
Citation: Ahn, G.; Kim, K.; Park, W.;

Shin, D. Malicious File Detection

Method Using Machine Learning and

Interworking with MITRE ATT&CK

Framework. Appl. Sci. 2022, 12, 10761.

https://doi.org/10.3390/

app122110761

Academic Editor: Wenbo He

Received: 19 September 2022

Accepted: 20 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Malicious File Detection Method Using Machine Learning and
Interworking with MITRE ATT&CK Framework
Gwanghyun Ahn 1, Kookjin Kim 1,2 , Wonhyung Park 3,* and Dongkyoo Shin 1,2,*

1 Department of Computer Engineering, Sejong University, Seoul 05006, Korea
2 Department of Convergence Engineering for Intelligent Drones, Sejong University, Seoul 05006, Korea
3 Department of Information Security Engineering, Sangmyung University, Cheonan 03016, Korea
* Correspondence: whpark@smu.ac.kr (W.P.); shindk@sejong.ac.kr (D.S.)

Abstract: With advances in cyber threats and increased intelligence, incidents continue to occur
related to new ways of using new technologies. In addition, as intelligent and advanced cyberattack
technologies gradually increase, the limit of inefficient malicious code detection and analysis has
been reached, and inaccurate detection rates for unknown malicious codes are increasing. Thus,
this study used a machine learning algorithm to achieve a malicious file detection accuracy of more
than 99%, along with a method for visualizing data for the detection of malicious files using the
dynamic-analysis-based MITRE ATT&CK framework. The PE malware dataset was classified into
Random Forest, Adaboost, and Gradient Boosting models. These models achieved accuracies of
99.3%, 98.4%, and 98.8%, respectively, and malicious file analysis results were derived through
visualization by applying the MITRE ATT&CK matrix.

Keywords: MITRE ATT&CK; malware detection; dynamic analysis; machine learning

1. Introduction

The number of worldwide Internet users is increasing as a result of the development
of new 5G and artificial intelligence (AI) technologies. Consequently, malicious codes and
cyberattacks that leak user information and cause financial damage are becoming more
sophisticated and intelligent. In 91% of the cases, the inflow path of cyberattacks using
malicious code starts from spear-phishing emails, and such attacks are initiated through
attachments and links containing malicious code [1]. The detection and analysis of existing
intrusions and malicious codes have been performed smoothly using the signature-based
security control system. However, progressively developing malicious codes cannot be
detected and analyzed by the existing security control systems, and false-positive and
false-negative detection can increase explosively, making it difficult for administrators to
judge and respond. In addition, static malicious code analysis technology is weak in terms
of its inability to detect unknown malicious code, and dynamic malicious code analysis
technology can be too slow. In addition, as a result of checking the rate at which the
information protection systems of some companies and institutions can actually detect
cyberattacks, most systems showed a detection rate of 60 to 70%, and about 30% of them
had false detection and exception handling. This is a serious problem.

To respond to this, this paper proposes a method for visualizing malicious file detection
data by applying a static-analysis-based machine learning (ML) algorithm to improve
the shortcomings and mapping the dynamic analysis results to the MITRE ATT&CK
(Adversarial Tactics, Techniques, and Common Knowledge) framework.

The remainder of this paper is organized as follows. Section 2 reviews the ML methods
used in the study and the visualization tool, the MITRE ATT&CK framework. Section 3
describes the experimental methods, and Section 4 contains the experimental results and
discussion. The conclusion is presented in Section 5.

Appl. Sci. 2022, 12, 10761. https://doi.org/10.3390/app122110761 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110761
https://doi.org/10.3390/app122110761
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9094-4053
https://orcid.org/0000-0002-2999-3179
https://orcid.org/0000-0002-2665-3339
https://doi.org/10.3390/app122110761
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110761?type=check_update&version=2

Appl. Sci. 2022, 12, 10761 2 of 22

The main aim of this study was to perform a dynamic analysis of malicious and
suspicious files and apply the results to the MITER ATT&CK framework to visually present
the attack tactics and detailed techniques used for the files. This makes it easier for agents to
identify and respond to threats. In addition, it utilizes the advantages of dynamic-analysis-
based malicious file detection to increase detection accuracy. Malicious and suspicious files
can be detected and analyzed, increasing the reliability of analysis and securing excellent
on-site connectivity.

2. Related Work
2.1. ML

ML is a branch of AI and refers to a data analysis method that automates the building
of analytic models. ML uses a large number of data for training and is mainly used to
classify and predict data through a trained model. This section describes ML procedures
and classification according to the learning methods [2–4].

ML Procedure

The ML procedure involves developing a model using training data and performing a
test using the developed model. For example, ML can be used to create a model that can
identify a person based on their picture, and then the generated model can be used to test
and identify a picture with people in it. Although interpretations of ML procedures can
vary, they are generally classified into seven stages when data management and processes
for learning, such as data collection and preparation, are included in the ML stages [3–5]:

1. Because the quantity and quality of the collected data directly affect the predic-
tive model performance in ML, the first step is to collect high-quality data to build
the model.

2. The collected data are prepared using various preprocessing methods for model
building. For example, preprocessing can be used to increase the size of the dataset
or to denoise and/or segment images. Then, the dataset is split into two parts for
training and testing.

3. Many ML algorithms and models have been developed to solve various problems. In
this step, the most appropriate ML model for the problem to be solved is selected. For
example, some models are suitable for detecting image patterns, whereas others are
more suitable for processing image data.

4. This step is the heart of the ML process. A part of the dataset allocated for training is
used to train the selected model. A model can be built based on trial and error. Thus,
detailed experiments are required.

5. When training is completed, the maturity of the model is verified through a test. This
stage can test the generated model by evaluating how it actually works.

6. After the evaluation, further improvement for learning can be considered, and the
performance of the model can be improved by adjusting the parameters through
hyper-parameter tuning.

7. Because the ultimate goal of ML is to use data to answer problems, the value of ML
models is determined by predicting what the given data mean using the models built
and improved in the previous steps.

2.2. Random Forest (RF)

RF is an ensemble method for learning multiple decision trees. Its model is shown in
Figure 1. As evident from Figure 1, it creates several decision trees with slightly different
characteristics as a result of its randomness and outputs their averaged result. Through
this method, the overfitting phenomenon that occurs when a single decision tree is used
can be reduced [6].

Appl. Sci. 2022, 12, 10761 3 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 23

Figure 1. Random Forest (RF) model.

Various algorithms can be used in the ensemble method. Alternatively, the same

algorithm can be used, but the learning method can be varied by randomly dividing the

training set effectively to produce the desired effects. A process called bagging is used to

generate trees in an RF. Bagging creates a decision tree by randomly selecting data from

a dataset and creating multiple training sets. In this process, samples are extracted using

bootstrap to allow restoration extraction [6]. The variance can be reduced by extracting a

random bootstrap sample multiple times using bootstrap. The average of the extracted

items is called bagging [7].

RF Characteristics

The most important characteristic of an RF is that trees have slightly different

characteristics due to randomness. This characteristic causes the predictions of the trees

to be decorrelated and unrelated to each other. As a result, the overfitting problem is

overcome through randomization to improve the generalization performance.

Additionally, randomization makes the forest robust against noise-containing data. For

randomization, the learning background of each tree and randomized node optimization

are frequently used. These two methods can be used simultaneously to further enhance

the randomization characteristics.

The RF method can be used for both classification and regression problems because

of these characteristics. It is effective for processing large numbers of data, avoids the

overfitting problem that deepens the noise of the model, and improves the accuracy of the

model to reduce the variability of the prediction [8].

2.3. Adaboost (AB) Algorithm

The AB algorithm can be used in combination with many other types of learning

algorithms to improve the performance. It creates a selection criterion with high accuracy

(strong classifier) by combining easy-to-derive selection criteria (weak classifier). AB can

be applied to various situations so that subsequent weak learners can correct

misclassifications by using the previous classifier. In other cases, it is not as susceptible to

overfitting as other learning algorithms. Even if the performance of individual learners is

Figure 1. Random Forest (RF) model.

Various algorithms can be used in the ensemble method. Alternatively, the same
algorithm can be used, but the learning method can be varied by randomly dividing the
training set effectively to produce the desired effects. A process called bagging is used to
generate trees in an RF. Bagging creates a decision tree by randomly selecting data from
a dataset and creating multiple training sets. In this process, samples are extracted using
bootstrap to allow restoration extraction [6]. The variance can be reduced by extracting a
random bootstrap sample multiple times using bootstrap. The average of the extracted
items is called bagging [7].

RF Characteristics

The most important characteristic of an RF is that trees have slightly different character-
istics due to randomness. This characteristic causes the predictions of the trees to be decorre-
lated and unrelated to each other. As a result, the overfitting problem is overcome through
randomization to improve the generalization performance. Additionally, randomization
makes the forest robust against noise-containing data. For randomization, the learning
background of each tree and randomized node optimization are frequently used. These two
methods can be used simultaneously to further enhance the randomization characteristics.

The RF method can be used for both classification and regression problems because
of these characteristics. It is effective for processing large numbers of data, avoids the
overfitting problem that deepens the noise of the model, and improves the accuracy of the
model to reduce the variability of the prediction [8].

2.3. Adaboost (AB) Algorithm

The AB algorithm can be used in combination with many other types of learning
algorithms to improve the performance. It creates a selection criterion with high accuracy
(strong classifier) by combining easy-to-derive selection criteria (weak classifier). AB can be
applied to various situations so that subsequent weak learners can correct misclassifications
by using the previous classifier. In other cases, it is not as susceptible to overfitting as other
learning algorithms. Even if the performance of individual learners is poor, it is possible to
prove that the final model converges to a strong learner if the performance of each learner
is even slightly better than a random estimation [9,10].

Appl. Sci. 2022, 12, 10761 4 of 22

AB refers to one method of training an accelerated classifier. The accelerated classifier
is expressed in Equations (1) and (2) [10].

ft (x) =
1
2

ln(
x

1− x
) (1)

The classifier used in discrete AB expresses the result in the form of {−1.1}, whereas
in real AB, the probability that the classification result is included in each class is expressed
as p(x) = P(y = 1|x). This represents the probability of being included in the element y
class called x. Friedman et al. [10] derived ft(p(x)), which minimizes e−y(Ft−1(x)+ ft(p(x)))

for a fixed p(x) (which is chosen using the least-squares method).

zt =
y∗ − pt(x)

2pt(x)(1− pt(x))

pt(x) =
eFt−1(x)

eFt−1(x)
(2)

wt = pt(x)(1− pt(x))

y∗ =
y + 1

2
AB using logistic regression realizes logistic acceleration. Instead of directly reducing

the error in y, we use a weak learner that minimizes ft(x) (least-squares method) in the
equation. zt is the term that minimizes the log-likelihood error for t using Newton’s
method. Moreover, ft is a weak learner that minimizes zt by using the least-squares
method. The value of p will be close to 0 or 1. Therefore, pt(xi)(1− pt(xi)) will also take a
very small value. If the z term has a large value or does not converge stably, then sample x
is misclassified. This problem was primarily be caused by the inaccuracy of the decimal
point operation and can be avoided by forcing the maximum absolute value of z or the
minimum of w [10].

2.4. Gradient Boosting (GB)

GB is an ML algorithm used for regression and classification tasks. We provide a
predictive model in the form of an ensemble of weak predictive models, which are general
decision trees. When the decision tree is a weak learner, the resulting algorithm is called a
GB tree. The GB tree model is built in a stepwise fashion similar to other boosting methods;
however, it generalizes to other methods by allowing arbitrary optimization [11]. GB is
typically used as a base learner with fixed-sized decision trees. For such scenarios, Friedman
proposed a modification to the GB method that improves the fit of each basic learner [11].

GB iteratively combines weak learners into a single strong learner. It is easiest to
explain in a least-squares regression setup wherein the goal is to teach the model. To
predict a value for form F, ŷi = y, the actual value of the output variable of index n for sets
of size 1

n ∑
i
(ŷi − yi)

2, i is converted to y by minimizing the mean square error [12]. The

accelerated classifier is expressed in Equation (3) [11]:

• ŷi= predicted value F(xi);
• yi = observed value;
• n = number of samples y.

(3)

The GB algorithm is described as follows. Step M: Assume some imperfect model of
m(1 ≤ m ≤ M) GB at each step, Fm (low m, this model simply returns: ŷi = y). With mean
y, to improve Fm, the algorithm needs to add a new estimator (hm(x)). The accelerated
classifier is expressed in Equation (4) [12].

Fm+1(x) = Fm(x) + hm(x) = y (4)

Appl. Sci. 2022, 12, 10761 5 of 22

2.5. Examples of AI-Based Malware Detection Technology
2.5.1. Kaspersky Lab’s ML-Based Malware Detection Technology Research

The Kaspersky Lab’s research direction involves learning ML algorithms with normal
files and malicious codes and then developing a technology that detects whether suspicious
files are malicious as a learning model. As shown in Figure 2, the model was optimized
for malicious code detection by training the learning model with the feature information
(string, command, byte information, API call history, etc.) and labels (normal, malicious,
suspicious) of files [13].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 23

𝑦, to improve 𝐹𝑚, the algorithm needs to add a new estimator (ℎ𝑚(𝑥)). The accelerated

classifier is expressed in Equation (4) [12].

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ𝑚(𝑥) = 𝑦 (4)

2.5. Examples of AI-Based Malware Detection Technology

2.5.1. Kaspersky Lab’s ML-Based Malware Detection Technology Research

The Kaspersky Lab’s research direction involves learning ML algorithms with

normal files and malicious codes and then developing a technology that detects whether

suspicious files are malicious as a learning model. As shown in Figure 2, the model was

optimized for malicious code detection by training the learning model with the feature

information (string, command, byte information, API call history, etc.) and labels (normal,

malicious, suspicious) of files [13].

Figure 2. Basic malware detection system using machine learning (ML).

In addition, the Kaspersky Lab constructed an ML-based malware detection system

and tested the detection process by dividing the detection process into the malware pre-

execution stage and post-execution stage. The training information is utilized in the

training phase when identifying the best model that produces the correct label Y for an

entity given feature set X. In the case of malicious file detection, X acts as some function

of the file content or file statistics, and a list of API functions is used. Label Y is a more

accurate classification for malware or viruses and trojans. In the case of malware detection,

it is a protection level. The system provides the user with a trained model that makes

autonomous decisions based on model predictions. However, this can have adverse

consequences for users, such as accidentally uninstalling OS drivers. To prevent such

mistakes, a process that can classify normal/malignant/suspicious files through training

and verification steps using an ML algorithm is presented [13].

During the training phase, you need to choose a model family such as neural

networks or decision trees, as shown in Figure 3. Each model in the family is usually

determined by its parameters. Training means searching for a model within a selected

family with a specific set of parameters that gives the most accurate answer to a model

trained on a set of reference objects according to a specific metric. That is, it "learns" the

optimal parameters that define a valid mapping from X to Y. After training the model and

checking its quality, we are ready for the next step: applying the model to new objects. At

this stage, the model type and its parameters remain unchanged. The model only

produces predictions.

Figure 2. Basic malware detection system using machine learning (ML).

In addition, the Kaspersky Lab constructed an ML-based malware detection system
and tested the detection process by dividing the detection process into the malware pre-
execution stage and post-execution stage. The training information is utilized in the training
phase when identifying the best model that produces the correct label Y for an entity given
feature set X. In the case of malicious file detection, X acts as some function of the file content
or file statistics, and a list of API functions is used. Label Y is a more accurate classification
for malware or viruses and trojans. In the case of malware detection, it is a protection level.
The system provides the user with a trained model that makes autonomous decisions based
on model predictions. However, this can have adverse consequences for users, such as
accidentally uninstalling OS drivers. To prevent such mistakes, a process that can classify
normal/malignant/suspicious files through training and verification steps using an ML
algorithm is presented [13].

During the training phase, you need to choose a model family such as neural networks
or decision trees, as shown in Figure 3. Each model in the family is usually determined
by its parameters. Training means searching for a model within a selected family with a
specific set of parameters that gives the most accurate answer to a model trained on a set of
reference objects according to a specific metric. That is, it "learns" the optimal parameters
that define a valid mapping from X to Y. After training the model and checking its quality,
we are ready for the next step: applying the model to new objects. At this stage, the model
type and its parameters remain unchanged. The model only produces predictions.

As shown in Figure 4, pre-execution was conducted on the user’s computer using
a similarity hash mapping combined with a decision tree ensemble. When applied to
executable file functions, this algorithm provides specific similarity hash mappings along
with useful detection capabilities. Several versions of this mapping were trained with
different sensitivities to local transformations of different feature sets. One version of the
similarity hash mapping focused more on capturing the executable file structure while
giving less attention to the actual content. Another focused more on capturing the ASCII
string of the file. This feature could be used to detect the presence of unknown malicious
packets through file content statistics. The most important information related to potential

Appl. Sci. 2022, 12, 10761 6 of 22

behavior is concentrated in the OS API used, the file name created, the URL accessed, or
another string.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 23

Figure 3. ML: detection algorithm life cycle.

As shown in Figure 4, pre-execution was conducted on the user’s computer using a

similarity hash mapping combined with a decision tree ensemble. When applied to

executable file functions, this algorithm provides specific similarity hash mappings along

with useful detection capabilities. Several versions of this mapping were trained with

different sensitivities to local transformations of different feature sets. One version of the

similarity hash mapping focused more on capturing the executable file structure while

giving less attention to the actual content. Another focused more on capturing the ASCII

string of the file. This feature could be used to detect the presence of unknown malicious

packets through file content statistics. The most important information related to potential

behavior is concentrated in the OS API used, the file name created, the URL accessed, or

another string.

Figure 4. ML: segmentation of object space.

The results of the similarity hashing algorithm were combined with other ML-based

detection methods for more accurate detection by the system. To analyze the files in the

pre-execution stage, the Kaspersky Lab combined the similarity hashing approach with

Figure 3. ML: detection algorithm life cycle.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 23

Figure 3. ML: detection algorithm life cycle.

As shown in Figure 4, pre-execution was conducted on the user’s computer using a

similarity hash mapping combined with a decision tree ensemble. When applied to

executable file functions, this algorithm provides specific similarity hash mappings along

with useful detection capabilities. Several versions of this mapping were trained with

different sensitivities to local transformations of different feature sets. One version of the

similarity hash mapping focused more on capturing the executable file structure while

giving less attention to the actual content. Another focused more on capturing the ASCII

string of the file. This feature could be used to detect the presence of unknown malicious

packets through file content statistics. The most important information related to potential

behavior is concentrated in the OS API used, the file name created, the URL accessed, or

another string.

Figure 4. ML: segmentation of object space.

The results of the similarity hashing algorithm were combined with other ML-based

detection methods for more accurate detection by the system. To analyze the files in the

pre-execution stage, the Kaspersky Lab combined the similarity hashing approach with

Figure 4. ML: segmentation of object space.

The results of the similarity hashing algorithm were combined with other ML-based
detection methods for more accurate detection by the system. To analyze the files in the
pre-execution stage, the Kaspersky Lab combined the similarity hashing approach with
other trained algorithms in a two-stage approach. To train this model, we used a large
malware dataset [13].

As shown in Figure 5, the pre-execution stage is divided into basic detection, deep
detection, and learning rare malicious code according to malicious code information. Basic
detection plays a role in classifying code as normal or malicious by learning similarity
hashing with the basic characteristic information of executable files. Similarity hashing
classifies malicious files into an appropriate bucket according to the hash value of the
feature information, and it performs in-depth detection when a normal/malicious file is
mixed in a bucket. In deep detection, a similarity hashing function is trained with all the
extractable lightweight features and then classifies files as normal/malignant using an

Appl. Sci. 2022, 12, 10761 7 of 22

ensemble algorithm. If normal/malicious files are mixed in the classification result, the rare
malicious code learning step is performed.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 23

other trained algorithms in a two-stage approach. To train this model, we used a large

malware dataset [13].

As shown in Figure 5, the pre-execution stage is divided into basic detection, deep

detection, and learning rare malicious code according to malicious code information. Basic

detection plays a role in classifying code as normal or malicious by learning similarity

hashing with the basic characteristic information of executable files. Similarity hashing

classifies malicious files into an appropriate bucket according to the hash value of the

feature information, and it performs in-depth detection when a normal/malicious file is

mixed in a bucket. In deep detection, a similarity hashing function is trained with all the

extractable lightweight features and then classifies files as normal/malignant using an

ensemble algorithm. If normal/malicious files are mixed in the classification result, the

rare malicious code learning step is performed.

Figure 5. Pre-execution basic detection and deep detection processing process.

The extracted feature information is applied to ML and deep learning (DL) models

that detect rare malicious codes and similar malicious codes. If it is difficult to classify

malicious files in the pre-execution stage because of encryption or obfuscation, the post-

execution stage is performed. The post-execution stage detects malicious code by training

a DL model with the information collected by executing the malicious file.

As shown in Figure 6, it creates behavior graphs and behavior patterns using the

process and behavior records collected when executing malicious code, extracts key

characteristic information about the behavior patterns created with a DL-based model,

and then classifies and judges them as normal/malignant through the classification model.

An experiment showed that considering the robustness, scalability, throughput, and

explainability of the system, a good detection performance was guaranteed even for small

changes in malicious code. In addition, a system was built that is suitable for processing

a large amount of malicious code and allows a user to understand the detection results

[13].

Figure 5. Pre-execution basic detection and deep detection processing process.

The extracted feature information is applied to ML and deep learning (DL) models that
detect rare malicious codes and similar malicious codes. If it is difficult to classify malicious
files in the pre-execution stage because of encryption or obfuscation, the post-execution
stage is performed. The post-execution stage detects malicious code by training a DL model
with the information collected by executing the malicious file.

As shown in Figure 6, it creates behavior graphs and behavior patterns using the
process and behavior records collected when executing malicious code, extracts key char-
acteristic information about the behavior patterns created with a DL-based model, and
then classifies and judges them as normal/malignant through the classification model. An
experiment showed that considering the robustness, scalability, throughput, and explain-
ability of the system, a good detection performance was guaranteed even for small changes
in malicious code. In addition, a system was built that is suitable for processing a large
amount of malicious code and allows a user to understand the detection results [13].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 23

Figure 6. Post-execution processing process.

2.5.2. Research on NVIDIA’s DL-Based Malware Detection Technology

As shown in Figure 7, NVIDIA conducted an experiment to detect malicious files by

training a DL model with the byte information of files to detect malicious files in Windows

executable files. As for the system configuration, the system for detecting malicious files

consisted of preprocessing the byte information of executable files, training a DL model

with the byte information, and classifying normal and malicious files [14,15].

Figure 7. DL-based malware classification model architecture.

To preprocess the input value for learning the DL model, the byte information

(hexadecimal) of the executable file was converted into a form suitable for the input value

of the learning algorithm. It learned by applying a gate structure that performed two

convolutional operations on a convolutional neural network and adding a structure for

Figure 6. Post-execution processing process.

Appl. Sci. 2022, 12, 10761 8 of 22

2.5.2. Research on NVIDIA’s DL-Based Malware Detection Technology

As shown in Figure 7, NVIDIA conducted an experiment to detect malicious files by
training a DL model with the byte information of files to detect malicious files in Windows
executable files. As for the system configuration, the system for detecting malicious files
consisted of preprocessing the byte information of executable files, training a DL model
with the byte information, and classifying normal and malicious files [14,15].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 23

Figure 6. Post-execution processing process.

2.5.2. Research on NVIDIA’s DL-Based Malware Detection Technology

As shown in Figure 7, NVIDIA conducted an experiment to detect malicious files by

training a DL model with the byte information of files to detect malicious files in Windows

executable files. As for the system configuration, the system for detecting malicious files

consisted of preprocessing the byte information of executable files, training a DL model

with the byte information, and classifying normal and malicious files [14,15].

Figure 7. DL-based malware classification model architecture.

To preprocess the input value for learning the DL model, the byte information

(hexadecimal) of the executable file was converted into a form suitable for the input value

of the learning algorithm. It learned by applying a gate structure that performed two

convolutional operations on a convolutional neural network and adding a structure for

Figure 7. DL-based malware classification model architecture.

To preprocess the input value for learning the DL model, the byte information (hex-
adecimal) of the executable file was converted into a form suitable for the input value
of the learning algorithm. It learned by applying a gate structure that performed two
convolutional operations on a convolutional neural network and adding a structure for
classifying whether it was normal or malignant. Normal files and malicious codes were
classified using the DL results.

To derive the classification criteria, NVIDIA used the class activation map (CAM)
method to find the basis for classifying executable files as malicious codes. In the learn-
ing process of the CAM method, the value that has the greatest influence on the nor-
mal/malignant classification is identified inversely to confirm the part of the input byte
information that affects the classification. This process is illustrated in Figure 8 [15].

The validity of the proposed model (Malconv) was verified by comparing its accuracy
with that of the learning model using byte block and file meta information as feature
information by NVIDIA.

As seen in the experiment, NVIDIA guaranteed good detection performance even
for small changes in malicious code by considering the generality, robustness, scalability,
throughput, explainability, and dependency on feature information when designing a
system. Additionally, for a general-purpose system, a dataset for training was used. By
using only byte information, the process of extracting feature information was reduced,
and a system was built that was suitable for processing a large amount of malicious code
and could help administrators understand the detection results.

Appl. Sci. 2022, 12, 10761 9 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 23

classifying whether it was normal or malignant. Normal files and malicious codes were

classified using the DL results.

To derive the classification criteria, NVIDIA used the class activation map (CAM)

method to find the basis for classifying executable files as malicious codes. In the learning

process of the CAM method, the value that has the greatest influence on the

normal/malignant classification is identified inversely to confirm the part of the input byte

information that affects the classification. This process is illustrated in Figure 8 [15].

Figure 8. Searching for byte part with the greatest impact on malicious code classification using the

class activation map (CAM) method.

The validity of the proposed model (Malconv) was verified by comparing its accu-

racy with that of the learning model using byte block and file meta information as feature

information by NVIDIA.

As seen in the experiment, NVIDIA guaranteed good detection performance even for

small changes in malicious code by considering the generality, robustness, scalability,

throughput, explainability, and dependency on feature information when designing a sys-

tem. Additionally, for a general-purpose system, a dataset for training was used. By using

only byte information, the process of extracting feature information was reduced, and a

system was built that was suitable for processing a large amount of malicious code and

could help administrators understand the detection results.

2.6. Malicious File Detection Method

Malicious file detection can be based on static and dynamic analyses. Malicious file

detection based on static analysis involves detecting malicious code by extracting the char-

acteristics of the file. It does not directly execute the file, and it has the advantages of fast

detection and high accuracy. However, because the previously analyzed malicious files

are detected based on the collected database, unknown malicious codes cannot be de-

tected. Malicious file detection based on dynamic analysis involves detecting malicious

files by directly executing the file in a virtual environment (VMware, Virtual Box, etc.) and

analyzing it. It can detect and analyze unknown malicious files, but the disadvantage is

that detection is slow and the efficiency is low [16,17]. Preliminary work on malware anal-

ysis using static analysis mainly focused on malware detection approaches. Known mal-

ware patterns were identified in [18]. Evaluation of a printable character-based malicious

Figure 8. Searching for byte part with the greatest impact on malicious code classification using the
class activation map (CAM) method.

2.6. Malicious File Detection Method

Malicious file detection can be based on static and dynamic analyses. Malicious file
detection based on static analysis involves detecting malicious code by extracting the
characteristics of the file. It does not directly execute the file, and it has the advantages
of fast detection and high accuracy. However, because the previously analyzed malicious
files are detected based on the collected database, unknown malicious codes cannot be
detected. Malicious file detection based on dynamic analysis involves detecting malicious
files by directly executing the file in a virtual environment (VMware, Virtual Box, etc.) and
analyzing it. It can detect and analyze unknown malicious files, but the disadvantage is that
detection is slow and the efficiency is low [16,17]. Preliminary work on malware analysis
using static analysis mainly focused on malware detection approaches. Known malware
patterns were identified in [18]. Evaluation of a printable character-based malicious PE file-
detection method via an approach using semantic behavior to prevent some specific code
obfuscation was presented in 2021 [19]. The PE file we used is a file format for executable
files, DLL object codes, FON font files, etc., used in the Windows operating system. The OE
file refers to a data structure encapsulating information necessary for the Windows loader
to manage executable codes. There are four types of PE files: Execution, Driver, Library, and
Object. Executables include EXE and SCR, Drivers include SYS and VXD, and the Library
family includes DLL, OCX, CPL, and DRV. There is OBJ in the object family. The reason why
you should use a PE file is that the PE structure can see all the information for the file to be
executed. You can check the API used by the program or which memory address the file
is loaded into. Through the PE file, it is possible to check and collect various information,
such as file attribute values, header values, signatures, magic, AddressOfEntryPoint, Image
Base, and SizeOfHeader. We extracted the aforementioned information through the Google
Colab analysis environment, which can analyze PE files based on Python [19].

Pandey, Sonal, Lal, and Ram and Schultz et al. proposed a study to improve the
accuracy and speed of Opcode-based Android malware detection using machine learn-
ing techniques [20]. In 2021, Amirah Alshammari and Abdulaziz proposed a method to
efficiently detect and analyze malicious network traffic in cloud computing by applying
machine learning technology [21]. In 2020, Firoz Khan et al. [22] suggested that malicious
URL detection is an important part of many cybersecurity applications and has provided a
robust way to incorporate the necessary security measures into machine learning strate-
gies. In this study, we developed a complete prototype for detection of malicious URLs

Appl. Sci. 2022, 12, 10761 10 of 22

using machine learning methods. In particular, we proposed an approach that attempts
an exact formulation of malicious URL exposure from a machine learning perspective
and uses the AdaBoost algorithm. The proposed approach has higher accuracy than
other existing algorithms. The reason for choosing this particular boosting technique
was that the AdaBoost algorithm could be used with other machine learning algorithms.
Tina Rezaei et al., “A PE header-based method for malware detection using clustering and
deep embedding techniques”, Journal of Information Security and Applications, Vol. 60, August
2021 [23], Ce Liab et al., “A novel deep framework for dynamic malware detection based
on API sequence intrinsic features”, Computers & Security, Vol. 116, Issue C, May 2022 [24],
Arzu Gorgulu et al., “Sequential opcode embedding-based malware detection method”,
Computers & Electrical Engineering, Vol. 98, March 2022 [25], and Ahmed Bensaoud et al.,
“Deep multi-task learning for malware image classification”, Journal of Information Security
and Applications, Vol. 64, February 2022 [26].

Recently, a malware dataset released on Kaggle was studied [27]. Ahmadi et al. [28]
used Microsoft malware datasets to perform 16-dump-based functions (n-gram, metadata,
entropy, image representation, and string length) and extracted functions from disassem-
bled files (metadata, opcode, register, etc.). They obtained a 99.8% detection accuracy
using the XGBoost classification algorithm. In 2017, Drew et al. [29] used a super threaded
reference-free alignment-free Nsequence decoder (STRAND) classifier to classify polymor-
phic malware and presented an ASM sequence model that achieved an accuracy of over
99.59% through replacement verification.

2.7. Visualization Using MITRE ATT&CK Framework

MITRE ATT&CK is an abbreviation of Adversarial Tactics, Techniques, and Common
Knowledge. After observing actual cyberattack cases, the malicious behaviors used by at-
tackers are analyzed from the perspective of attack methods (tactics) and technology. These
are standard data that classify and catalog information about attack methods used by threat
actors. Figure 9 is a framework derived from a part of the ATT&CK matrix proposed by
MITRE. It is a systematization (patterning) of threatening tactics and techniques to improve
the detection of intelligent attacks, which is slightly different from the concept of the tradi-
tional cyber kill chain. It started by documenting TTPs such as methods (tactics), techniques
(techniques), and procedures (procedures). Afterwards, it developed into a framework
that can identify the attacker’s behavior by mapping the TTPs’ information based on the
analysis of the consistent attack behavior pattern generated by the attacker [30–33].

The MITRE ATT&CK website provides information in various categories, such as
Matrices Mitigations, Groups, and Software, and through this, you can check attack infor-
mation and countermeasures related to tactics and techniques of the system. The matrix
information visualizes the concepts and relationships of attack techniques, tactics and
technique. Here, tactics represents the action according to the attacker’s attack goal, and
techniques represents the method for the attacker to achieve tactics for the goal. Mitigations
refers to actions (techniques) that defenders (administrators) can take to prevent and detect
attacks. Groups means data organized by analyzing information and attack techniques on
publicly named hacking groups, and software means data organized by hacking tools used
by hackers.

2.8. Voting Classifier Ensemble Modeling Studies

The study proposed by Kye Woong Lee et al. [34] combined 132 feature points, learned
a model using Decision Tree, Random Forest, Gradient Boosting, Adaboost, and XGBoost
with 98 methods excluding 34 privileges, and measured the validation accuracy within the
table number for each single algorithm. As a result of the measurement, the accuracy of DT
93.1%, RF 95.2%, GB 94.9%, AB 93.9%, and XGB 93.8% was confirmed.

Appl. Sci. 2022, 12, 10761 11 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 23

a framework that can identify the attacker’s behavior by mapping the TTPs’ information

based on the analysis of the consistent attack behavior pattern generated by the attacker

[30–33].

The MITRE ATT&CK website provides information in various categories, such as

Matrices Mitigations, Groups, and Software, and through this, you can check attack infor-

mation and countermeasures related to tactics and techniques of the system. The matrix

information visualizes the concepts and relationships of attack techniques, tactics and

technique. Here, tactics represents the action according to the attacker’s attack goal, and

techniques represents the method for the attacker to achieve tactics for the goal. Mitiga-

tions refers to actions (techniques) that defenders (administrators) can take to prevent and

detect attacks. Groups means data organized by analyzing information and attack tech-

niques on publicly named hacking groups, and software means data organized by hack-

ing tools used by hackers.

Figure 9. MITRE ATT&CK Framework.

2.8. Voting Classifier Ensemble Modeling Studies

The study proposed by Kye Woong Lee et al. [34] combined 132 feature points,

learned a model using Decision Tree, Random Forest, Gradient Boosting, Adaboost, and

XGBoost with 98 methods excluding 34 privileges, and measured the validation accuracy

within the table number for each single algorithm. As a result of the measurement, the

accuracy of DT 93.1%, RF 95.2%, GB 94.9%, AB 93.9%, and XGB 93.8% was confirmed.

Choi Seung-oh et al. [35] proposed building a test bed to analyze MITRE ATT&CK

tactics and techniques and to collect elastic-based control system security datasets. The

main aim is to develop a tool that transforms and expands the dataset obtained from the

test bed according to various user scenarios in order to overcome the limitations of the

dataset collected from the test bed. However, from the point of view of this thesis, it can

be regarded as a proposed study based on simple collection and monitoring in terms of

security control.

In the study by Kris Oosthoek et al. [36], we observed an increasing number of tech-

niques applied to sideload DLLs to evade fileless malware execution, security software

Figure 9. MITRE ATT&CK Framework.

Choi Seung-oh et al. [35] proposed building a test bed to analyze MITRE ATT&CK
tactics and techniques and to collect elastic-based control system security datasets. The
main aim is to develop a tool that transforms and expands the dataset obtained from the
test bed according to various user scenarios in order to overcome the limitations of the
dataset collected from the test bed. However, from the point of view of this thesis, it can
be regarded as a proposed study based on simple collection and monitoring in terms of
security control.

In the study by Kris Oosthoek et al. [36], we observed an increasing number of
techniques applied to sideload DLLs to evade fileless malware execution, security software
detection, and defense within our dataset, and more sophisticated techniques and command
and control (C&C) were observed. These observations have identified ways in which
malware authors are innovating technologies to circumvent traditional defenses.

Amir Afianian et al. [37] proposed Malware Dynamic Analysis Evasion Techniques:
A Survey. This content appears to have used a sandbox and seems to be a research topic
using technologies that can be analyzed manually and automatically.

The comparative analysis results of these studies and this paper are dealt with in
Section 5: Comparison.

3. Materials and Methods

After analyzing files using static analysis techniques, a pre-trained ML model was
applied to a dataset containing malicious and normal files, and the ML model identified
malicious/normal/suspicious files. At this time, if a dynamic analysis was performed and
the detection data result was mapped to the ATT&CK framework through app.any.run,
the experiments showed that the detection result could be visualized using the ATT&CK
framework.

3.1. Flowchart of Experimental Process

The experimental environment and process followed in this study are illustrated
in Figure 10.

Appl. Sci. 2022, 12, 10761 12 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 23

detection, and defense within our dataset, and more sophisticated techniques and com-

mand and control (C&C) were observed. These observations have identified ways in

which malware authors are innovating technologies to circumvent traditional defenses.

Amir Afianian et al. [37] proposed Malware Dynamic Analysis Evasion Techniques:

A Survey. This content appears to have used a sandbox and seems to be a research topic

using technologies that can be analyzed manually and automatically.

The comparative analysis results of these studies and this paper are dealt with in

Section 5: Comparison.

3. Materials and Methods

After analyzing files using static analysis techniques, a pre-trained ML model was

applied to a dataset containing malicious and normal files, and the ML model identified

malicious/normal/suspicious files. At this time, if a dynamic analysis was performed and

the detection data result was mapped to the ATT&CK framework through app.any.run,

the experiments showed that the detection result could be visualized using the ATT&CK

framework.

3.1. Flowchart of Experimental Process

The experimental environment and process followed in this study are illustrated in

Figure 10.

Figure 10. Experimental environment and configuration diagram.

There are two ways to analyze a dataset to derive results. First, if train and test split

is applied and data preprocessing is performed, all information in the dataset is clas-

sified into malicious, normal, and suspicious file information. Among these, data that

cannot be classified can be regarded as a suspicious file, and a dynamic analysis is

performed on the suspicious file and the result is applied to the MITER ATT&CK

framework to provide a visual part.

Second, in order to increase the detection accuracy of normal and malicious files

when classifying datasets, selector codes for machine learning models are generated

and selected using Random Forest, Adaboost, and Gradient Boosting algorithms, and

the algorithm is improved by repeating training and testing. It is possible to extract

the result of the detection rate.

3.2. Experimental Environment

For the virtual machine used for a dynamic analysis, with the Ubuntu and Windows

7 operating systems, the app.any.run system was used, with the Python pefile module

Figure 10. Experimental environment and configuration diagram.

There are two ways to analyze a dataset to derive results. First, if train and test split is
applied and data preprocessing is performed, all information in the dataset is classified
into malicious, normal, and suspicious file information. Among these, data that cannot be
classified can be regarded as a suspicious file, and a dynamic analysis is performed on the
suspicious file and the result is applied to the MITER ATT&CK framework to provide a
visual part.

Second, in order to increase the detection accuracy of normal and malicious files when
classifying datasets, selector codes for machine learning models are generated and selected
using Random Forest, Adaboost, and Gradient Boosting algorithms, and the algorithm
is improved by repeating training and testing. It is possible to extract the result of the
detection rate.

3.2. Experimental Environment

For the virtual machine used for a dynamic analysis, with the Ubuntu and Windows
7 operating systems, the app.any.run system was used, with the Python pefile module used
for the static analysis. The dataset was saved as a csv file using Kaggle. RF, AB, and GB
were used as the ML algorithms, and tests were conducted using Google Colab.

3.3. Dataset

The experimental dataset was used on the public kaggle site. This was achieved using
a raw PEByte stream and a csv file containing tens of thousands of data points obtained
by downloading the merged PE malware dataset into a 32-byte vector. To detect static-
analysis-based malicious files, we imported various modules (os, pandas, pickle, numpy,
pefile, etc.) based on Python, utilized the analysis environment to extract features from
files, and applied them to pre-trained ML models. They were classified into normal and
malicious files. Table 1 lists the classified legitimate and malicious file results.

Table 1. Legitimate file classification results.

Legitimate Malicious Data Type

96,724 41,323 Int 64

Malicious Code Analysis and Feature Extraction

Dataset analysis was conducted using Google Colab to build an experimental envi-
ronment, and analysis was attempted by importing various modules (os, pandas, numpy,
pickle, pefile, joblib, etc.) based on Python. As a result, the data in the dataset were success-
fully classified into a normal file and a malicious file. The results are listed in Table 2.

Appl. Sci. 2022, 12, 10761 13 of 22

Table 2. Malicious code analysis and feature extraction results (partial).

Name Hash Legitimate File Size Magic

memtest.exe 631ea355665f28d4707448e442fbf5b8 1 474.38 KB PE32 exe Intel80386 32 bit
ose.exe 9d10f99a6712e28f8acd5641e3a7ea6b 1 145.85 KB PE32 exe for GUI 32 bit

DW20.EXE a41e524f8d45f0074fd07805ff0c9b12 1 818.88 KB PE32 exe for GUI 32 bit

ZNsAsuO.docx 8e292b418568d6e7b87f2a32aee7074b 0 4.68 MB PE32 exe for GUI 32 bit
Lesbian-pool-play.exe 260d9e2258aed4c8a3bbd703ec895822 1 2.18 MB PE32 exe for GUI 32 bit

Dwtrig20.exe c87e561258f2f8650cef999bf643a731 1 507.41 KB PE32 exe for GUI 32 bit
Setup.exe 4d92f518527353c0db88a70fddcfd390 1 1.05 MB PE32 exe for GUI 32 bit

By using 0 for normal files and 1 for malicious files, it is easy to distinguish between
normal files and malicious files. The first column of the dataset is Name, which indicates
the file name. The second column indicates MD5 hash values for normal and malicious
files. In the third column, legitimate files are classified as 0 and malicious files as 1. The
fourth column indicates the size of the file, and finally, Magic indicates the PE format. It
was clearly classified into one of two categories: normal and malignant. The accelerated
classifier is expressed as Equations (5) and (6) [11].

TNR :
TN

TN + TP
× 100 = 1 (5)

TPR :
TP

FN + TP
× 100 = 0 (6)

In the interpretation of the above formula, when the probability of predicting mali-
ciousness is greater than or equal to the true-negative rate (TNR), the file is determined to
be malicious. Moreover, if the probability of a normal prediction is greater than or equal
to the true-positive rate (TPR), the file is determined to be normal. For the remaining
probabilities, the file is determined to be unknown.

3.4. Data Preprocessing of Dataset

Table 3 shows the training process of the ML model, which is a data preprocessing
process that removes unnecessary data so that the ML model can easily access and learn
the dataset and classify its contents as malicious or normal files.

Table 3. Part of contradictory data (before preprocessing).

Name Hash Machine Char Legitimate

memtest.exe 631ea355665f28d4707448e442fbf5b8 332 258 1
ose.exe 9d10f99a6712e28f8acd5641e3a7ea6b 332 3330 1

setup.exe 4d92f518527353c0db88a70fddcfd390 332 3330 1

DW20.EXE a41e524f8d45f0074fd07805ff0c9b12 332 258 1
Dwtrig20.exe c87e561258f2f8650cef999bf643a731 332 258 1

ZNsAsuO.docx 8e292b418568d6e7b87f2a32aee7074b 332 258 0
Lesbian-pool-play.exe 260d9e2258aed4c8a3bbd703ec895822 332 33167 1

7xdm.tar.bz2 8d088a51b7d225c9f5d11d239791ec3f 332 258 0
Paper2dxf_.exe 4286dccf67ca220fe67635388229a9f3 332 33166 0

Wnb0cLVS.drv d7648eae45f09b3adb75127f43be6d11 332 258 0

3.5. Training and Test Data Split

The data column is Xlist, the label is Ylist, and training and test split process involves
dividing the training and test data with a 7:3 ratio for use in the learning and verification
processes of the model, respectively. The value of test_size in the training and test split
function is set to 0.3 to achieve this ratio, and the results are listed in Table 4. The red border
in Table 4 shows the training set, and the green border shows the test set.

Appl. Sci. 2022, 12, 10761 14 of 22

Table 4. Training and test split results.

Feature -> X Legitimate -> Y

Name Hash Machine Char Legitimate

memtest.exe 631ea355665f28d4707448e442fbf5b8 332 258 1
ose.exe 9d10f99a6712e28f8acd5641e3a7ea6b 332 3330 1

setup.exe 4d92f518527353c0db88a70fddcfd390 332 3330 1
Train Set: 7

DW20.EXE a41e524f8d45f0074fd07805ff0c9b12 332 258 1
Dwtrig20.exe c87e561258f2f8650cef999bf643a731 332 258 1

Lesbian-pool-play.exe 260d9e2258aed4c8a3bbd703ec895822 332 33167 1
ZNsAsuO.docx 8e292b418568d6e7b87f2a32aee7074b 332 258 0

7xdm.tar.bz2 8d088a51b7d225c9f5d11d239791ec3f 332 258 0
Train Set: 3

Paper2dxf_.exe 4286dccf67ca220fe67635388229a9f3 332 33166 0
Wnb0cLVS.drv d7648eae45f09b3adb75127f43be6d11 332 258 0

3.6. Training of Classifiers

After feature selection using the train_test_split data, the next step was to identify the
classifier of the optimal ML algorithm for intelligent malware detection. The experimental
results of classifying the optimal model by quantifying the accuracy (detection rate) via
pre-training the RF, AB, and GB models are shown in Figure 11.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23

𝑝(𝑐|𝑣) =
1

𝑇

𝑇

∑ 𝑝
𝑡

𝑡 = 1

(𝑐|𝑣) (7)

Figure 11. Classifier training results.

3.7. Malware Detection

In Section 3.6, among the three classifiers selected for the depth analysis, RF had the

highest accuracy. In total, 49,376 malicious files and 2583 benign files corresponding to

95% of the entire dataset were randomly selected. Table 4 shows the detection accuracy

results for the three classifiers.

4. Results

The TPR, TNR, false-positive rate (FPR), false-negative rate (FNR), and accuracy can

be defined. Classification is performed using Equations (8)–(10) [38].

𝑇𝑃𝑅 =
𝑇𝑃

𝑡𝑜𝑡𝑎𝑙𝑀
 , 𝑇𝑁𝑅 =

𝑇𝑁

𝑡𝑜𝑡𝑎𝑙𝐵
 (8)

𝐹𝑃𝑅 =
𝐹𝑃

𝑡𝑜𝑡𝑎𝑙𝑀
 , 𝐹𝑁𝑅 =

𝐹𝑁

𝑡𝑜𝑡𝑎𝑙𝑀
 (9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑡𝑚 + 𝑡𝑏
× 100 (10)

Table 5 lists the accuracy results for RF, GB, and AB in descending order of accuracy.

Figure 11. Classifier training results.

From Figure 11, it can be seen that the best model in terms of the detection rate
accuracy was RF. All the trees in RF go through an independent training stage. In the
test phase, data point v is entered into all the trees simultaneously to reach the end node.
These test steps are performed in parallel, and high computational efficiency is achieved
through a parallel GPU or CPU. The prediction result for RF is obtained as the average of
the prediction results of all the trees. Classification is performed using Equation (7).

p(c|v) = 1
T

T

∑
t=1

pt(c|v) (7)

Appl. Sci. 2022, 12, 10761 15 of 22

3.7. Malware Detection

In Section 3.6, among the three classifiers selected for the depth analysis, RF had the
highest accuracy. In total, 49,376 malicious files and 2583 benign files corresponding to 95%
of the entire dataset were randomly selected. Table 4 shows the detection accuracy results
for the three classifiers.

4. Results

The TPR, TNR, false-positive rate (FPR), false-negative rate (FNR), and accuracy can
be defined. Classification is performed using Equations (8)–(10) [38].

TPR =
TP

totalM
, TNR =

TN
totalB

(8)

FPR =
FP

totalM
, FNR =

FN
totalM

(9)

Accuracy =
TP + TN
tm + tb

× 100 (10)

Table 5 lists the accuracy results for RF, GB, and AB in descending order of accuracy.

Table 5. Accuracy results for top 3 classifiers: True Positive: normal file detection; False Positive:
detection of normal files identified as malicious; False Negative: detection of malicious files identified
as normal.

Classifiers True Positive True Negative False Positive False Negative Accuracy

Random Forest 99% 1% 0 100% 0.9939152%
Adaboost 98% 2% 0 100% 0.9849088%

Gradient Boosting 98% 2% 0 100% 0.9874924%

App.Any.Run

As shown in Figure 12, app.any.run, a representative service for automated malicious
code analysis, is a program that analyzes the threat of malicious code files and normal
files in detail. It provides results for various operating systems and office environments
such as document-type malicious code and executable EXE malicious code. In addition,
it supports many optional filter searches, and the Hunter version provides infinite API
requests, allowing a user to quickly respond to security threats. The search filter function
allows filtering based on hash information, character information included in the analysis
function, and a specific script. In operating system filtering, it is possible to filter based
only on the unwindowed version. From Windows XP to Windows 10, a search can be
performed according to the operating system. Furthermore, it is possible to search by file
type. If “Scripts” is selected, the VBA, VBE, BAT, and TXT file types are searched, and if
“Verdict not specified” is selected below and then “malicious” is selected, only malicious
code is searched.

For the dynamic analysis of malicious code, a virtual environment (Windows 7
32 bit) was built, and a suspicious file (setup.exe) was executed and analyzed using the
app.any.run system. Figure 13 shows the TCP Stream result data of the pcap file through
the Wireshark program.

The malicious file was analyzed using the Wireshark function provided by app.any.run.
Based on the analysis, two malicious codes using the .cab extension and the URL of the
distribution site were found in the setup.exe packet. The HTTP request packet analysis
result data are shown in Table 6, and the network connection results are shown in Table 7.
Table 8 shows the result of DNS Requests packet analysis. Table 9 lists the results of the
modifications to the malicious files.

Appl. Sci. 2022, 12, 10761 16 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 23

Table 5. Accuracy results for top 3 classifiers: True Positive: normal file detection; False Positive:

detection of normal files identified as malicious; False Negative: detection of malicious files identi-

fied as normal.

Classifiers True Positive True Negative False Positive False Negative Accuracy

Random Forest 99% 1% 0 100% 0.9939152%

Adaboost 98% 2% 0 100% 0.9849088%

Gradient Boosting 98% 2% 0 100% 0.9874924%

App.Any.Run

As shown in Figure 12, app.any.run, a representative service for automated malicious

code analysis, is a program that analyzes the threat of malicious code files and normal

files in detail. It provides results for various operating systems and office environments

such as document-type malicious code and executable EXE malicious code. In addition, it

supports many optional filter searches, and the Hunter version provides infinite API

requests, allowing a user to quickly respond to security threats. The search filter function

allows filtering based on hash information, character information included in the analysis

function, and a specific script. In operating system filtering, it is possible to filter based

only on the unwindowed version. From Windows XP to Windows 10, a search can be

performed according to the operating system. Furthermore, it is possible to search by file

type. If “Scripts” is selected, the VBA, VBE, BAT, and TXT file types are searched, and if

“Verdict not specified” is selected below and then “malicious” is selected, only malicious

code is searched.

Figure 12. Classification of malicious and normal files by operating system.

For the dynamic analysis of malicious code, a virtual environment (Windows 7 32

bit) was built, and a suspicious file (setup.exe) was executed and analyzed using the

app.any.run system. Figure 13 shows the TCP Stream result data of the pcap file through

the Wireshark program.

Figure 12. Classification of malicious and normal files by operating system.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 23

Figure 13. setup.exe malicious file packet analysis result.

The malicious file was analyzed using the Wireshark function provided by

app.any.run. Based on the analysis, two malicious codes using the .cab extension and the

URL of the distribution site were found in the setup.exe packet. The HTTP request packet

analysis result data are shown in Table 6, and the network connection results are shown

in Table 7. Table 8 shows the result of DNS Requests packet analysis. Table 9 lists the

results of the modifications to the malicious files.

Table 6. HTTP request packet analysis results.

Division Time Headers PID Process Name URL

 34594ms POST 200 2440 Firefox.exe http://ocsp.digicert.com/(2011.7.8)

HTTP 34192ms GET 200 2440 Fireforx.exe http://detectportal.firefox.com/success.txt?ipv4(2019.4.27)

Request 34185ms GET 200 2440 Fireforx.exe http://detectportal.firefox.com/success.txt(2016.7.9)

 34179ms
GET 200 2424

Opera.exe http://crl3.digicert.com/DigiCertHighAssur-

anceEVRootCA.crl(2012.2.21)

Table 7. Network connection packet analysis results.

Division Protocol PID Process Name IP(USA) Domain

 TCP 1116 Chrome.exe 142.250.181.228 www.google.com(2020.10.9)

Network TCP 1116 Chrome.exe 216.58.212.142 clients2.google.com(2020.10.9)

Connect TCP 2440 Chrome.exe 34.107.221.82 detectportal.firefox.com(2020.10.12)

 TCP 2424 Opera.exe 185.26.182.94 certs.opera.com(2020.10.12)

Figure 13. Setup.exe malicious file packet analysis result.

Appl. Sci. 2022, 12, 10761 17 of 22

Table 6. HTTP request packet analysis results.

Division Time Headers PID Process
Name URL

34594 ms POST 200 2440 Firefox.exe http://ocsp.digicert.com/ (8 July 2011)
HTTP 34192 ms GET 200 2440 Fireforx.exe http://detectportal.firefox.com/success.txt?ipv4 (27 April 2019)

Request 34185 ms GET 200 2440 Fireforx.exe http://detectportal.firefox.com/success.txt (9 July 2016)
34179 ms GET 200 2424 Opera.exe http://crl3.digicert.com/DigiCertHighAssuranceEVRootCA.crl

(21 February 2012)

Table 7. Network connection packet analysis results.

Division Protocol PID Process
Name IP(USA) Domain

TCP 1116 Chrome.exe 142.250.181.228 www.google.com (9 October 2020)
Network TCP 1116 Chrome.exe 216.58.212.142 clients2.google.com (9 October 2020)
Connect TCP 2440 Chrome.exe 34.107.221.82 detectportal.firefox.com (12 October 2020)

TCP 2424 Opera.exe 185.26.182.94 certs.opera.com (12 October 2020)

Table 8. DNS Requests packet analysis results.

Division Time Status Domain IP

34117 ms Responded certs.opera.com (12 October 2020) 185.26.182.94, 185.26.182.93
DNS 33124 ms Responded www.google.com (9 October 2020) 142.250.181.228

Request 33122 ms Responded accounts.google.com (9 October 2020) 142.250.186.109
33115 ms Responded clients2.google.com (9 October 2020) 216.58.212.142

Table 9. File modifications.

PID Process
Name File

2588 Setup.exe C:\Users\admin\AppData\Local\Temp\is-R3JIM.tmp\setup.tmp
3752 Setup.exe C:\Users\admin\AppData\Local\Temp\is-OU9AA.tmp\setup.tmp

3932 Setup.tmp C:\Program Files\Run Multiple EXE Files At Same Time Software\Run Multiple EXE Files At
Same Time Software.exe

1116 Chrome.exe C:\Users\admin\AppData\Local\Google\Chrome\User Data\Default\Cache\index

By mapping the dynamic analysis result file to TTP and the MITRE ATT&CK frame-
work, we successfully visualized the data results for the attacker’s attack form. The tactics
of the suspicious files corresponded to five categories: execution, persistence, privilege es-
calation, defense evasion, and discovery. The data and risk for 10 techniques and 43 events
were measured as one danger, warnings, and three other cases.

One danger case was detected using the boot or logon autostart execution technique as
a result of the technique details of persistence and privilege escalation tactics. The detection
result of 39 warnings was obtained using the execution tactics’ Windows management
instrumentation and MITRE’s command and scripting interpreter attack technology. The
XSL script processing, file and directory permissions modification, and hide artifacts
attack techniques of defense evasion tactics were detected. In the discovery tactics, it was
detected that the query registry, system information discovery, and software discovery
attack techniques were used, and the visualization of all the detected data results is shown
in Figure 14.

To verify the results of this study, an experiment was conducted by preparing data for a
total of 51,960 files, comprising 2583 normal files, 49,376 malicious files, and 1 unknown file.
The results of the experiment showed accurate detection results for normal/malignant
files, and the results were successfully derived by conducting a dynamic analysis of
suspicious files.

http://ocsp.digicert.com/
http://detectportal.firefox.com/success.txt?ipv4
http://detectportal.firefox.com/success.txt
http://crl3.digicert.com/DigiCertHighAssuranceEVRootCA.crl
www.google.com
clients2.google.com
detectportal.firefox.com
certs.opera.com
certs.opera.com
www.google.com
accounts.google.com
clients2.google.com

Appl. Sci. 2022, 12, 10761 18 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 23

Figure 14. Implementation of MITRE ATT&CK framework and visualization of malicious file dy-

namic analysis results (1).

Figure 15. Implementation of MITRE ATT&CK framework visualization of malicious file dynamic

analysis results (2).

5. Comparison

In this section, the malicious file detection visualization method by applying the

machine learning algorithm proposed in this paper and the ATT&CK framework is

compared with the previously studied machine-learning-based malicious file detection

method. Table 10 briefly compares the previously studied machine-learning-based

malicious file detection method with the detection method and visualization content

proposed in this paper. Seungoh Choi et al. [35] proposed the ATT&CK framework.

Figure 14. Implementation of MITRE ATT&CK framework and visualization of malicious file dy-
namic analysis results (1).

The results were mapped to the MITRE ATT&CK framework, and the attacker’s
attack intention, form, and characteristics were successfully visualized. Figure 15 shows
the results of the implementation, where only the detected range can be viewed, and the
administrator can easily identify the attacker’s attack type.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 23

Figure 14. Implementation of MITRE ATT&CK framework and visualization of malicious file dy-

namic analysis results (1).

Figure 15. Implementation of MITRE ATT&CK framework visualization of malicious file dynamic

analysis results (2).

5. Comparison

In this section, the malicious file detection visualization method by applying the

machine learning algorithm proposed in this paper and the ATT&CK framework is

compared with the previously studied machine-learning-based malicious file detection

method. Table 10 briefly compares the previously studied machine-learning-based

malicious file detection method with the detection method and visualization content

proposed in this paper. Seungoh Choi et al. [35] proposed the ATT&CK framework.

Figure 15. Implementation of MITRE ATT&CK framework visualization of malicious file dynamic
analysis results (2).

5. Comparison

In this section, the malicious file detection visualization method by applying the
machine learning algorithm proposed in this paper and the ATT&CK framework is com-
pared with the previously studied machine-learning-based malicious file detection method.

Appl. Sci. 2022, 12, 10761 19 of 22

Table 10 briefly compares the previously studied machine-learning-based malicious file
detection method with the detection method and visualization content proposed in this
paper. Seungoh Choi et al. [35] proposed the ATT&CK framework.

Table 10. Comparison of malicious file detection method using machine learning research cases.

Divison Detection Accuracy Ratio Visualization Suggestions

Proposed Method GREAT YES
Gye-woong Lee et al. It is lower than the proposed method. NO
Choi Seung-oh et al. NO NO
Kris Oosthoek et al. GREAT NO
Amir Afianian et al. NO NO
YANJIE Zhao et al. GREAT NO

Kris Oosthoek et al. [36] proposed building a test bed for collecting tactical and techni-
cal analysis and elastic-based control system security datasets. Although MITRE ATT&CK,
which is the same method as that used in this paper, is used, it is a study based on simple
collection and monitoring in terms of security control, and it is not possible to properly
check how it can be visualized through actual malicious files. Additionally, in terms of
security control, there is no way to minimize false positives and false positives, so it is
difficult to understand them. In AMIR AFIANIAN et al.’s [37] study, we observed an
increasing number of techniques applied to sideload DLLs to evade fileless malware execu-
tion, security software detection, and defense within our dataset, and more sophisticated
techniques, including command and control (C&C), were observed. These observations
have identified ways in which malware authors are innovating technologies to circumvent
traditional defenses. The difference in our study is that through the application of the
MITRE ATT&CK framework, it is possible to precisely analyze malicious, normal, and
unknown malicious codes included in the dataset and provide a visual part that accurately
detects the person in charge. Sanjay Sharma, C. et al. [38] appear to have used a sandbox
to investigate technologies that can be analyzed manually and automatically. However,
there is no visible method for specific analysis, results, and detection. Since this is research
that can provide even the visualization part, we are conducting research that starts with
dynamic analysis and visualizes the hybrid analysis method. Yanjie Zhao. et al.’s [39] paper
seems to have studied the impact of sample replication on machine-learning-based Android
malware detection. However, compared to our thesis, the classification of malicious code
was excellent, but the analysis process was insufficient, and there seems to be no content on
the visualization method. Judging from the use of in-the-wild analysis, it is an experimental
study conducted using both supervised and unsupervised learning approaches and using
various machine learning algorithms.

6. User Perspective

MITRE ATT&CK is an abbreviation of Adversarial Tactics, Techniques, and Common
Knowledge. After observing actual cyberattack cases, the malicious behaviors used by
attackers are analyzed from the viewpoint of attack methods (tactics) and technologies
(techniques). These are standard data that classify and list information on the attack
methods of the attack group. It is a systematization (patterning) of threatening tactics and
technologies to improve the detection of advanced attacks. Originally, ATT&CK was used
for hacking attacks used in Windows corporate network environments at MITER. It started
with documenting TTPs such as (procedures), and is a framework that can identify the
attacker’s behavior by mapping TTPs’ information based on the analysis of consistent
attack behavior patterns generated by the attacker. Machine learning algorithms are used
as a means to enhance and respond, and in conjunction with this, it can develop into
an intelligent, advanced security control solution that provides real-time visualization to
security personnel.

Appl. Sci. 2022, 12, 10761 20 of 22

From the user’s point of view (security personnel), it is an excellent security solution
and has the advantage of efficiently detecting attacks as it can minimize false positives
and false positives for attack detection. In addition, since it provides real-time detected
attack patterns and detailed information (techniques, tactics, various attack knowledge and
attacker information, etc.), it is an all-round excellent solution for effective countermeasures
and follow-up management

7. Conclusions

In this study, the detection accuracy was improved by utilizing the advantages of
dynamic-analysis-based malicious file detection. In addition, it was possible to detect and
analyze unknown files, which is expected to increase the analysis reliability and secure
excellent field connectivity.

This was accomplished by deriving high accuracy standards for the Random Forest,
AdaBoost, and Gradient algorithms, and synthesizing the formulas of research cases. To
verify the results, the PE malicious file dataset was analyzed, experimental data were
generated, and an experiment was conducted.

In addition, to perform dynamic analysis, normal, suspicious, and malicious codes
were analyzed using the app.any.run program, and the results were mapped to the MITRE
ATT&CK framework to visualize the attacker’s form and characteristics, easily identifying
their attack intention. Therefore, users could easily identify malicious and normal files and
respond quickly.

Future studies plan to use the introduced hybrid approach to overcome the limitations
of dynamic and static analysis techniques. The hybrid method can overcome the disad-
vantages of both static analysis and dynamic analysis, and the ability to accurately detect
malicious code and the speed at which this is carried out are improved. At the same time,
it has the great advantage of being able to efficiently analyze suspicious files and having
a low false-positive rate upon detection. In addition, we will continuously collect and
analyze attack datasets, and we will also experiment with ways to apply linear regression,
GLM, SVR, and GPR algorithms. Additionally, deep learning algorithms will explore ways
to apply deep neural networks. In the future, we plan to conduct research to improve the
speed of numerical accuracy by experimenting with a hybrid method.

Author Contributions: Conceptualization, G.A., W.P. and D.S.; methodology, G.A., W.P. and D.S.;
software, G.A. and W.P.; validation, K.K., W.P. and D.S.; formal analysis, G.A.; investigation, G.A.;
resources, G.A. and W.P; data curation, G.A., K.K., W.P. and D.S.; writing—original draft preparation,
G.A.; writing—review and editing, K.K., W.P. and D.S.; visualization, G.A.; supervision, K.K., W.P.
and D.S.; project administration, D.S.; funding acquisition, D.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Future Challenge Defense Technology Research and
Development Project (9129156) hosted by the Agency for Defense Development Institute in 2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Hamar, Y.; Kolivand, H.; Tajdini, M.; Saba, T.; Ramachandran, V. Enterprise Credential Spear-phishing attack detection. J.

Comput. Electr. Eng. 2021, 94, 107363. [CrossRef]
2. Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and deep learning. Electron Mark. 2021, 31, 695. [CrossRef]
3. Sajja, G.S.; Mustafa, M.; Ponnusamy, R.; Abdufattokhov, S. Machine Learning Algorithms in Intrusion Detection and Classification.

Ann. Rom. Soc. Cell Biol. 2021, 25, 12211–12219.
4. Xie, D.; Zhang, S. Machine Learning Model for Sales Forecasting by Using XGBoost. In Proceedings of the IEEE International

Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15 January 2021; pp. 480–483.

http://doi.org/10.1016/j.compeleceng.2021.107363
http://doi.org/10.1007/s12525-021-00475-2

Appl. Sci. 2022, 12, 10761 21 of 22

5. Moon, J.; Kim, S.; Song, J.; Kim, K. Study on Machine Learning Techniques for Malware Classification and Detection. Korea
Internet Inf. Soc. 2021, 15, 4308–4325.

6. Kyoung-Hee, K.; Hyuck-Jin, P. Study on the Effect of Training Data Sampling Strategy on the Accuracy of the Landslide
Susceptibility Analysis Using Random Forest Method. Korean Soc. Econ. Environ. Geol. 2019, 52, 199–212.

7. Chawla, N.; Kumar, H.; Mukhopadhyay, S. Machine Learning in Wavelet Domain for Electromagnetic Emission Based Malware
Analysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3426–3441. [CrossRef]

8. Wu, T.; Fan, H.; Zhu, H.; You, C.; Zhou, H.; Huang, X. Intrusion detection system combined enhanced random forest with SMOTE
algorithm. EURASIP J. Adv. Signal Process. 2022, 39, 2022. [CrossRef]

9. Pham, B.T.; Nguyen, M.D.; Nguyen-Thoi, T.; Ho, L.S.; Koopialipoor, M.; Quoc, N.K.; Armahani, D.J.; van Le, H. A novel approach
for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transp. Geotech. 2021, 27, 100508.
[CrossRef]

10. Khairy, R.S.; Hussein, A.S.; ALRikabi, H.T.H.S. The Detection of Counterfeit Banknotes Using Ensemble Learning Techniques of
AdaBoost and Voting. Int. J. Intell. Eng. Syst. 2021, 14, 326–339. [CrossRef]

11. Galen, C.; Steele, R. Empirical Measurement of Performance Maintenance of Gradient Boosted Decision Tree Models for Malware
Detection. In Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICALLC),
Jeju Island, Korea, 13 April 2021; pp. 193–198.

12. Kaspersky. Machine Learning for Malware Detection. 2021.
13. Pinhero, A.; Anupama, M.L.; Vinod, P.; Visaggio, C.A.; Aneesh, N.; Abhijith, S.; AnanthaKrishnan, S. Malware detection employed

by visualization and deep neural network. Comput. Secur. 2021, 105, 102247. [CrossRef]
14. Barker, J. Malware Detection in Executables Using Neural Networks. Tech. Blogs 2017.
15. Kim, S.; Yeom, S.; Oh, H.; Shin, D.; Shin, D. A Study on Malicious Code Identification System Using Static Analysis-Based

Machine Learning Technique. J. Inf. Secur. Soc. Korea Inf. Secur. Assoc. 2019, 29, 775–784.
16. Byeon, E.; Son, H.; Moon, S.; Jang, W.; Park, B.; Kim, Y. Constructing A Visualization & Reusable Metrics based on Static/Dynamic

Analysis. In Proceedings of the Korea Information Processing Society Conference; Korea Information Processing Society: Seoul, Korea,
2017; Volume 24, pp. 621–624.

17. Santos, R.S.; Festijo, E.D. Generating Features of Windows Portable Executable Files for Static Analysis using Portable Executable
Reader Module (PEFile). In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering
(IC2IE), Depok, Indonesia, 27 December 2021; pp. 283–288.

18. Dudeja, H.; Modi, C. Runtime Program Semantics Based Malware Detection in Virtual Machines of Cloud Computing. In
Proceedings of the International Conference on Information Processing (ICInPro 2021), Bangalore, India, 1 January 2022; Volume
1483, pp. 3–16.

19. Mimura, M. Evaluation of printable character-based malicious PE file-detection method. Internet Things 2021, 19, 100521.
[CrossRef]

20. Pandey, S.; Lal, R. Opcode-Based Android Malware Detection Using Machine Learning Techniques. Int. Res. J. Innov. Eng. Technol.
2021, 5, 56–61.

21. Alshammari, A.; Aldrbi, A. Apply machine learning techniques to detect malicious network traffic in cloud computing. J. Big
Data 2021, 8, 90. [CrossRef]

22. Khan, F.; Ahamed, J.; Kadry, S.; Ramasamy, L.K. Detection malicious URLs using binary classification through adaboost algorithm.
Int. J. Electr. Comput. Eng. 2020, 10, 997–1005.

23. Rezaei, T.; Manavi, F.; Hamzeh, A. A PE header-based method for malware detection using clustering and deep embedding
techniques. J. Inf. Secur. Appl. 2021, 60, 102876. [CrossRef]

24. Li, C.; Lv, Q.; Li, N.; Wang, Y.; Sun, D.; Qiao, Y. A novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Comput. Secur. 2022, 116, 102686. [CrossRef]

25. Gorgulu, A.; Gulmez, S.; Sogukpinar, I. Sequential opcode embedding-based malware detection method. Comput. Electr. Eng.
2022, 98, 107703.

26. Bensaoud, A.; Kalita, J. Deep multi-task learning for malware image classification. J. Inf. Secur. Appl. 2022, 64, 103057. [CrossRef]
27. Kaggle. “Malware-Exploratory-LeandroSouza”.
28. Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel Feature Extraction, Selection and Fusion for Effective

Malware Family Classification. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New
York, NY, USA, 9–11 March 2016; pp. 183–194.

29. Drew, J.; Hahsler, M.; Moore, T. Polymorphic malware detection using sequence classification methods and ensembles. EURASIP
J. Inf. Secur. 2017, 2017, 2. [CrossRef]

30. MITRE. MITRE ATT&CK. 2021.
31. Hwang, C.; Bae, S.; Lee, T. MITRE ATT&CK and Anomaly detection based abnormal attack detection technology research. J.

Converg. Secur. Korea Converg. Secur. J. 2021, 21, 13–23.
32. Jang, I.S.; Cho, E.-S. iRF: Integrated Red Team Framework for Large-Scale Cyber Defence Exercise. J. Inf. Secur. Soc. 2021, 31,

1045–1054.

http://doi.org/10.1109/TIFS.2021.3080510
http://doi.org/10.1186/s13634-022-00871-6
http://doi.org/10.1016/j.trgeo.2020.100508
http://doi.org/10.22266/ijies2021.0228.31
http://doi.org/10.1016/j.cose.2021.102247
http://doi.org/10.1016/j.iot.2022.100521
http://doi.org/10.1186/s40537-021-00475-1
http://doi.org/10.1016/j.jisa.2021.102876
http://doi.org/10.1016/j.cose.2022.102686
http://doi.org/10.1016/j.jisa.2021.103057
http://doi.org/10.1186/s13635-017-0055-6

Appl. Sci. 2022, 12, 10761 22 of 22

33. Park, S.-H.; Jung, J.-W.; Lee, S.-W. Multi-perspective APT Attack Risk Assessment Framework using Risk-Aware Proble Domain
Ontology. In Proceedings of the IEEE 29th International Requirements Engineering Conference Workshops, Notre Dame, IN,
USA, 20–24 September 2021; pp. 400–405.

34. Lee, K.W.; Oh, S.T.; Yoon, Y. Modeling and Selecting Optimal Features for Machine Larning Based Detections of Android
Malwares. KIPS Trans. Softw. Data Eng. 2019, 8, 427–432.

35. Choi, S.; Choi, J.; Yun, J.; Min, B.; Kim, H. Expansion of ICS Testbed for Security Validation based on MITRE ATT&CK Techniques.
In Proceedings of the CSET20 Proceedings of the 13th USENIX Conference on Cyber Security Experimentation and Test, Daejeon,
Korea, 12–14 August 2020; pp. 1–2.

36. Oosthoek, K.; Doerr, C. SoK: ATT&CK Techniques and Trends in Windows Malware. In International Conference on Security and
Privacy in Communication Systems; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering; Springer: Berlin/Heidelberg, Germany, 2019; Volume 304.

37. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware Dynamic Analysis Evasion Techniques: A Survey. ACM Trans.
2018, 9, 1–33. [CrossRef]

38. Sharma, S.; Krishna, C.R.; Sahay, S.K. Detection of Advanced Malware by Machine Learning Techniques. In Advances in Intelligent
Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2019; Volume 742, pp. 332–342.

39. Zhao, Y.; Li, L.; Wang, H.; Cai, H.; Bissyandé, T.F.; Klein, J.; Grundy, J. On the Impact of Sample Duplication in Machine-Learning-
Based Android Malware Detection. ACM Trans. Softw. Eng. Methodol. 2021, 30, 1–38. [CrossRef]

http://doi.org/10.1145/3365001
http://doi.org/10.1145/3446905

	Introduction
	Related Work
	ML
	Random Forest (RF)
	Adaboost (AB) Algorithm
	Gradient Boosting (GB)
	Examples of AI-Based Malware Detection Technology
	Kaspersky Lab’s ML-Based Malware Detection Technology Research
	Research on NVIDIA’s DL-Based Malware Detection Technology

	Malicious File Detection Method
	Visualization Using MITRE ATT&CK Framework
	Voting Classifier Ensemble Modeling Studies

	Materials and Methods
	Flowchart of Experimental Process
	Experimental Environment
	Dataset
	Data Preprocessing of Dataset
	Training and Test Data Split
	Training of Classifiers
	Malware Detection

	Results
	Comparison
	User Perspective
	Conclusions
	References

