV3
door 74.1%

51.7% 7.7007 swindow 29.3%

DSPP-YOLO
door 77.4%

57.75% 7.906 swindow 38.1%
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According to the Table 3, the detection accuracy of DSPP-YOLO algorithm is 77.4% for
door, 38.1% for window, and the mean average precision is 57.75%. Compared with the
original YOLOV3 algorithm, the detection accuracy is improved by 3.3%, 8.8% and 6.05%
respectively. And with the same amount of test data set being tested, although some Res·n
modules are replaced by Des·n modules. However, the algorithm of DSPP-YOLO algorithm
is only about 2 s slower than that of YOLOV3 algorithm, because it still keeps the hop
connection in the deep network structure and reduces the influence on the detection speed.
Compared with other algorithms in the same series, YOLOV1 algorithm and YOLOV2
algorithm are the earlier and simpler models of YOLO algorithm. However, YOLOV3-tiny
is a variant of YOLOV3 with a simple network structure, which only contains 23 layers of
network and two output scales, so its detection speed is the fastest, only 5.34 s, compared
with DSPP-YOLO, the detection precision of door is only 73.9%, and that of window is
reduced to 27.5%. The YOLOV3-144884 algorithm extends Darknet53 network by adding
a Res·4 module and a lower sampling layer, the Res·2 module of the original YOLOV3 is
extended to Res·4, but it can be seen from the experimental results that the increase of the
network depth leads to the instability of the structure, which leads to the decrease of the
detection precision, therefore, the superiority of DSPP-YOLO algorithm can be verified.

The target detection results of the YOLOV3 algorithm and the DSPP-YOLO algorithm
are shown in Figures 7 and 8. The YOLOV3 algorithm has a big problem in the detection of
the public image part of the data set. Small windows are overlooked, or the detection frame
of the door contains other background distractors. However, DSPP-YOLO can improve this
situation, correcting the small target that was missed in the original network—the remote
window, and the misidentification—taking the entire image as the door and actually being
the window, but since the window is not relatively fixed characteristics, so there will still
be false detections and missed detections.
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5. Conclusions

Based on the YOLOV3 algorithm, this paper proposes an improved algorithm model
for the detection of doors and windows by autonomous mobile robots in unknown
environments-DSPP-YOLO. Firstly, we introduce SPP module to solve the problem of
large sample size gap and inconsistent receiving domain scale. In order to better distin-
guish the semantic information of special types of doors and windows, we add a down
sampled layer to deepen the learning of semantic features. Then, to solve the problem
that the position information of the remote window may be lost in the deep network, we
combined the idea of DenseNet and replaced the first four Res·n modules in the YOLOV3
algorithm with Des·n modules. Finally, the K-means++ algorithm is used to re-cluster the
anchor size to reduce the detection error caused by the candidate frame.

YOLOV3 algorithm is a typical one-stage object detection algorithm, which can be
improved from the following two aspects in the future: (1) We can build a backbone network
with stronger representation ability to improve the accuracy of the algorithm; (2) We can
propose a new loss function to solve the problem of sample imbalance encountered in
the process of object detection. In the future, we plan to apply the doors and windows
object detection in the autonomous exploration algorithm of autonomous mobile robots in
unknown environments.
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