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Abstract: Acute Lymphoblastic Leukemia (ALL) is a cancer that infects the blood cells causing the
development of lymphocytes in large numbers. Diagnostic tests are costly and very time-consuming.
It is important to diagnose ALL using Peripheral Blood Smear (PBS) images, especially in the initial
screening cases. Several issues affect the examination process such as diagnostic error, symptoms,
and nonspecific nature signs of ALL. Therefore, the objective of this study is to enforce machine-
learning classifiers in the detection of Acute Lymphoblastic Leukemia as benign or malignant after
using the grey wolf optimization algorithm in feature selection. The images have been enhanced
by using an adaptive threshold to improve the contrast and remove errors. The model is based on
grey wolf optimization technology which has been developed for feature reduction. Finally, acute
lymphoblastic leukemia has been classified into benign and malignant using K-nearest neighbors
(KNN), support vector machine (SVM), naive Bayes (NB), and random forest (RF) classifiers. The
best accuracy, sensitivity, and specificity of this model were 99.69%, 99.5%, and 99%, respectively,
after using the grey wolf optimization algorithm in feature selection. To ensure the effectiveness of
the proposed model, comparative results with other classification techniques have been included.

Keywords: grey wolf optimization; acute lymphoblastic leukemia; support vector machine; random
forest; naive bayes; K nearest neighbor

1. Introduction

Leukemia is a cancer of the bone marrow that is divided into four types: acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphoid leukemia (CLL),
and chronic myeloid leukemia (CML). The second most prevalent type of acute leukemia
in adults is acute lymphoblastic leukemia. In the bone marrow, it affects lymphocyte-
producing cells [1]. The bone marrow and stem cell components are illustrated in Figure 1.

Although ALL is considered one of the leading death causes in both adults and chil-
dren, nearly 90% of cases can be treated if they can be detected early. When ALL is detected
earlier, treatment can begin immediately, and the patient’s chances of survival improve
significantly. Several treatment types can be used as medication, radiation therapy, and
chemotherapy according to the diagnosis accuracy. Most leukemia diagnosis procedures
are manual methods and based on the medical experience of the physicians. The blood cells’
microscopic examinations are an important step in the diagnostic process; this evaluation
necessitates the use of a pathologist who is skilled in identifying the abnormalities in
the blood cells. One of the most effective tools in medical diagnosis is medical images.
According to the extracted features from these images, one can have complete information
about medical image contents [2].
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Figure 1. Bone marrow and stem cells components.

Cancer is a group of rare, distinct, and lethal diseases. It can be characterized as
uncontrolled cell growth with an abnormal pattern. The World Health Organization (WHO)
estimates that 19.3 million people will receive a cancer diagnosis in 2020 and that there
will be 1.6 times as many cancer deaths. The number of people affected is expected to
be roughly 50% higher in 2040. According to WHO, the total number of ALL cases is
57,377, accounting for 21.9% of all childhood cancer cases worldwide in 2020 [3]. The
most well-known leukemia classification system divides acute leukemia types into two
groups according to the French—-American-British model: acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL); the types of leukemia in the blood are shown in
Figure 2. The most prevalent cancer types in children are thought to include ALL.

Indeed, oncologists must identify the most important variables and factors that can be
used to predict treatment outcomes. A further classification based on the French-American—
British (FAB) classification divides ALL into three subtypes: L1, L2, and L3. L1 cells
typically have a small, homogeneous size and little cytoplasm. These organisms have
well-structured discoid nuclei. Compared with L1-type cells, L2-type cells are larger and
have different shapes. Their cytoplasm is variable, and their nucleus is atypical. L3 cells
have a round or oval nucleus and are all the same size and shape. The cytoplasm, which
contains vacuoles, is sufficient in them. Usually, they are larger than L1 [3,4].

To predict long-term outcomes or treatment outcomes, numerous studies have been car-
ried out, and almost all of them have used data mining (DM) classifier algorithms, proving
the effectiveness and significance of using machine learning techniques for such purposes.

ALL subtypes have been categorized using World Health Organization (WHO) or
French—American-British (FAB) techniques; hematologists and dermatologists have re-
cently proposed that WHO categorization is superior to FAB categorization. To more
accurately determine the different types of ALL, the WHO classified subgroups in more de-
tail. Researchers from a variety of fields are now interested in using computer technologies
such as artificial intelligence (AI) to diagnose blood diseases, particularly ALL. Concerning
ALL diagnoses and classifications, the use of these technologies in the form of different
algorithms has produced astounding results [5].



Appl. Sci. 2022,12, 10760

30f23

Blood image

l« Red blood cells 1

White blood cells Platelets
/ R} o~ > -
- @ Se iy .~
d K .
- Caly - R
L o @ ‘ — -
! o
i )

Acute lymphoblastic leukemia (ALL)

RSN

! "..

. Acute myeloid leukemia (AML)
) @ s ® “ (™ Leukemia —> ’;v:-‘&:‘}""‘"i qﬂ}
)

.0 o, "' Sivelodvsniasii Chronic lymphocytic leukemia (CLL)
&7 X > yelodysplastic Vi

syndrome “ 0'
P vty ha %
\.‘.. Y .!..l ’:

Chronic myelogenous leukemia (CML)

Figure 2. Types of leukemia in blood.
1.1. Related Studies

Previous research efforts on leukemia patient classification will be reviewed in this sec-
tion. Several researchers used microscopic images to propose leukemia detection methods.
In [1], deep convolutional neural network (CNN) applications were investigated, and the
diagnosis and classification of acute lymphoblastic leukemia, as well as the differentiation
between cancer cases and healthy cases, were developed by the authors using pre-trained
VGG-16 and ResNet.

Different scenarios were designed for data analysis in [2]. The first scenario includes
ALL patients, whereas the second scenario excludes patients who died from an unknown
cause from the study. In general, common classification algorithms were used as SVM
which showed a significantly improved performance in treatment outcome prediction.

According to the experimental results in [3], CNN was used for automating the ALL-
detection task from microscopic cell images. They looked at the weighted ensemble of
various deep CNNSs in the initial test set to make a better classification model for acute
lymphoblastic leukemia cells.

Using the microscopic blood image analysis [4], the authors segmented the image into
the basic cell types, such as WBCs (white blood cells), RBCs (red blood cells), and platelets.
The lymphocytes are then separated from the white blood cells. The changeable features
such as the shape and color of lymphocytes were extracted with a support vector machine
as a classifier, which classified the cells as normal or blasts. This detection system was
found to be more effective, rapid, and accurate.

In [6], Spark BigDL framework and Google Net architecture were suggested as detec-
tion techniques, and it achieved 97.33% accuracy.

Aggregated deep learning for leukemic B-lymphoblast categorization was proposed,
as shown in [7]. Data augmentation and transfer learning strategies were used to overcome
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the limited dataset size and learning speed. The outcomes demonstrated that the suggested
method outperformed individual networks in leukemic B-lymphoblast diagnosis by fusing
features from the top deep learning models.

A hybrid classification approach for extracting the WBC features was proposed in [8].
The algorithm relies on using a deep convolutional neural network (VGGNet) and filtering
the resulting features with a statistically enhanced salp swarm algorithm (SESSA) to extract
only relevant features and omit those that are not. The accuracy and complexity reduction
of the suggested hybrid approach outperformed those of other approaches, which reduced
computation time and resource usage.

In [9], the researchers proposed a deep learning-based automated technique for distin-
guishing between malignant and benign cells. The use of microscopic blood cell images
and CNN to diagnose ALL subtypes of leukemia was proposed by [10].

Several classification techniques were used such as naive Bayes, SVM, KNN, and
decision trees. In [11], AlexNet, GoogleNet, and SqueezeNet were used in the proposed
work. The objectives of these structures were to achieve robust, high-accuracy, faster, and
more efficient methodology.

In [12], a framework used CNNs. Cell images were used to train the model, extracting
the best features after preprocessing the images. Then, the model was trained using the
enhanced dense convolutional neural network framework (DCNN), and finally, the type of
cancer cell type was predicted.

A hybrid deep learning approach was proposed in [13], and they suggested a strategy
for leukemic B-lymphoblast detection. Using convolutional neural networks and deep
learning techniques, a method for classifying ALL into subtypes and reactive bone marrow
(normal) in stained bone marrow images was proposed in [13].

This study’s primary goal is to suggest a classification method for acute lymphoblastic
leukemia. The technique is based on using grey wolf optimization as a features reduction
algorithm. Then apply different classification techniques with comparative results for
determining the quality of the classification systems.

1.2. Motivations and Contributions
The study’s main contributions are as follows:

1 Accurate and novel datasets with combination features for ALL classification.

2 Several classification algorithms have been proposed with comparative results for
determining the quality of the classification systems.

3  Several preprocessing methods such as resizing, stretchlim, and adaptive thresholding algo-
rithms have been applied to the dataset images in order to clearly show the abnormalities.

4 Simpler classifier architecture compared with other techniques that have been used in
ALL classification.

5  The proposed model has achieved 99.69% accuracy.

Low time-consuming diagnostic tests due to feature reduction.

7 Features have been a reduction by using the grey wolf optimization algorithm in the
feature selection part.

o)}

2. Materials

The working datasets were provided by the laboratory of Taleqani Hospital (Tehran,
Iran), which are categorized as benign and malignant cells of microscopic B-ALL images.
The ALL diagnosis techniques are based on using Peripheral Blood Smear (PBS) images
which may be subjected to misdiagnosis due to the non-specific nature of ALL signs and
symptoms. The working datasets include 3189 images, which are divided into 504 healthy,
918 with type Early Pre-B, 963 with type Pre-B, and 804 with type Pro-B ALL [5]. This is
summarized in Table 1.
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Table 1. The Dataset describing model.

Sort No. of Samples No. of Patients Image Size
Benign 504 25 224 x 224
Malignant early Pre-B 918 20 224 x 224
Malignant Pre-B 963 21 224 x 224
Malignant Pro-B 804 23 224 x 224
Total of samples 3189 89
3. Methods

The flowchart of the proposed methodology is illustrated in Figure 3. The methodology
begins with receiving the raw images of the blood cells. Then, the images pass through four
modules: (1) image preprocessing module (IPM) stage which is responsible for the preprocessing
of the blood cells’ images for enhancing the image contrast, resolution, etc., (2) feature extraction
module (FEM) for extracting the descriptive features of the images, (3) applying the grey wolf
optimization algorithm for selecting the most important feature that can describe the blood
cell’s histology, and (4) using different classification modules (CM) to classify the blood cells into
benign or malignant status. The four modules are described in detail in the following sections.
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Figure 3. An outline of the suggested methodology.
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3.1. Image Preprocessing Module (IPM)

An important step in making practical, quick, and accurate decisions for identifying
cases of acute lymphoblastic leukemia is data preprocessing. The preprocessing process
has been done via enhancement contrast with adaptive threshold. The image quality is
critical for feature identification and the precision of subsequent measurement. This phase
is also known as image enhancement because the image was obtained by improving the
contrast and removing errors to achieve a higher quality image for future processes. Images
may contain noise or artifacts such as scratches, lapping tracks, comet tails, and so on,
which must be removed before proceeding with the processing. The image’s edges and
contrast should be improved for greater accuracy and clarity. The image’s colormap was
used to improve the image’s boundary and contrast. After obtaining the set of boundary
pixels, the updated threshold was calculated as the average of the boundary pixels from
the contrasted image [13,14].

3.2. Feature Extraction Module (FEM)

The image’s edges and contrast should be improved for greater accuracy and clarity,
and this can be achieved by using the image’s colormap. After obtaining the set of boundary
pixels, the updated threshold was calculated by taking the average of the boundary pixels
from the contrasted image. The transformation was accomplished through a series of steps
depicted in Figure 4.

. auto Gabor Wavelet Wavelet moment
HSV histogram Srmslam Color-Moments Tentinizes i —

Figure 4. Series of transformation steps.

The transformation process can be described as:
Convert the RGB (Red, Green, and Blue) color space to the HSV (Hue, Saturation, and
Value) color space; the following formulas were used [15,16].

0.5[(R — G) + (R — B)]

_ -1
H = Cos V(R=G)2+ (R-G)(R—B) @
S=1- RiC+B [min(R, G, B)] )
V=3(R+G+B) ©

A color histogram, in general, is based on a specific color space, such as RGB or HSV.
The correlogram is obtained when the pixels in an image that contains different colors are
calculated. A correlogram can be represented as a table indexed by pairs of colors (i), with
the dth entry indicating the probability of finding a pixel (j) from pixel (i) at distance d. On
the other hand, an auto-correlogram has been stored as a table indexed by color (i), where
the dth entry shows the probability of finding pixel (i) from the same pixel at a distance of
(d). As a result, the auto-correlogram shows only the spatial correlation between identical
colors. Experimental results showed that correlograms and auto-correlograms are both
computationally expensive. As a result, a correlogram with a small number of colors and a
small distance value will produce very good results without raising the computational cost.
Let [D] denote a set of D fixed distances {dy, ... , dp}. Then the correlogram of the image (I)
has been defined for color pair (c;, ¢;) at a distance d [16].

V?icj(l) = Prplelci,pzel[PZ € Icj||p1 — p2| = 4| 4)
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The auto-correlogram of the image (I) is defined for color C; at a distance d.

ald (1) =2 (1) ®)

The color moments were used to differentiate images based on their color charac-
teristics. These moments provide a measure of color similarity between images. These
similarity values can be compared with the values of images stored in a database for image
retrieval tasks. Color moments are based on the assumption that the color distribution in
an image is interpreted as a probability distribution; the number of distinct moments are
characterized by the probability distributions. As a result, if the color in an image follows a
specific probability distribution, the moments of that distribution can be used as features to
identify that image based on color [17].

E; Jfl P; (6)
i s N U

In general, the image has three central moments of color distribution. They can be
expressed as the mean, the standard deviation, and the skewness. A color is defined by
three or more values; in the proposed methodology, it can be expressed as the HSV scheme
of hue, saturation, and brightness. Therefore, the image is defined by nine moments, three
moments for each of the three color channels. The ith color channel at the jth image pixel is
denoted as pj;. The average color value in the image is represented by the mean (E), the
standard deviation (o) which is the square root of the distribution’s variance, and skewness
(S) which is a metric for deciding the level of asymmetry in distribution [17,18].

13

o = (N;(Pi'_Ei)z) (7)

N

3 1 = 3
S;= (N Y (P —E) ) 8)

The channels were represented by a bank of two-dimensional Gabor filters. A two-
dimensional Gabor function is made up of a sinusoidal plane wave with some frequencies
and orientations that are modulated by a two-dimensional Gaussian envelope. In the
spatial domain, the ‘canonical” Gabor filter is given by [19]:

1 x2 yZ
h(x,y) = exp “5lzte cos(2mugx + ¢) )
x Y

where ¢ is the phase of the sinusoidal plane wave along the z-axis, and oy is the space con-
stants of the Gaussian envelope along the z-axis. A Gabor filter with arbitrary orientation,
89, was obtained via a rigid rotation of the x—y coordinate system. These two-dimensional
functions were shown to be good fits for the receptive field profiles of simple cells in the
striate cortex. A Gabor filter’s frequency and orientation-selective properties are more ex-
plicit in its frequency domain representation. The Fourier domain representation specifies
how much each frequency component of the input image is modified or modulated by
the filter. As a result, such representations are known as modulation transfer functions
(MTF) [20].

The following step is to perform the discrete wavelet transform for extracting the
moments. The discrete wavelet transform provides more information and is more adaptable.
It divides data into frequency components or sub-bands. The wavelet has an advantage over
Fourier in analyzing physical situations because the sinusoid does not have a fixed duration
but instead extends from minus to plus infinity. Most audio signal loses information in
the Fourier transform domain [21,22]. A wavelet expansion coefficient is a local and easy-
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to-understand component. Wavelets are adjustable, adaptable, and intended for use in
adaptive systems, whereas the Fourier transform is appropriate when the signal contains
only a few stationary components [22]. There are two types of features as shown in Figure 5.

4 N N

GLCM(Texture features) Statistical features

contrast I E?nt‘;‘;f I

. | standard deviation |

correlation | RMS |

4 | smoothness |

energy | kurtosis |

J | skewness |
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\ AN

Figure 5. Features Type.

/

Texture provides statistics on the spatial arrangement of intensities in an image.
Leukemia causes significant changes in the chromatin distribution of WBC nuclei, which
can be visualized as texture. Changes in chromatin distribution reflect the organization of
DNA in the nucleus and are an important diagnostic descriptor for distinguishing benign
from malignant cells.

The texture feature descriptor grey level co-occurrence matrix (GLCM) was used to
determine the shape and texture parameters of a nucleus. Second-order statistics, such as
the probability of two pixels having specific grey levels at specific spatial relationships,
was used to describe grey-level pixel distribution. These data can be represented in
2-dimensional grey level co-occurrence matrices, which can be computed for different
distances and orientations. Statistical measures that have been used to extract textual
characteristics from the GLCM have been defined. Some of these characteristics are as
follows [23,24]:

1 Energy: a measure of image homogeneity.

2 Contrast: a different moment of the regional co-occurrence matrix that measures the
contrast or the number of local variations in an image.

3 Correlation: a measure of the image’s regional pattern liner dependencies.

4 Homogeneity: returns a value indicating how close the distribution of elements in the
GLCM is to the diagonal GLCM.

In addition to the GLCM features, the statistical features can be described as [24-26]:

5  Entropy: the measure of randomness or disorder in the images.

6  Mean: measure of the image’s brightness by calculating the average value of pixels
inside the region of interest.

7  Standard deviation: used for deciding what is normal, extra-large, or extra-small.

RMS: the root mean square.

9  Smoothness: a measurement of grey level disparity that can be used to create relative
smoothness recipes.

10  Kurtosis: measure of the peak of the distribution of the intensity values around the mean.

11  Skewness: assesses the absence of symmetry. The zero value shows that the intensity
value distribution is moderately fair to both sides of the mean.

12 Variance: average of squared differences from mean.

13 IDM: measure homogeneity, used with grey image, measure grey level linear depen-
dency of an image

0e]
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3.3. Feature Selection Module (FSM)

Most high-dimensional datasets contain redundant, noisy, and unimportant features.
To enhance classification performance and cut down on operational costs, feature selection
aims to reduce the dimensionality of the data and choose only the most crucial features.
Finding the best feature is the challenge, especially in the case of vast search space. Finding
the fewest and most crucial features that provide enough details to describe the system is
the aim of feature selection. In general, feature selection can save processing time, make
data interpretation easier, prevent dimensionality affliction, and reduce overfitting. Once
a good feature selection is met, the misleading, irrelevant, and redundant features are
deleted, resulting in a well-produced feature selection [27,28].

3.3.1. Grey Wolf Optimization Algorithm

The grey wolf optimization algorithm is a straightforward optimization algorithm that
draws inspiration from nature and uses its leadership structure to find the ideal answer to
a given problem [29-31]. Figure 6 depicts the grey wolves’ social (or leadership) structure.
It consists of four adjusting parameters as:

1 Alpha wolves (o) are the hunters’ leaders that make the hunting decisions. They are
the pack’s most dominant wolves because their actions are determined and must be
followed by the rest of the pack. The alphas do not have to be the strongest members
of the pack, but they must be the best at managing the entire pack.

2 Beta wolves (3) occupy the second position in the hierarchy. A beta wolf advises the
alpha, assisting those in deciding. If the alpha wolf dies or becomes old, the beta wolf
takes his place. Their responsibility is to reinforce the pack’s alpha’s commands and
to maintain discipline as one of the levels that are lower in the structure.

3 Omega wolves (w) occupy the lowest level of the hierarchy and serve as a scapegoat.
They should surrender to the dominant wolves in the structure, and they should eat
last.

4 Delta wolf (), a wolf who is neither an alpha, beta, nor omega, is known as a
subordinate wolf in the pack. Delta wolves report to alphas or betas, but they have
authority over omega wolves [32].

{

Figure 6. Hierarchy of grey wolves.

3.3.2. Grey Wolf Optimization Mathematical Modeling

Using a set of random positions, each of which is stored in a vector, the grey wolf
optimization algorithm can begin the optimization process. The first step of each repetition
begins with computing the alpha, beta, and delta wolves’ fitness values. To keep track
of the wolves’ locations and fitness values, three vectors and three variables are used.
Before the location updating process can begin, first alpha, beta, and delta wolves’ locations
must be updated. According to the updated wolf location, the distance between the three
wolves/agents and the current solution must be measured. This is illustrated in Figure 7.
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Prey's estimated Beta current
location position

Alpha current position et

<— Omega current
s position

R Delta current position

Figure 7. Updating the Grey wolf’s position.

The three best locations for the wolves are used to determine the new locations for the
wolves, as shown in equations below [33-35].

- = =

— Xy X o X3
X1 = —+—+= 1
1= 3 + 3 =+ 3 (10)
— = — : )
where Xy Xy and X3 are defined as:
— — - =
Xl - ’Xﬂ - Al'Dﬂ
— — - =
X5 = ‘Xﬁ — Azx-Dg (11

Dg = |Cr-Xp— X (12)

— - = %’

Ds = |C3-X; — X

— - — 4‘

The variables, X,’ Xﬁ’ and X represent three best positions at iteration ¢, Ay Ay and Ay
— — — .. .
and ., . ,and . are the coefficient vectors, which are computed as follows:
Ci' G Cs
- =
A=2a1—d (13)
— —
C= 21’2 (14)

where @ will linearly decrease from 2 to 0 over the course of iterations, and 71 and 72 are
the random vectors in [0, 1]. The equation for updating the («) the parameter is given by:

a:z_t@) (15)
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In the grey wolf optimization algorithm, the global search (exploration) occurs when
A <1or A >1,whereas the local search (exploitation) occurs when 1 > A > —1. The A value
is determined by the (a) parameter, which decreases linearly from 2 to 0. The variable A’s
field changes in the range [—2, 2] as a result of the random mechanisms in this variable.
Overall, as previously stated, balancing exploitation and exploration is required to achieve
the global optimum using a stochastic method [31]. Finally, the flowchart details of the
grey wolf optimization algorithm is illustrated in Figure 8.

Initialize the parameters population size, maximum iterations, UB and LB where:

UB: the vanable's upper bound(s),

LB: the variable's lower bound(s);

W

Create the starting positions of grey wolves using UB and LB

¥

Initialize a, A”, and C~

v

Obtain the fitness of every search agent

Xq = the best search agent
xp—the second best search agent

xs—the third best search agent

»

Recalculate the positions of recent search agent by above equations Xu. Xp. Xs

b

Initialize a, .r-i and 5

v

Calculate fitness value

v

Update x,. xp and X;

v

Iter = Iter + 1

Yes

Iter <= max iteration

Figure 8. Flowchart of the grey wolf optimization algorithm.
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3.4. Classification Module (CM)

The proposed approach uses four different types of classifiers: support vector machine,
random forest, k-nearest neighbor, and naive Bayes [36,37]. This section discusses the
classification techniques in brief.

3.4.1. Support Vector Machine (SVM)

This machine learning algorithm is very effective. Compared with other machine
learning algorithms, it has several benefits. For classifying space, it offers the best decision
boundary. The decision boundary, as depicted in Figure 9, acts as a boundary between
various classes of points. It also has the biggest margin, and because they help and support
the algorithm, the points on the margin are known as support vectors. The maximum
margin hyperplane or maximum margin classifier refers to the line of the decision boundary,
which is located in the middle of the margin [38].

Hyperplane [ maximum margin classifier)

Axis2

Ve Hyperplane

* +ve Hyperplane

* * i

Axis1

Support vectors

Figure 9. Hyper-plane separation between two datasets.

3.4.2. Random Forest (RF)

This algorithm generates a collection of techniques that function as a whole and is
described as a decision tree forest made up entirely of random and various tree-loaded
techniques. It is chosen by the majority after being measured from multiple decision trees.
It is thought to be one of the most effective algorithms. Although it performs well in both
classification and regression, overfitting is the main drawback of this approach [39].

3.4.3. K-Nearest Neighbor (KNN)

In statistical prediction techniques and pattern recognition, the supervised k-nearest
neighbor algorithm is employed. According to Figure 10, this algorithm’s classification
goal is based on the majority of its neighbors. In this model space, the number of neighbors
close to the test point is denoted by the positive integer k. The magnitude of k has an
impact on the KNN algorithm’s accuracy because a high value of k reduces the impact of
noise on classification and increases algorithm accuracy [39].
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Figure 10. K-Nearest Neighbor example.
3.4.4. Naive Bayes (NB)

To classify new objects, Bayesian classifiers assign membership probabilities. It is a fast
method and can produce reasonably good results, even when applied to large amounts of
data. The two Bayesian classifiers can be divided into naive Bayes and Bayesian networks.
The naive Bayes classifier represents the learning probabilistic knowledge of the Bayes
theorem using a simple approach with clear semantics. It assumes, in particular, that the
predictive attributes are conditionally independent given the class, and it demonstrates
that there are no hidden or latent attributes that can influence the prediction process.
An investigation was conducted to evaluate the performance of the machine learning
tool. The naive Bayes classifier, on the other hand, can be used to classify ALL leukemia.
Furthermore, in the field of medical data mining, it can be used in enhancing the accuracy
of ALL detection [40,41].

4. Results
4.1. The Demographic Characteristics:

The working dataset included 504 PBS images for 25 healthy people with a benign
diagnosis and 2685 images for 64 patients that have been diagnosed as malignant with
ALL subtypes. The demographic characteristics are described in Table 2. The proposed
framework for the leukemia diagnosis is illustrated in Figure 11 and are listed as:

The image was enhanced by using stretchlim and adaptive thresholing.

Extracting features was carried out by using feature extraction methods.

The number of features was reduced by using the grey wolf optimization technique.
Acute lymphoblastic leukemia was classified into benign and malignant using RE,
SVM, KNN, and NB classifiers.

gn sy

Table 2. The Demographic characteristics.

No. of Training No. of Testing

Type No. of Samples  No. of Patients Samples Samples
Benign 504 25 403 101
Malignant 2685 64 2148 537

Total number 3189 89 2551 638
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Figure 11. Proposed framework for leukemia diagnosis.

4.2. Performance Measures

Various classification algorithms such as random forest, support vector machine, k-
nearest neighbor, and naive Bayes have been used in the classification of ALL. To ensure
the effectiveness of the proposed methodology, several performance metrics [14,42] have
been calculated to perform a fair comparison between the classifiers and the influence of
using the grey wolf optimization algorithm as a feature selection algorithm.

These performance metrics are illustrated in Table 3. The evaluated metrics include
accuracy, precision, recall (the most important one), F1-score, and specificity [43], which is
required for evaluating binary classification.

Table 3. Equations for confusion matrices with descriptions.

Monitor Equation Description

The metric represents the number of correct

Precision TP/(TP + FP) .
positive classes.

The metric represents the number of correct
Sensitivity TP/(TP + FN) positive class classifications made out of all
positive class classifications.

(TP + TN)/(TP + TN + FP The classifier’s ability to correctly classify the

Accuracy

+ FN) class label
Error (ER) 1-Accuracy The proportion of incorrect classifications
2 X [(Precision * Metric for combining recall and precision into a
Fl-score Recall)/(Precision + single score that takes into account
Recall)] both properties
e The ability of correctly identify people
Specificity TN/(TN + FP) without illness
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These evaluation metrics indicators require the following parameters to be calculated:

“TP” (true positives): the number of infected cases expected to be infected.

“TN" (true negatives): the number of uninfected cases expected to be uninfected.
“FP” (false positives): the number of uninfected cases expected to be infected.

“FN” (false negatives): the number of infected cases expected to be uninfected.
Note: In the proposed methodology the patient represents a positive class (0 is benign,
1 is malignant).

AN

The classification results before using the grey wolf optimization algorithm with all
203 features are shown in Table 4 and Figure 12.

Table 4. The performance metrics for different classification techniques before using grey wolf
optimization algorithm.

RF SVM KNN NB
Benign Malignant Benign Malignant Benign Malignant Benign Malignant
Precision 99% 99% 93% 96% 88% 96% 74% 91%
AVG of precision 99% 94.5% 92% 82.5%
Recall 92% 100% 80% 99% 79% 98% 49% 97%
AVG of recall 96% 89.5% 88.5% 73%
F1-score 95% 99% 86% 98% 83% 97% 59% 94%
AVG of F1-score 97% 92% 90% 76.5%
Accuracy 99% 96% 95% 89%
= =
T 03 8 & 81 20
L% L%}
—_ @ —_ @
4] 4]
= =
= =
s E o E
£ £ 1 536 E g 6 531
Benign Malignant Benign Malignant
Predicted label Predicted label
(a) (b)
[ =
T 84 17 H 49 52
[F} L7
— & —_ @
: 2
Z ;
s E s E
Y 524 EsY 520
Benign Malignant Benign Malignant
Predicted label Predicted label

(© (d)

Figure 12. Confusion matrices analyses of the proposed model for (a) random forest, (b) sup-
port vector machine, (c) k-nearest neighbor and (d) naive Bayes classifiers before using grey wolf
optimization algorithm.
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Figure 12a shows that (93) images are correctly recognized, whereas (8) benign samples
are recognized as malignant type (false positive). It also discloses that (536) malignant
samples are rightly classified, whereas only (1) samples are improperly classified as benign
type (false negative). Corresponding results are found for the rest of the confusion matrices
b, ¢, and d.

The classification results after using the grey wolf optimization algorithm are shown
in Table 5 and Figure 13.

Table 5. The performance metrics for different classification techniques after using grey wolf opti-
mization algorithm.

RF SVM KNN NB
Benign Malignant Benign Malignant Benign Malignant Benign Malignant
Precision 100% 96% 99% 96% 99% 80% 96%
AVG of precision 99.5% 97.5% 97.5% 88%
Recall 100% 93% 99% 95% 99% 76% 96%
AVG of recall 99.5% 96% 97% 86%
F1-score 100% 94% 99% 96% 99% 78% 96%
AVG of F1-score 99.5% 96.5% 97.5% 87%
Accuracy 99.69% 98.75% 98.59% 92.79%
= =
'E 100 1 ? a4 7
—_ @ _ &
2 2
= =
g 5 1 s E a
£ £ 536 £ £ 533
E = =
= =
Benign Malignant Benign Malignant
Predicted label Predicted label
(a) (b)
S S
2 96 5 - 77 24
g — &
z ° B
g =
: £ o £
Y I 533 s 518
- g
Benign Malignant Benign Malignant
Predicted label Predicted label
(©) (d)

Figure 13. Confusion matrices analyses of the proposed model for (a) random forest, (b) sup-
port vector machine, (c) k-nearest neighbor and (d) naive Bayes classifiers after using grey wolf
optimization algorithm.

Figure 13a shows that (100) images have been correctly classified, whereas (1) benign
samples are recognized as malignant type (false positive). It also discloses that (536)
malignant samples have been correctly classified, whereas only (1) samples are improperly
classified as benign type (false negative). Corresponding results are found for the rest of
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the confusion matrices b, ¢, and d. Figure 14 shows the confusion matrices for all classes
before and after using the grey wolf optimization algorithm.

Confusion matrices for all classes before and after using grey wolf optimization algorithm

120.0%
100.0%
80.0%
60.0%
40.0%
20.0%

0.0% - - - — -y . — e

accuracy | accuracy | precision | precision | sensitivity | sensitivity | fl-score | fl-score | specificity | specificity

before after before after before after before after before after

GWO GWO GWO GWO GWO GWO GWO GWO GWO GWO

m RF 99.0% 99.7% 99.0% 99.5% 96.0% 99.5% 97.0% 99.5% 92.1% 55.0%

mSVM| 96.0% 98.8% 94.5% 97.5% 89.5% 96.0% 92.0% 96.5% 80.2% 93.1%

m KNN | 95.0% 98.6% 92.0% 97.5% 88.5% 97.0% 90.0% 97.5% 83.2% 95.1%

NB 89.0% 92.8% 82.5% 88.0% 73.0% 86.0% 76.5% 87.0% 48.5% 76.2%

Figure 14. Confusion matrices before and after using grey wolf optimization algorithm.

As shown in Figure 14, ALL detection before using the grey wolf optimization algo-
rithm was able to achieve an average sensitivity of 96%, specificity of 92.1%, accuracy of
99%, F1-score of 97%, and precision of 99% when applying RF. In addition, it was able to
achieve an average sensitivity of 89.5%, specificity of 80.2%, accuracy of 96%, F1-score of
92%, and precision of 94.5% when applying the SVM classifier. We were able to obtain an
average sensitivity of 88.5%, specificity of 83.2%, accuracy of 95%, F1-score of 90%, and
precision of 92% when applying the KNN classifier. When we applied the NB classifier, we
reached an average sensitivity of 73%, specificity of 48.5%, the accuracy of 89%, F1-score of
76.5%, and precision of 82.5%.

After using the grey wolf optimization algorithm as a feature-selection algorithm for
enhancing the classification techniques, the accuracy of the classification techniques was
improved, as was sensitivity, precision, F1-score, and specificity.

For ALL detection after using the grey wolf optimization algorithm, it was able to
achieve an average sensitivity of 99.5%, specificity of 99%, accuracy of 99.7%, F1-score of
99.5%, and precision of 99.5% when applying the RF classifier. In addition, it was able to
achieve an average sensitivity of 96%, specificity of 93.1%, the accuracy of 98.8%, F1-score
of 96.5%, and precision of 97.5% when applying the SVM classifier. We were able to obtain
an average sensitivity of 97%, specificity of 95.1%, the accuracy of 98.6%, F1-score of 97.5%,
and precision of 97.5% when applying the KNN classifier. When the NB classifier was
applied, we achieved average sensitivity of 86%, specificity of 76.2%, the accuracy of 92.8%,
Fl-score of 87%, and precision of 88%. Figure 15 shows the effect of using grey wolf in
feature selection on the confusion matrices.

After using the grey wolf algorithm in features selection, it was found that the rate
of increase in accuracy became 0.7% in RF, 2.8% in SVM, 3.6% in KNN, and 3.8% in NB.
The rate of increase in precision became 0.5% after using RF, 3%, 5.5%, and 5.5% after
using SVM, KNN, and NB, respectively. Sensitivity also increased after using the grey wolf
technique and became 3.5%, 6.5%, 8.5%, and 13% of RE, SVM, KNN, and NB, respectively.
The rate of increase in specificity became 6.9%, 12.9%, 11.9%, and 27.7% when using RF,
SVM, KNN, and NB, respectively.
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The effect of using grey wolf optimization algorithm in the Feature Selection on the Confusion
matrices
30.0%
25.0% —
20.0% —
15.0% —
10.0%
5.0%
"
0.0%
Therate of increase | Therate of increase | Therate of increase | Therate of increase | The rate of increase
in accuracy after in precision after in sensitivity after in fl-score after in specificity after
using GWOA using GWOA using GWOA using GWOA using GWOA
M RF 0.7% 0.5% 3.5% 2.5% 6.9%
mSVM 2.8% 3.0% 6.5% 45% 12.9%
B KNN 3.6% 5.5% 8.5% 7.5% 11.9%
NB 3.8% 5.5% 13.0% 10.5% 27.7%

Figure 15. The rate of increase in confusion matrices after using grey wolf optimization algorithm.

The grey wolf optimization algorithm reduced the number of features while achieving
the highest performance, which facilitates the process of detecting whether the blood
sample is benign or malignant as shown in Figure 16.

The effect of using grey wolf optimization algorithm in
reducing the number of features

250
s
w 200
2 150
2 100
T 50
e 0
-
BF BV KMM MNB
M Total features before 203 503 203 503
GWOA
W Total features after 108 a8 0 -
GWOA

Figure 16. Effect of grey wolf in reducing the number of features.

5. Comparative Results

A comparative result between the proposed and the other techniques in the literature
was performed. Additionally, we compared machine learning algorithms SVM, NB, KNN,
and RF algorithms for the binary classification. Table 6 shows different study results.

Sorayya et al. [1] attempted to investigate deep CNN applications in which they
developed pre-trained VGG-16 and ResNet for the diagnosis and classification of ALL and
identified between healthy and cancer cases. They were able to achieve 81.6% ResNet,
84.6% VGG-16, 77.9% KNN, and 82.1% proposed CNN testing accuracy. These classifiers
measured the overall precision, sensitivity, and F1-score, which are summarized in Table 6.
The highest precision of 85% was obtained with VGG-16, the highest sensitivity of 83.5%
with VGG-16, and the highest F1-score of 84% with VGG-16. While the proposed work was
superior to that of Sorayya et al. [1], it achieved the highest accuracy when a random forest
classifier was used. It reached 99.7% accuracy in correctly classifying acute lymphoblastic
leukemia cases based on the total number of test images. The precision, which measures
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the number of correct positive classes, was 99.5%. The model had a specificity of 99%
when comparing the true proportion of negative results with all actual negatives. The
F1-score obtained indicates that the model was effective at identifying benign cases; it was
99.5%. When the proportion of true positives to all actual positives was calculated by the
RF classifier, recall reached 99.5%.

Table 6. Performance comparison of the proposed method and other machine learning classifiers.

Author Dataset Algorithm Accuracy Precision  Sensitivity F1-Score Specificity
VGG-16 84.6% 85% 83.5% 84%
Sorayyactal. [1] 12,528 images ResNet-50 81.6% 84% 82.5% 83.5%
KNN 77.9% 75% 75% 75%
Proposed CNN 82.1% 83.5% 81% 82%
Amirarash et al. [2] AU.“ 241 SVM 94.9% 90.2% 86.2% 88.2%
patients RF 90.9% 79.6% 92.2% 85.4%
Sarmad et al. [4] ALLi;Ez:els 108 SVM 93.7%
Payam et al. [7] ISBT2019 DCNN 96.6% 96.9% 91.8% 94.7%
Sara et al. [9] ISBI DCNN 96.17% 95.2% 98.6%
CNN 88.3%
Nizar et al. [10] ALL-DB SVM 50.1%
NB 69.7%
S Alagu et al. [11] ALL-IDB2 Aéi‘ii;ﬁ&’féevﬁi” 98.2% 99.2% 98.1% 96.3% 99.1%
RF 99.7% 99.5% 99.5% 99.5% 99%
The proposed 3189 images SVM 98.8% 97.5% 96% 96.5% 93.1%
methodology overall KNN 98.6% 97.5% 97% 97.5% 95.1%
NB 92.8% 88% 86% 87% 76.2%

Amirarash et al. [2] sought to classify treatment outcomes for 241 ALL children and
adolescents aged three months to seventeen at the time of diagnosis. Amirarash et al. [2]
used SVM with a cost parameter of 100 and outperformed it with an accuracy of 94.9%,
precision of 90.2%, sensitivity of 86.2%, and F1-measure of 88.2%. They also used the RF
classifier, which had an accuracy of 90.9%, a precision of 79.6%, a sensitivity of 92.2%,
and an Fl-measure of 85.4%. While the proposed work outperformed that of Amirarash
et al. [2], it achieved the highest accuracy when using a random forest classifier. This
means that it reached 99.7% accuracy when calculating accuracy by dividing the number of
correctly classified acute lymphoblastic leukemia cases by the total number of test images.
The precision, which measures the number of correct positive classes, was 99.5%. The
model had a specificity of 99% when comparing the true proportion of negative results
to all actual negatives. The Fl-score obtained indicates that the model was effective at
identifying benign cases; it was 99.5%. When the proportion of true positives to all actual
positives was calculated by the RF classifier, recall reached 99.5%. With an overall accuracy
of 98.8%, the proposed model employed an SVM classifier that outperformed that used
by Amirarash et al. [2]. The accuracy was 98.8%. When the SVM classifier was used to
calculate the true positive rate, sensitivity reached 96%. The obtained F1-score was 96.5%.
The model had a specificity of 93.1% when measuring the true negative rate.

Sarmad et al. [4] made use of the Public ALL-IDB 1 (108 images). The highest accuracy
achieved by this study when using SVM was 93.7%. The proposed work outperformed
Sarmad et al. [4]; the proposed model employed an SVM classifier that outperforms the one
used in [4] with overall correctness of 98.8% which means the classifier’s ability to correctly
classify the class label was higher than that of Sarmad et al. [4].
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Payam et al.’s [7] proposed approach was able to fuse features extracted from the best
deep learning models and outperformed individual networks with an accuracy of 96.6%,
precision of 96.9%, sensitivity of 91.75%, and F1-score of 94.7% in Leukemic B-lymphoblast
diagnosis. When comparing these results with our proposed methodology, we found that
the results of our suggestions when using RF were higher in accuracy, sensitivity, and
specificity as shown in Table 6.

Sara et al. [9] presented an automatic CNN hybrid method for the classification of ALL
and healthy cells with an accuracy of 96.2%, sensitivity of 95.2%, and specificity of 98.6%.
When comparing these results with our proposed methodology, we found that the results
of our suggestions when using RF were higher in accuracy, sensitivity, and specificity as
shown in Table 6.

The ALL-DB dataset was used by Nizar et al. [10]. When the classifier CNN was used
in this study, the highest accuracy was 88.3%. The accuracy achieved by this study was
50.1% when using SVM and 69.7% when using NB. The proposed model employed an
SVM classifier that was superior to that used by Nizar et al. [10], with an overall accuracy
of 98.8%; additionally, the proposed model employed an NB classifier with an overall
accuracy of 92.8%, which means the classifier’s ability to correctly classify the class label
was higher than that of Nizar et al. [10].

S. Alagu et al. [11] proposed work to suggest principal features for the detection of ALL.
The highest accuracy achieved by this study when using (AlexNet+GoogleNet+SqueezeNet
+SVM) was 98.2%, precision of 99.2%, recall of 98.1%, F1-score of 96.3%, and specificity
of 99.1%. This means that S. Alagu et al.’s [11] proposed work had the ability to correctly
identify people who did not have the disease by 0.1% from our proposed methodology.
However, compared with the proposed methodology, it was found that the accuracy is
increased by 1.5%, which means that the classifier’s ability to correctly classify the naming
of the class was higher. Moreover, it had a higher number of correct positive categories
with a percentage of 0.3% and was higher in calculating the number of correct positive
classes made out of all positive classes classification with a percentage of 1.4%.

Figure 17 shows a comparison between the accuracy generated when using the classi-
fiers after applying a grey wolf for feature selection. From the results, it is clear that the
proposed methodology can achieve the highest accuracy over the rest of the classifiers used
in the other references, as exhibited in Table 6. This clearly illustrates that all the values
of the confusion matrices resulting from the proposed work are higher than all the values
obtained from the methods used in the references that are presented in Table 6.

Accuracy
98.8%
99.7% 93.7% 98.6%
77.9%
69.7%
50.1%
NB [ NB RF RF SWM SVM SVM SvMm KNN KNN \
[ [Amirarash et [Sarmad et [Amirarash et [Sorayya et
proposed [Nizar etal.2019] proposed a1.2020] proposed [Nizar etal.2019] 21.2019] 21.2020] proposed 21.2021]
| = Accuracy | 92.8% | 69.7% 99.7% 90.9% 98.8% 50.1% 93.7% 94.9% 98.6% 77.9% \

Figure 17. A graph showing classifiers” accuracy obtained from the proposed work and the similar
classifiers used in other references [1,2,4,10].

6. Conclusions

The detection of immature leukemic blasts and normal cells is one of the great interests
for saving human life, especially those who suffer from blood cancer. Attempts were made
in this research to detect acute lymphoblastic leukemia from microscopic blood images
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using image processing techniques. The dataset used included 3189 PBS images from 89
patients suspected of having ALL, whose blood samples were organized and stained by
highly skilled laboratory personnel. This dataset was split into two categories: benign and
malignant. Firstly, the image was enhanced by using stretchlim and adaptive thresholding.
Secondly, extracting features was carried out by using feature extraction methods. Thirdly,
the number of features was reduced by using the grey wolf optimization algorithm. Finally,
acute lymphoblastic leukemia was classified into benign and malignant using RF, SVM,
KNN, and naive Bayes classifiers. After employing the grey wolf optimization technique
in the feature selection process, it was demonstrated that it provides good efficiency in all
cases. The proposed work obtained the highest accuracy of 99.69%, the highest sensitivity
of 99.5%, the highest precision of 99.5%, F1-score of 99.5%, and specificity of 99%, proving
the efficacy of these methods. These methods were compared to some modern techniques
to determine the efficacy of the suggested method.

Compared with previous research, it was found that the highest accuracy resulted
from the proposed methodology. Thus, the proposed proposal can improve performance
and reduce the number of features after using the grey wolf optimization technique, this is
the first time that grey wolf has been used in detecting ALL leukemia. Furthermore, using
other approaches for this methodology is of interest to use more effective approaches in the
next research for more improved results.
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