
����������
�������

Citation: Li, W.; Zheng, X.; Gao, H.;

Ji, Q.; Qi, G. Cosine-Based Embedding

for Completing Lightweight Schematic

Knowledge DL-Litecore . Appl. Sci.

2022, 12, 10690. https://doi.org/

10.3390/app122010690

Academic Editor: Tobias Meisen

Received: 6 September 2022

Accepted: 19 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Cosine-Based Embedding for Completing Lightweight
Schematic Knowledge in DL-Litecore

†

Weizhuo Li 1,2,3 , Xianda Zheng 4,5,*, Huan Gao 6, Qiu Ji 1 and Guilin Qi 2,5

1 School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2 Key Laboratory of Computer Network and Information Integration, Southeast University,

Ministry of Education, Nanjing 211189, China
3 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
4 School of Computer Science, The University of Auckland, Auckland 1010, New Zealand
5 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
6 Intel Joint Research Institute on Intelligent Edge Computing, Nanjing 211135, China
* Correspondence: zhengxianda@seu.edu.cn; Tel.: +86-185-0556-5540
† This Paper is a Substantial Extended Version of Paper Published in the 8th CCF International Conference on

Natural Language Processing and Chinese Computing, Dunhuang, China, 9–14 October 2019.

Abstract: Schematic knowledge, an important component of knowledge graphs (KGs), defines a rich
set of logical axioms based on concepts and relations to support knowledge integration, reasoning,
and heterogeneity elimination over KGs. Although several KGs consist of lots of factual knowledge,
their schematic knowledge (e.g., subclassO f axioms, disjointWith axioms) is far from complete.
Currently, existing KG embedding methods for completing schematic knowledge still suffer from
two limitations. Firstly, existing embedding methods designed to encode factual knowledge pay
little attention to the completion of schematic knowledge (e.g., axioms). Secondly, several methods
try to preserve logical properties of relations for completing schematic knowledge, but they cannot
simultaneously preserve the transitivity (e.g., subclassO f ) and symmetry (e.g., disjointWith) of
axioms well. To solve these issues, we propose a cosine-based embedding method named CosE
tailored for completing lightweight schematic knowledge in DL-Litecore. Precisely, the concepts in
axioms will be encoded into two semantic spaces defined in CosE. One is called angle-based semantic
space, which is employed to preserve the transitivity or symmetry of relations in axioms. The other
one is defined as translation-based semantic space that is used to measure the confidence of each
axiom. We design two types of score functions for these two semantic spaces, so as to sufficiently learn
the vector representations of concepts. Moreover, we propose a novel negative sampling strategy
based on the mutual exclusion between subclassO f and disjointWith. In this way, concepts can obtain
better vector representations for schematic knowledge completion. We implement our method and
verify it on four standard datasets generated by real ontologies. Experiments show that CosE can
obtain better results than existing models and keep the logical properties of relations for transitivity
and symmetry simultaneously.

Keywords: schematic knowledge; embedding; lightweight ontology; transitivity; symmetry

1. Introduction

In recent years, knowledge graphs (KGs) have attracted lots of attention since they
can effectively organize and represent knowledge from rich resource data, which can
provide users with various smarter services through knowledge reasoning techniques.
There exist two types of knowledge in a KG. One is schematic knowledge, which is made
up of assertions about concepts and relations called axioms. The other is factual knowledge,
which is composed of statements about instances called triples [1].

Schematic knowledge, a critical component of KGs, formulates a rich set of logical
axioms based on concepts to support the elimination of heterogeneity, integration, and rea-
soning over KGs. Nevertheless, existing knowledge graphs (e.g., WordNet [2], DBpedia [3],
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and YAGO [4]) mostly consists of lots of factual knowledge and little schematic knowl-
edge. For the famous knowledge graph DBpedia (https://www.dbpedia.org/ accessed on
5 September 2022), it contains more than 1.89 billion triples and over 3.5 million entities
among them. However, it contains only 768 concepts and 20 disjointWith axioms asserted
among them. The sparsity of schematic knowledge will limit the applications and ser-
vices of KGs such as query-answering [5], recommendation system [6], and knowledge
integration [7]. Hence, it is essential to improve the completeness of schematic knowl-
edge. Nevertheless, it is hard for traditional reasoning-based methods to automatically
infer all the remaining axioms. Take, for an example shown in Figure 1, there are three
axioms (Farm_Boy, subclassO f , Boy), (Boy, subclassO f , Male_Person), and (Male_Person,
subclassO f , Person), defined in one schematic knowledge. If the relation subclassO f from
Boy to Male_Person marked in red is missing, then it is hard to obtain the subclassO f
relation from Boy to Person marked in blue using traditional reasoning-based methods.

Farm_Boy

Person

Boy

Male_Person

subclassOf

subclassOf

subclassOf subclassOf

Figure 1. An example of the missing one subclassO f axiom for schematic knowledge completion.

Knowledge graph embedding, which aims to encode the entities and relations of a
KG into the low-dimensional and continuous vector space, has been widely studied and
has been proven to be of great help in KG completion via link prediction [8] and other
downstream tasks; see [9–12]. The mainstream models are designed for factual knowledge
embedding, including TransE [13], TransH [14], TransR [15], and so on, which regard the
relation as a “translation” from the head entity to the tail entity. Another kind of model
for factual knowledge embedding, such as RESCAL [16], DistMult [17], HolE [18], and
ComplEx [19], design various operators to encode rich interactions among embedding
vectors. Recently, several works have tried to encode the properties of relations for com-
pleting schematic knowledge, such as EmbedS [20], TransC [21], HAKE [22], RotatE [23],
EL Embeddings [24], and OWL2Vec* [25]. Most of them have attempted to encode the
concepts and instances into a spherical semantic space so that the transitivity and other
logical properties of relations could be preserved. Benefiting from this idea, more potential
axioms and triples could be predicted.

Although the methods of KG embedding have achieved great success in KG comple-
tion, most of them suffer from two limitations. On the one hand, the mainstream models
of KG embedding mainly consider the triples derived from factual knowledge, but few of
them pay attention to the modeling of the logical properties of relations. Hence, these meth-
ods can hardly be applied to the related tasks of schematic knowledge (e.g., completion,
reasoning, and repairing). For example, given one axiom (Ci, r, Cj) with two concepts Ci, Cj,
and a symmetry relation r, for the translation-based KG embedding method TransE [13], if
two concepts and a relation are projected into its defined semantic space, the axiom’s score
of ||Ci + r− Cj||2 is not equal to ||Cj + r− Ci||2. Therefore, the symmetry of relation r is
lost in the defined semantic space of TransE. On the other hand, existing embedding models
for schematic knowledge mainly focus on modeling the properties of relations such as
transitivity, (anti)-symmetry, inversion, and composition. It remains a challenge for them to
simultaneously preserve the transitivity (e.g., subclassO f ) and symmetry (e.g., disjointWith)
of axioms well. As the schematic knowledge of KG usually has its logical foundations based

https://www.dbpedia.org/
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on ontology languages, such as the Resource Description Framework (Schema) (RDF(S))
(https://www.w3.org/TR/rdf-schema/ accessed on 5 September 2022) and the Ontology
Web Language (OWL) (https://www.w3.org/OWL/ accessed on 5 September 2022), so
it is important to improve the completion of subclassO f axioms and disjointWith ones,
because both of them are basic axioms asserted in schematic knowledge or ontologies,
which can ensure the quality of KGs and infer more implicit knowledge.

To solve the problems, we attempt to propose a cosine-based embedding method,
namely CosE (Cosine-based Embedding), for learning the vector representations of con-
cepts in lightweight schematic knowledge that corresponds to the ontology expressed in
DL-Litecore. DL-Litecore is a lightweight language of Description Logics (DL), which can
capture basic ontology languages and maintain a low complexity of reasoning [26]. In the
previous study [27], the authors demonstrated that all the axioms asserted in DL-Litecore
could be reduced to the ones with subclassO f and disjointWith relations. Therefore, our
proposed model is mainly designed to learn the representations of axioms that are defined
by these two relations. In order to better preserve the properties of relations and to measure
the confidence of axioms in schematic knowledge, we implement CosE by projecting con-
cepts into the angle-based semantic space and translation-based semantic space according
to the type of relations. In the angle-based semantic space, each concept is encoded with
one vector and a valid length, which are utilized to preserve the properties of these two
kinds of relations. In the translation-based semantic space, the vector representations of
concepts are employed to measure the confidence of related axioms. Furthermore, we de-
sign a negative sampling strategy according to the mutual exclusion relationship between
subclassO f and disjointWith during the training process of CosE, which can learn better
vector representations of concepts for completing schematic knowledge.

The main contributions of this work can be summarized as follows.

• We propose a cosine-based embedding model for completing lightweight schematic
knowledge expressed in DL-Litecore, in which two score functions are defined based
on angle-based semantic space and translation-based semantic space so that the
transitivity and symmetry of subclassO f and disjointWith relations can be preserved
in our model simultaneously.

• We design a negative sampling strategy based on the mutual exclusion relationship
between subclassO f axioms and disjointWith ones so that CosE can obtain better
vector representations of concepts for schematic knowledge completion.

• We implement and evaluate our method based on four standard datasets constructed
using real ontologies. Experiments on link prediction indicate that CosE could simul-
taneously preserve the logical properties (i.e., transitivity, symmetry) of relations and
obtain better results than state-of-the-art models in most cases.

The rest of the paper is organized as follows. Section 2 shows the related work of
knowledge graph embedding. Section 3 introduces the preliminaries, including both
DL-Litecore and its logical properties. Our proposed model for completing the schematic
knowledge is described in Section 4. Section 5 presents the experiments and evaluation
results, followed by discussions in Section 6. Section 7 gives the conclusion and future
directions of research.

2. Related Work

In this section, we briefly give an overview of the existing research efforts on KG
embedding and divide them into two categories.

2.1. Factual Knowledge Embedding

Factual knowledge embedding mainly consists of two mainstream models, which are
translational distance models and semantic matching models [9]. The former utilized the
distance-based scoring function to measure the plausibility of one triple, and the latter used
the similarity-based function to match the latent semantics of entities and relations in the
vector space.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL/
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TransE [13] was one of the most representative translational distance models. It tried
to encode both entities and relations of triples as vectors into the same semantic space. For
each triple (h, r, t), the head entity and the tail entity in the semantic space were denoted
by h and t that could be connected by their relations t with low error, such that h + r ≈ t.
Afterward, several methods have been proposed to improve this idea. TransH [14] projected
all the entities into one relation-specific hyper-plane, which made different roles of one
entity in different relations. TransR [15] and TransD [28] still followed the strategy of
TransH. They projected entities into relation-specific spaces using a projection matrix
so that more complex relations (i.e., 1-to-N, N-to-1 and N-to-N) could be encoded. To
seek the most reliable relation among two entities, TransA [29] introduced an adaptive
Mahalanobis distance to define the score function so that it could handle complex relations
more flexibly. Nevertheless, the translation-based embedding strategy only considers the
local information of triples, which cannot make full use of the global information in KGs.

Another type of KG embedding models based on semantic matching adopted the
architectures of neural network, which obtained encouraging results of KG completion,
including MLP [30], NAM [31], and R-GCN [32]. In addition, ProjE [33] and ConvE [34]
introduced the features of complex space and further optimized the score functions of
underlying models. Therefore, both of them could obtain better performances compared to
several models without the features of complex space.

The methods for factual knowledge embedding mainly consider encoding the triples
of KGs to obtain vector representations of entities and relations for factual knowledge com-
pletion. However, few of them pay attention to model logical properties (e.g., transitivity,
symmetry) of relations. Hence, these methods can hardly be applied to the related tasks of
schematic knowledge or ontologies (e.g., completion, reasoning, and repairing).

2.2. Schematic Knowledge Embedding

The studies of schematic knowledge embedding are primarily composed of logical
rules embedding, logical properties embedding, and ontology embedding [35].

As the RDF(S) and schematic knowledge can be transformed into logical rules, several
studies have tried to encode them into embedding models and enhance the performances
for knowledge completion [36]. Guo et al. [37] designed a joint model named KALE, which
could simultaneously encode the triples of factual knowledge and their related logical
rules. Furthermore, the authors proposed an improved model called RUGE [38] that could
integrate the labeled triples, soft rules, and unlabeled triples into an iterative framework
for learning their vector representations in the semantic space. Similarly, Zhang et al. [39]
proposed a model named IterE. Different from above methods that mainly proposed to
learn rules, the authors devoted to learning the embeddings of entities and rules at the same
time, making full of their advantages complementing each other during the processing of
model learning.

To further maintain the logical properties of relations, some works have been proposed
for schematic knowledge and lightweight ontologies called RDF Schema. On2Vec [40]
was a translation-based method for embedding the population of ontologies, in which the
matrices were introduced to encode the transitivity of several relations. In order to encode
concepts and instances into the same semantic space, EmbedS [20] and TransC [21] tried
to encode concepts as spheres and instances as vectors so that the transitivity of the is-A
relations could be preserved. To model the semantic hierarchies of KGs, Zhang et al. [22]
proposed a method called HAKE for modeling semantic hierarchies. It is inspired by the
fact that concentric circles can naturally reflect the hierarchy in the polar coordinate system.
To further model composition among relations, RotatE [23] encoded entities and relations
into a complex vector space, in which each relation was treated as a rotation from its related
head entity to the tail entity. Furthermore, it could persevere the (anti)-symmetry and
inversion of relations at the same time.

Recently, embedding models for ontologies have received attention. EL Embedding [24]
and Quantum Embedding [41] were two representative algorithms based on the end-to-
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end paradigm, in which loss functions and score functions were designed tailored for
logical axioms expressed by EL++ and ALC, respectively. These two embedding models
encoded the semantics of the logical constructors by transforming the relations into geo-
metric relations so that they could complete some kinds of axioms in ontologies very well.
Chen et al. [25] proposed an ontology embedding model combined with word embedding
and random walk algorithm, called OWL2Vec?, which took in the lexical information, logi-
cal constructors, and graph structures of ontologies so that it could preserve the semantics
of ontologies well.

Although the above models are enabled to encode the logical properties of relations in
their designed semantic spaces, it is still a challenge for them to preserve the transitivity
(e.g., subclassO f ) and symmetry (e.g., disjointWith) of axioms at the same time. To the
best of our knowledge, our model is the first work for completing lightweight schematic
knowledge expressed in DL-Litecore, by which the transitivity and symmetry of relations in
axioms can be simultaneously preserved well.

3. Preliminary

This section first gives the basic syntax and definition of DL-Litecore. Then, we intro-
duce the definition of schematic knowledge embedding, and formulate its properties for
preserving the transitivity and symmetry of relations in DL-Litecore.

3.1. DL-Litecore

DL-Litecore is the core language for DL-Lite [26]. It is the lightweight language of
Description Logics that represents the domain of interest via concepts denoting the set of
instances and binary relations between instances. For the syntax of DL-Litecore, the concepts
and relations are defined as follows:

(1) B ::= A|∃Q, (2) Q ::= P|P−,
(3) C ::= B|¬B, (4) R ::= Q|¬Q,

where the symbols A and B denote an atomic concept and a basic one, P and Q represent
an atomic relation and a basic one, and C and R denote the general concept and role,
respectively.

The forms of axiom in DL-Litecore can be asserted as follows: (1) the inclusion axiom
of concepts is denoted by B v C; (2) the membership axiom of concept is denoted by A(a),
where a is an individual; and (3) the membership axiom of relation is denoted by P(a, b),
where a, b are two instances.

Definition 1 ([42] (Ontology)). Let L be a logical language from Description Logics. An ontology
denoted by O = 〈T ,A〉 consists of a TBox T and an ABox A, where T is a set of concept inclusion
axioms that is also called schematic knowledge, and A is a set of membership axioms about concepts
and roles. The forms of all the axioms in O are constrained by the syntax of L.

For the lightweight schematic knowledge of KG, its logical axioms are mainly asserted
based on subclassO f axioms and disjointWith axioms. According to the previous study [27],
the authors demonstrated that all the axioms from TBox in DL-Litecore could be completely
reduced to axioms with subclassO f and disjointWith relations using the transformational
rules based on a directed graph. Hence, our proposed model can encode all the axioms
from TBox expressed in DL-Litecore.

Unless specified otherwise, we assume that all the axioms of lightweight schematic
knowledge in the subsequent sections are expressed in DL-Litecore, and we do not dif-
ferentiate the TBox in DL-Litecore ontology and lightweight schematic knowledge. For
convenience, we divide the axioms in TBox of DL-Litecore into two sets, denoted by
T = {(Ci, subclassO f , Cj)} ∪ {(Ci, disjointWith, Cj)}, where Ci and Cj are two general
concepts. Notice that the axioms are also one special kind of triples. For schematic knowl-
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edge embedding, the encoded objects of models are head concepts, and the tail ones are
defined by the syntax of DL-Litecore, rather than entities without semantics.

Next, we give the definition of schematic knowledge embedding and formulate its
properties for preserving the transitivity and symmetry of relations in DL-Litecore.

3.2. Schematic Knowledge Embedding for DL-Litecore

Definition 2 (Schematic Knowledge Embedding). Given a set of axioms T = {(Ci, r, Cj)},
where Ci, Cj are two concepts and r is a relation of them. Its embedding model is a function
f (Ci, r, Cj) → R that can encode all the concepts and relations in T into the semantic space, in
which the logical property of each relation r can be preserved w.r.t. the asserted axioms {(Ci, r, Cj)}
and inferred ones at the numerical level.

According to Definition 2, we formulate its properties for preserving the transitivity
and symmetry of relations subclassO f and disjointWith in axioms during this process.

Definition 3 (Schematic Knowledge Embedding for DL-Litecore). GivenaTBoxT ={(Ci, r, Cj)}
expressed in DL-Litecore, its embedding model denoted by f (Ci, r, Cj) should satisfy the following
properties to preserve the transitivity of subclassO f and symmetry of disjointWith:

1. If r = subclassO f and (C1, r, C2), (C2, r, C3) are two axioms asserted in T , then f (C1, r, C3)
≈ f (C1, r, C2) ≈ f (C2, r, C3).

2. If r = disjointWith and (C1, r, C2) is an axiom asserted in T , then f (C1, r, C2)≈ f (C2, r, C1).

Notice that the properties in Definition 3 are preconditions for the model of lightweight
schematic knowledge embedding. The object function still needs to be competent for the
task of completing lightweight schematic knowledge in DL-Litecore. Our proposed model
is subsequently designed to achieve these goals.

4. Method

In this section, we first show the framework of CosE for embedding schematic knowl-
edge, and then we describe the score functions of CosE in detail. Finally, the strategy of
negative sampling is introduced for training CosE.

4.1. The Framework of CosE

For each axiom (Ci, r, Cj) with transitivity or symmetry relation r expressed in DL-
Litecore, the existing KG embedding models prefer to treat relation r as one single symbol,
but they usually ignore its logical properties. Therefore, the transitivity and symmetry of
relations cannot be preserved in the semantic space, which is hardly applied to schematic
knowledge completion. To better complete lightweight schematic knowledge, we propose
a cosine-based embedding model called CosE, which can simultaneously preserve the
transitivity of subclassO f and symmetry of disjointWith well.

Figure 2 shows the framework of CosE for schematic knowledge embedding with a
concrete example, where the relations subclassO f and disjointWith are denoted by solid
lines and dotted lines, respectively. Given a set of axioms expressed in DL-Litecore shown
in Figure 2a, CosE divides them into two disjoint sets, S ∪ D shown in Figure 2b, where S
and D contain all the subclassO f axioms and disjointWith axioms, respectively. Then, all
the concepts in S and D are projected according to the type of relations into angle-based
semantic space and translation-based semantic space shown in Figure 2c. The angle-based
semantic space is employed to preserve the transitivity or symmetry of relations in axioms,
and the translation-based semantic space is used to measure the confidence of each axiom.
Finally, the embedding of concepts will be obtained when the process of training CosE
is finished.
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Figure 2. The framework of CosE for schematic knowledge embedding.

Notice that subclassO f and disjointWith relations are 1-to-N and N-to-N ones. For
example, one concept could belong to (or disjoint with) several concepts. To measure
the confidences of axioms more accurately, CosE introduces the mapping matrix MCiCj
to encode concepts as vectors in translation-based semantic space, where Ci, Cj are the
concepts in given axioms. For the axiom (C1, subclassO f , C2) shown in Figure 2c, the
concepts C1, C2 will be projected by MCiCj . It indicates that each axiom will be projected
into one translation-based semantic space tailored for itself. More specifically, as shown in
Figure 2c, we assume that C12

1⊥, C12
2⊥ are the projected vectors of C1 and C2 by MC1C2 , and

C23
2⊥ and C23

3⊥ are the projected vectors of C2 and C3 by MC2C3 . It is easy to observe that the
located translation-based semantic spaces of them are different, which is helpful for each
axiom to obtain a suitable confidence in its projected space. Given one axiom (Ci, r, Cj), we
define its mapping matrix MCiCj as follows:

MCiCj = CipC>jp + In×n, (1)

where Cip, Cjp ∈ Rn are the projection vectors of head concept Ci and tail concept Cj in
axiom (Ci, r, Cj). In×n is an identity matrix. According to the defined mapping matrix
MCiCj , the projected vectors of concepts Ci and Cj in its translation-based semantic space
are calculated as follows:

Ci⊥ = MCiCj Ci, Cj⊥ = MCiCj Cj. (2)

As shown in Figure 2c, the translation-based semantic space introduced in CosE can
only measure the confidence of axioms, while the logical properties of relations need to be
encoded through the angle-based semantic space. To deal with the transitivity of axioms
(C1, subclassO f , C2) and (C2, subclassO f , C3) in S , we hope the angles among vectors of C1,
C2 and C3 should be close to 0◦. To describe the direction of transmission about subclassO f
axioms, CosE employs the vector length of each concept as a restriction in angle-based
semantic space, in which the lengths of sub-concepts should be less than the ones of their
parents. For the axioms (C1, subclassO f , C2) and (C2, subclassO f , C3) in S , the length of
C3 is larger than C2, whose length is larger than C1. To preserve the symmetry, the length
restrictions will be removed because the cosine function itself has the property of symmetry.
For (C3, disjointWith, C4), the vector representations of concepts C3 and C4 are similar in
the angle-based semantic space. With the help of these two types of semantic spaces, the
transitivity and symmetry of relations could be simultaneously preserved in CosE.
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4.2. The Score Functions of CosE

As CosE projects the concepts of all the axioms into two types of semantic spaces,
we define the corresponding score functions to evaluate the score of axioms in these two
semantic spaces. Given an axiom (Ci, r, Cj), its score function is defined as:

f (Ci, r, Cj) = fa(Ci, r, Cj) + ft(Ci, r, Cj), (3)

where fa(Ci, r, Cj) is score function defined in the angle-based semantic space, and ft(Ci, r, Cj)
is one designed for translation-based semantic space.

For the score function fa(Ci, r, Cj) in angle-based semantic space, we assume that the
relations with different properties should be measured by different score functions. For
an axiom (Ci, rs, Cj) with a subclassO f relation denoted by rs, CosE encodes concepts Ci
and Cj as (Ci, m) and (Cj, n), where Ci and Cj are the vectors of Ci and Cj, and m and n
are two external vectors introduced to obtain the valid lengths of Ci and Cj for preserving
the direction of transmission between the projected concepts. The score function of axiom
fa(Ci, rs, Cj) designed for subclassO f relation is defined as follows.

fa(Ci, rs, Cj) = 1− cos(Ci, Cj) + ||m||2 − ||n||2, (4)

where Ci ∈ Rn and Cj ∈ Rn are two vectors corresponding to Ci and Cj, and ||m||2 and
||n||2 are two valid lengths of Ci and Cj. Note that these vectors are all parameters that
need to be learned during the process of model training.

For an axiom (Ci, rd, Cj) with disjointWith relation denoted by rd, the length con-
straints of vectors are removed so as to preserve the symmetry of the disjointWith relation.
The score function corresponding to (Ci, rd, Cj) is defined as follows.

fa(Ci, rd, Cj) = 1− cos(Ci, Cj), (5)

where Ci, Cj ∈ Rn are the vectors of Ci and Cj in the angle-based semantic space.
Although the above score functions designed for angle-based semantic space can pre-

serve the properties of subclassO f and disjointWith, it still cannot measure the confidences
of axioms with these two relations well. This is because subclassO f and disjointWith are
typical multivariate relations. To address this problem, we introduce a new score function
for each axiom in translation-based semantic space to achieve this goal, as follows.

ft(Ci, r, Cj) = ||Ci⊥ + r− Cj⊥||2, (6)

where r is the vector representation of relation r, and Ci⊥ and Cj⊥ ∈ Rn are two projected
vectors generated by Formulas (1) and (2) in translation-based semantic space. During
the training process of CosE, we need to enforce the constraints such that ||Ci||2 ≤ 1,
||Cj||2 ≤ 1, ||Ci⊥||2 ≤ 1, and ||Cj⊥||2 ≤ 1.

Notice that the relation’s own transitivity or symmetry can also be modeled via the
function of angle-based semantic space, and the normal relations without logical properties
can be modeled via the function of translation-based semantic space.

4.3. Negative Sampling Based on Schematic Knowledge for the Training Model

To train our proposed model, every axiom in the training set needs to be labeled as
“positive” or “negative”. However, there are only positive axioms asserted in the existing
DL-Litecore ontologies. Thus, we need to corrupt the positive axioms to generate a set of
negative axioms. Precisely, for each axiom (Ci, r, Cj) asserted in the DL-Litecore ontologies,
we adopt the negative sampling strategy to generate a set of negative axioms, by which
Ci or Cj in (Ci, r, Cj) are replaced with (Ci

′, r, Cj) or (Ci, r, Cj
′) according to the uniform

probability distribution.
For all the axioms, we utilize the loss function based on margin rank to train the vector

representation of concepts in CosE, where symbols T and T ′ denote two sets of positive
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axioms and negative ones w.r.t. the type of relation. ξ and ξ ′ represent a positive axiom
and a negative one selected from T and T ′, respectively. For the axioms with subclassO f
relations, their loss function is defined as:

Lsub = ∑
ξ∈Tsub

∑
ξ ′∈T ′sub

[γsub + f (ξ)− f (ξ ′)]+, (7)

where f (·) is the score function defined in Formula (3), and γsub is a margin to separate

the positive axiom and the negative one, [x]+
4
= max(x, 0). Similarly, the loss function of

axioms with disjointWith relations is defined as:

Ldis = ∑
ξ∈Tdis

∑
ξ ′∈T ′dis

[γdis + f (ξ)− f (ξ ′)]+. (8)

Finally, the complete loss function of CosE is linearly composed of the above two loss
functions, defined as follows.

L = Lsub + Ldis (9)

The target of training CosE is to minimize its loss function by updating the embeddings
of concepts iteratively. Algorithm 1 presents the concrete procedure for training CosE. With
a set of axioms T expressed in DL-Litecore as inputs, we first divide T into two disjoint
sets, S and D (Lines 1–2). Line 3 initializes all the parameters related to concepts trained
in CosE, denoted byM. Lines 4–15 present the concrete realization of CosE for schematic
knowledge embedding. For each axiom (Ci, subclassO f , Cj) (or (Ci, disjointWith, Cj)), we
employ the corresponding score function to learn the vector representations of concepts
in two semantic spaces, and calculate the loss function of them (Lines 5–14). Line 15
calculates the sum of two loss functions of Lsub and Ldis. The whole training process will
be terminated until the loss function L of modelM is converged.

Algorithm 1: The algorithm of training CosE model
Input: A set of axioms T expressed in DL-Litecore.
Output: The trainded model with concepts embeddingM

1 S ← {(Ci, subclassO f , Cj)|∀(Ci, subclassO f , Cj) ∈ T };
// Obtain the set of subclassO f axioms

2 D ← {(Ci, disjointWith, Cj)|∀(Ci, disjointWith, Cj) ∈ T };
// Obtain the set of disjointWith axioms

3 Initial all the parameters Ci, Cj, Ci⊥2, Cj⊥, m and n related to concepts inM;
4 while the loss function L of modelM is not converged do
5 for each axiom (Ci, subclassO f , Cj) ∈ S do
6 Learn the vector representations of Ci, Cj by the score function fa(Ci, rs, Cj);
7 Learn the vector representations of Ci, Cj by the score function ft(Ci, r, Cj);
8 end
9 Calculate the loss function Lsub according to Formula (7);

10 for each axiom (Ci, disjointWith, Cj) ∈ D do
11 Learn the vector representations of Ci, Cj by the score function fa(Ci, rd, Cj);
12 Learn the vector representations of Ci, Cj by the score function ft(Ci, r, Cj);
13 end
14 Calculate the loss function Ldis according to Formula (8);
15 L ← Lsub + Ldis;
16 end
17 returnM;

Furthermore, we design a novel negative sampling skill according to the mutual exclu-
sion between subclassO f and disjointWith relations. Unlike the uniform negative sampling
method that randomly samples its replacer from all the concepts, we restrict the sampling
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scope to a group of candidates, which can provide more meaningful information during
the process of training. Precisely, for each axiom (Ci, rs, Cj) with subclassO f relation rs, if
there exist subclassO f relations (e.g., (Ci

′, subclassOf , Ci) or (Cj, subclassOf , Cj
′)) asserted

or inferred in ontologies, we need to exclude these replace cases because of the transitivity
of subclassO f . Relatively, if there exist disjointWith relations (e.g., (Ci

′, disjointWith , Ci) or
(Cj, disjointWith , Cj

′)) in ontologies, we need to give the highest priority to these relations
for replace cases. Similarly, for each axiom (Ci, rd, Cj) with disjointWith relation rd, we need
to exclude the replace cases (Ci

′, subclassOf , Ci) or (Cj
′, subclassOf , Cj), which are asserted

or inferred in ontologies. With these semantic constraints for negative sampling, we can
obtain better vector representations of concepts for completing schematic knowledge.

5. Experiments and Results

To evaluate our method, we compare CosE with several well-known models and state-
of-the-art methods of KG embedding on link prediction, which is a typical task employed
for knowledge graph completion. In addition, we further extend the tasks of link prediction
in order to verify the ability of models for preserving the transitivity and symmetry of
relations in schematic knowledge.

5.1. Datasets

Although there exist several benchmark datasets (e.g., FB15K, WN18) in previous
works [13–15], it is not suitable for them to evaluate the models for completing schematic
knowledge. This is because most datasets mainly consist of factual knowledge, but few of
them contain enough concepts and related axioms. Therefore, we collect four lightweight
schematic knowledge named YAGO-On, FMA [43], FoodOn [44], and HeLiS [45], and two
variants built based on YAGO-On (i.e., YAGO-on-t and YAGO-on-s), listed as follows.

• YAGO-On: It is built from the well-known knowledge graph YAGO [4], which con-
tains lots of concepts from WordNet [2].

• FMA: It is an evolving ontology that has been maintained by University of Washington
since 1994. It conceptualizes the phenotype structure of human in a machine-readable
form, whose biomedical schematic knowledge has been open source in OAEI
(http://oaei.ontologymatching.org/ accessed on 5 September 2022).

• FoodOn: It is a comprehensive ontology resource that spans various domains related
to food, which can precisely describe foods commonly known in cultures from around
the world.

• HeLiS: It is an ontology for promoting healthy lifestyles, which tries to conceptualize
the domains of food and physical activity so that some unhealthy behaviors can
be monitored.

• YAGO-On-t: It is built from the axioms in YAGO-On according to the transitivity
property of subclassO f . If there exist (Ci, subclassO f , Cj) and (Cj, subclassO f , Cm) in
YAGO-On, we add an axiom (Ci, subclassO f , Cm) to YAGO-On-t.

• YAGO-On-s: It is built from the axioms in YAGO-On according to the symmetry
property of disjointWith. If there exists an axiom (Ci, disjointWith, Cj) in YAGO-On,
we add an axiom (Cj, disjointWith, Ci) to YAGO-On-s.

As several datasets only contain axioms with subclassO f relations, we need to supple-
ment some disjointWith axioms. To achieve this goal, we utilize heuristic rules proposed
in [46] to generate some axioms with disjointWith relations and inject them into the original
datasets. Table 1 lists the statistics of the above datasets for evaluation.

http://oaei.ontologymatching.org/
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Table 1. The statistics of generated datasets for evaluation.

Dataset YAGO-On [4] FMA [43] FoodOn [44] HeLiS [45] YAGO-On-t YAGO-On-s

] Concept 46,109 78,988 28,182 17,550 46,109 46,109

Train ] subclassO f 29,181 29,181 20,844 14,222 11,898 0
] disjointWith 32,673 32,673 17,398 13,782 0 10,000

Valid ] subclassO f 1000 2000 1488 1015 1000 1000
] disjointWith 1000 2000 2714 1722 1000 1000

Test ] subclassO f 1000 2000 2978 2032 5949 0
] disjointWith 1000 1000 2174 1722 0 10,000

]: indicates number of concepts.

5.2. Implementation Details

To verify the effectiveness of CosE, we employ several KG embedding models as base-
lines, including TransE [13], TransH [14], TransR [15], TransD [28], RESCAL [16], HolE [18],
ComplEx [19], and Analogy [47], which are implemented by the OpenKE platform [48]. In
addition, we utilize the state-of-art KG embedding methods (i.e., TransC [21], RotatE [23],
and EL Embedding [24]) (For the fairness of comparison, we do not compare CosE with
OWL2Vec* [25] because it makes full of labels, comments, and extra resources of ontologies,
whereas its source codes cannot be split.) to compare with CosE.

We implement CosE in Python with the help of the PyTorch platform. Its source
code can be downloaded along with datasets (https://github.com/zhengxianda/CosE
accessed on 5 September 2022). We utilize the stochastic gradient descent (SGD) with
the mini-batch strategy to train CosE, and employ SGD as an optimizer to fine-tune
hyper-parameters according to the validation datasets. The ranges of several hyper-
parameters are listed as follows: the dimension d for embedding concepts is selected
from the scope of {100, 125, 200, 250, 500, 1000}, the mini-batch size b for the training
range of {64, 128, 200, 512, 1024, 2048}, and the margin γ for the loss functions range of
{1, 2, 3, 6, 9, 12, 15}. For some special models (e.g., ComplEx, RotatE), we adopt uniform
initialization for the real and imaginary vectors of concepts and relations. Notice that we
do not employ regularization to constrain CosE because we observe that the fixed margin γ
can effectively prevent CosE from over-fitting. The best configurations of hyper-parameters
are determined by the validation set in terms of mean rank. Finally, the optimized hyper-
parameters of CosE are d = 200, b = 200, and γ = 3. In order to distinguish the effect
between our proposed strategy of negative sampling and the traditional one, the symbol
“CosE” represents that our negative sampling strategy has been equipped as the default,
and “CosE”− adopts the traditional negative sampling strategy in the subsequent tables.

5.3. The Results of Link Prediction

Link prediction is a typical task for completing the axiom when one of the concepts
or their relation is missing. We employ MRR and Hits@N as evaluation metrics proposed
in TransE [13]. For each axiom (Ci, r, Cj) in test datasets, we replace concept Ci or Cj with
Cn in the set of concepts C to generate corrupted axioms, and measure the confidences of
these axioms using the score function. Then, the rank of correct concepts could be obtained
by sorting the confidences of axioms in descending order. MRR is a metric that calculates
the mean reciprocal rank of all correct concepts. Hits@N is a metric that counts the ratio of
the correct concepts ranked in the top N. Notice that the corrupted axiom ranking above a
test axiom is also valid, and should not be treated as a wrong axiom. Therefore, corrupted
axioms asserted in schematic knowledge have been filtered before ranking. For convenience,
we label the filtered result as “Filter”, and the unfiltered one is denoted by “Raw”. In our
experiments of link prediction, all the models are required to infer the missing concept
Ci or Cj for the axioms (Ci, r, Cj) in the test datasets. For the metrics MRR and Hits@N, a
higher value of them indicates a better performance of the evaluated model.

https://github.com/zhengxianda/CosE
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Tables 2 and 3 list the results of link prediction on YAGO-On, FMA, FoodOn, and
HeLiS. Overall, CosE− and CosE have obviously surpassed other models in terms of MRR
and Hits@N. It indicates that both of them can preserve the logical properties (i.e., transitiv-
ity, symmetry) of relations via two designed semantic spaces, which can help our model
to learn better vector representations of concepts for completing schematic knowledge.
Compared with models employing the strategy of projection matrices (e.g., TransH, TransR
and TransD), CosE is able to measure the confidences of related axioms more precisely.
The possible reasons are that CosE attempts to project axioms with different relations
into different translation-based semantic spaces, and the types of relations in schematic
knowledge are relatively small. Hence, the projection strategy of CosE is more suitable
than with other models. Furthermore, benefiting from our proposed strategy of negative
sampling, the performances of CosE are slightly better than CosE− in terms of MRR and
Hits@N. We analyze that the mutual exclusion between subclassO f and disjointWith is
useful in distinguishing the similar embedding of concepts in the semantic space.

Table 2. The results of YAGO-On and FMA on link prediction.

YAGO-On FMA

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.241 † 0.501 † 0.784 † 0.582 † 0.343 † 0.066 † 0.325 † 0.474 † 0.371 † 0.247 †

TransH [14] 0.195 † 0.196 † 0.472 † 0.252 † 0.091 † 0.008 † 0.009 † 0.018 † 0.005 † 0.003 †

TransR [15] 0.090 † 0.428 † 0.588 † 0.433 † 0.355 † 0.060 † 0.411 † 0.490 † 0.440 † 0.370 †

TransD [28] 0.038 † 0.176 † 0.462 † 0.305 † 0.000 † 0.034 † 0.149 † 0.430 † 0.250 † 0.000 †

RESCAL [16] 0.080 † 0.339 † 0.525 † 0.392 † 0.244 † 0.047 † 0.317 † 0.469 † 0.377 † 0.236 †

HolE [18] 0.155 0.231 0.523 0.254 0.099 0.039 0.112 0.311 0.120 0.033
ComplEx [19] 0.034 † 0.237 † 0.491 † 0.403 † 0.058 † 0.033 † 0.201 † 0.484 † 0.372 † 0.011 †

Analogy [47] 0.037 † 0.301 † 0.496 † 0.429 † 0.160 † 0.037 † 0.277 † 0.487 † 0.415 † 0.130 †

TransC [21] 0.112 > 0.420 > 0.698 > 0.502 > 0.298 > – – – – –
RotatE [23] 0.002 0.002 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000

EL Embedding [24] 0.008 0.008 0.005 0.000 0.000 0.014 0.014 0.019 0.001 0.001
CosE− 0.229 0.558 0.859 0.648 0.495 0.093 0.386 0.628 0.391 0.271
CosE 0.247 0.657 0.861 0.714 0.550 0.117 0.507 0.640 0.545 0.423

† Indicates that the results are taken from our published work [49]. Other results are obtained by their source
codes. >As experimental results of TransC are much worse than the ones mentioned in the paper [21], we utilize
its original results for evaluation.

Table 3. The results of FootOn and HeLiS on link prediction.

FoodOn HeLiS

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.011 0.012 0.020 0.011 0.006 0.037 0.037 0.078 0.028 0.010
TransH [14] 0.010 0.012 0.020 0.013 0.006 0.026 0.026 0.050 0.020 0.006
TransR [15] 0.008 0.008 0.013 0.008 0.004 0.025 0.026 0.056 0.016 0.004
TransD [28] 0.003 0.003 0.007 0.004 0.000 0.008 0.008 0.018 0.005 0.000

RESCAL [16] 0.001 0.001 0.004 0.000 0.000 0.003 0.003 0.004 0.003 0.001
HolE [18] 0.002 0.002 0.007 0.001 0.000 0.035 0.035 0.078 0.024 0.008

ComplEx [19] 0.001 0.001 0.003 0.000 0.000 0.001 0.001 0.001 0.000 0.000
RotatE [23] 0.009 0.009 0.017 0.008 0.004 0.023 0.023 0.033 0.026 0.012

EL Embedding [24] 0.001 0.001 0.002 0.001 0.000 0.001 0.001 0.001 0.000 0.000
CosE− 0.032 0.037 0.080 0.058 0.009 0.077 0.077 0.144 0.079 0.034
CosE 0.034 0.038 0.083 0.057 0.011 0.080 0.080 0.152 0.081 0.035

Tables 4 and 5 list the results of link prediction about the subclassO f axioms of four
datasets. Overall, CosE− and CosE outperform most models in terms of MRR and Hits@N.
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It shows that the transitivity of subclassO f is preserved well in our defined semantic spaces.
Relatively, the performances of some schematic knowledge embedding methods are not
well. We analyze that most of their score functions focus on modeling subclassO f relations
via spheres, but the external disjointWith axioms may influence the convergence of their
score functions.

Table 4. The results of YAGO-On and FMA on link prediction about subclassO f axioms.

YAGO-On FMA

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.375 † 0.375 † 0.722 † 0.472 † 0.179 † 0.113 † 0.113 † 0.260 † 0.110 † 0.035 †

TransH [14] 0.377 † 0.377 † 0.494 † 0.179 † 0.179 † 0.110 † 0.110 † 0.295 † 0.080 † 0.040 †

TransR [15] 0.063 † 0.063 † 0.216 † 0.020 † 0.000 † 0.010 † 0.010 † 0.050 † 0.050 † 0.050 †

TransD [28] 0.011 † 0.011 † 0.018 † 0.008 † 0.000 † 0.050 † 0.050 † 0.050 † 0.000 † 0.000 †

RESCAL [16] 0.069 † 0.069 † 0.143 † 0.073 † 0.035 † 0.009 † 0.009 † 0.010 † 0.005 † 0.005 †

HolE [18] 0.225 0.225 0.434 0.229 0.126 0.002 0.002 0.000 0.000 0.000
ComplEx [19] 0.001 † 0.003 † 0.002 † 0.001 † 0.001 † 0.003 † 0.003 † 0.010 † 0.000 † 0.000 †

Analogy [47] 0.003 † 0.003 † 0.035 † 0.003 † 0.003 † 0.050 † 0.050 † 0.050 † 0.050 † 0.050 †

RotatE [23] 0.001 0.001 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000
EL Embedding [24] 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

CosE− 0.393 0.393 0.724 0.471 0.226 0.128 0.128 0.295 0.165 0.030
CosE 0.397 0.397 0.726 0.458 0.240 0.145 0.145 0.290 0.140 0.065

† Shows that the results are taken from the work [49]. Other results are generated by their source codes.

Table 5. The results of FoodOn and HeLiS on link prediction about subclassO f axioms.

FoodOn HeLiS

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.015 0.015 0.024 0.014 0.009 0.072 0.072 0.154 0.052 0.019
TransH [14] 0.011 0.014 0.025 0.015 0.006 0.050 0.050 0.097 0.037 0.012
TransR [15] 0.011 0.011 0.017 0.010 0.006 0.050 0.050 0.111 0.032 0.008
TransD [28], 0.001 0.001 0.001 0.000 0.000 0.016 0.016 0.035 0.011 0.000
RESCAL [16] 0.001 0.001 0.001 0.000 0.000 0.005 0.005 0.007 0.005 0.003

HolE [18] 0.004 0.004 0.013 0.002 0.000 0.070 0.070 0.155 0.048 0.016
ComplEx [19] 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

RotatE [23] 0.017 0.017 0.033 0.016 0.017 0.046 0.046 0.065 0.051 0.024
EL Embedding [24] 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000

CosE− 0.038 0.038 0.074 0.041 0.017 0.152 0.152 0.286 0.155 0.068
CosE 0.040 0.040 0.079 0.036 0.021 0.158 0.158 0.300 0.159 0.071

Tables 6 and 7 list the results of the axioms with disjointWith relations. In terms
of MRR and Hits@N, CosE− and CosE have outperformed all the models in most cases.
For link prediction results on YAGO-On and FMA, the performances of CosE are a little
worse than TransR and TransE in MRR Raw, but it obtains better results in terms of MRR
Filter. Through further analysis, we discover that CosE tends to give a higher score to the
correct corrupted axiom, so the value of MRR Raw in CosE is much smaller than its MRR
Filter value. Overall, Hits@1 of CosE has been improved from 15% to 30% in YAGO-On
and FMA. It shows that CosE could preserve the symmetry of relations precisely in the
angle-based semantic space. Nevertheless, the performances of all the KG embedding
models on FoodOn and HeLiS are unsatisfactory. We observe that it may be related to
the generation method [46] of disjointWith axioms. More importantly, it indicates that the
current models still lack scalability for various large-scale ontologies to some extent, and
we will leave these issues for future work.
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Table 6. The results of YAGO-On and FMA on link prediction about disjointWith axioms.

YAGO-On FMA

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.120 † 0.627 † 0.846 † 0.693 † 0.507 † 0.122 † 0.639 † 0.927 † 0.741 † 0.491 †
TransH [14] 0.010 † 0.014 † 0.220 † 0.010 † 0.003 † 0.005 † 0.006 † 0.002 † 0.001 † 0.001 †
TransR [15] 0.132 † 0.792 † 0.974 † 0.848 † 0.710 † 0.010 † 0.010 † 0.050 † 0.050 † 0.050 †
TransD [15] 0.066 † 0.774 † 0.906 † 0.621 † 0.000 † 0.066 † 0.292 † 0.873 † 0.488 † 0.000 †

RESCAL [16] 0.100 † 0.640 † 0.920 † 0.720 † 0.500 † 0.094 † 0.640 † 0.940 † 0.750 † 0.480 †
HolE [18] 0.084 0.237 0.611 0.278 0.072 0.078 0.224 0.622 0.240 0.065

ComplEx [19] 0.066 † 0.470 † 0.970 † 0.820 † 0.110 † 0.003 † 0.003 † 0.010 † 0.000 † 0.000 †
Analogy [47] 0.074 † 0.598 † 0.988 † 0.854 † 0.317 † 0.069 † 0.557 † 0.979 † 0.823 † 0.264 †

RotatERotatE [23] 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
EL Embedding [24] 0.016 0.016 0.010 0.001 0.000 0.028 0.028 0.037 0.002 0.001

CosE− 0.066 0.723 0.994 0.824 0.764 0.058 0.644 0.962 0.617 0.512
CosE 0.097 0.917 0.996 0.970 0.860 0.090 0.870 0.990 0.950 0.780

† shows that the results are taken from the work [49]. Other results are obtained by their source codes.

Table 7. The results of FoodOn and HeLiS on link prediction about disjointWith axioms.

FoodOn HeLiS

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.007 0.007 0.015 0.007 0.004 0.001 0.002 0.003 0.002 0.000
TransH [14] 0.010 0.010 0.015 0.011 0.006 0.002 0.002 0.003 0.002 0.000
TransR [15] 0.005 0.005 0.010 0.005 0.002 0.001 0.001 0.002 0.001 0.000
TransD [28] 0.005 0.006 0.014 0.009 0.001 0.001 0.001 0.002 0.000 0.000

RESCAL [16] 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000
HolE [18] 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.001 0.000

ComplEx [19] 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000
RotatE [23] 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000

EL Embedding [24] 0.001 0.001 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.000
CosE− 0.023 0.035 0.085 0.075 0.000 0.001 0.002 0.003 0.003 0.000
CosE 0.027 0.036 0.087 0.078 0.000 0.001 0.002 0.003 0.003 0.000

5.4. The Results of Transitivity and Symmetry

As discussed above, we further verify whether the embeddings of concepts in CosE
can encode the transitivity and symmetry implicitly. To achieve this goal, we design two ex-
periments based on link prediction using the constructed datasets (i.e., YAGO-On-t, YAGO-
On-s). In YAGO-On-t, if the related axioms (Ci, subclassO f , Cj) and (Cj, subclassO f , Cm) in
the training set are satisfied by the transitivity rule, the testing set will contain the inferred
axiom (Ci, subclassO f , Cm) according to the transitivity property of subclassO f . Then, we
train embedding models using the training set of YAGO-On-t, and utilize link prediction on
the testing set to evaluate their performances on transitivity. Analogously, we evaluate the
symmetry of models using YAGO-On-s. If the training set contains (Ci, disjointWith, Cj),
the axiom (Cj, disjointWith, Ci) will be added to the testing set.

As listed in Table 8, we observe that CosE− and CosE achieve better results than other
models on the constructed datasets in most cases. On YAGO-On-t, the performances of
CosE have exceeded other models in terms of MRR and Hits@N. On YAGO-On-s, CosE is
slightly worse than HolE and TransE in terms of MRR and Hits@1. It shows that CosE has
better potential than other models to perform schematic knowledge completion in terms of
transitivity and symmetry.
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Table 8. The evaluated results on link prediction of transitivity and symmetry.

YAGO-On-t YAGO-On-s

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 10 3 1 Raw Filter 10 3 1

TransE [13] 0.064 † 0.077 † 0.142 † 0.070 † 0.001 † 0.043 † 0.369 † 0.971 † 0.514 † 0.080 †
TransH [14] 0.200 † 0.238 † 0.309 † 0.214 † 0.149 † 0.001 † 0.002 † 0.001 † 0.000 † 0.000 †
TransR [15] 0.012 † 0.013 † 0.003 † 0.002 † 0.001 † 0.010 † 0.010 † 0.001 † 0.000 † 0.000 †
TransD [28] 0.008 † 0.009 † 0.020 † 0.001 † 0.000 † 0.001 † 0.181 † 0.512 † 0.302 † 0.000 †

RESCAL [16] 0.016 † 0.020 † 0.055 † 0.015 † 0.004 † 0.032 † 0.166 † 0.449 † 0.226 † 0.039 †
HolE [18] 0.040 0.045 0.082 0.008 0.002 0.070 0.342 0.716 0.425 0.128

ComplEx [19] 0.001 † 0.001 † 0.001 † 0.000 † 0.000 † 0.036 † 0.253 0.743 0.439 0.000
Analogy [47] 0.001 † 0.001 † 0.001 † 0.001 † 0.000 † 0.043 † 0.315 † 0.932 † 0.538 † 0.000 †
RotatE [23] 0.001 0.001 0.001 0.000 0.000 0.002 0.002 0.001 0.000 0.000

EL Embedding [24] 0.001 0.001 0.001 0.000 0.000 0.003 0.003 0.075 0.017 0.003

CosE− 0.203 0.260 0.403 0.246 0.177 0.038 0.322 0.983 0.554 0.000
CosE 0.207 0.284 0.408 0.261 0.218 0.038 0.323 0.992 0.557 0.000

† Shows that the results are taken from the work [49]. Other results are obtained via their source codes.

5.5. Case Study

The above experiments show that CosE has good performances for link prediction
and can preserve the logical properties of transitivity or symmetry well. Next, we present
several concrete examples of completed results about CosE compared with TransE listed in
Table 9, where the bold words show correct answers.

Table 9. The examples of predicted results on CosE compared with TransE.

Head Concept Relation CosE TransE [13]

Taksim_SK_footballers subclassOf

person
player

site
club

football_player

person
airport
model

peninsula
singer

Soccer_clubs_in_the_
Greater_Los_Angeles_Area subclassOf

site
person
player
club

football_player

person
airport
model
singer
writer

Tail Concept Relation CosE TransE

Irish_male_models DisjointWith
Filipino_female_models

African_American_models
LGBT_models

LGBT_models
South_African_female_models

American_male_models

We observe that CosE can improve the performance of predicting the tail concepts
compared with TransE. The first example shows the result of predicting the tail concept of
one subclassO f axiom. For TransE, the correct answer is ranked 35th. The ranking of the
correct answer in CosE has been significantly improved, and it is ranked fifth. It indicates
that CosE could measure the confidences of axioms more precisely.

Table 9 also shows the ability of CosE to preserve transitivity and symmetry. Com-
pared with TransE, the second example shows that CosE improves the correct answer of a
subclassO f axiom from 24th to 4th. Similarly, the correct answer of the disjointness axiom
in the third example is improved to second place. These examples indicate that CosE
can infer the tail or head concept more precisely than existing KG embedding models for
given axioms.
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6. Discussion and Limitations

Compared to our preliminary work [49], we model the schematic knowledge embed-
ding in view of lightweight ontology language called DL-Litecore. Therefore, the inferred
properties of DL-Litecore can be formulated and employed to optimize our methods. Notice
that the mutual exclusion relationship between the subclassO f axioms and the disjointWith
ones is derived from the minimal incoherence-preserving sub-TBoxes [50], which is the mo-
tivation of our negative sampling strategy. Therefore, our work will have a positive impact
on optimizing schematic knowledge embedding models using the inferred properties of
ontology language.

Secondly, we discover the result that the performances of all models for schematic
knowledge completion on FoodOn and HeLiS are unsatisfactory. On the one hand, the
reason is that existing models for completing schematic knowledge still lack the scalability
for various large-scale ontologies to some extent. On the other hand, the generation strategy
of disjointWith axioms may not be suitable for all the ontologies so that it could influence
the performances of models. Hence, our experiments demonstrate that there is still much
room for existing models to achieve schematic knowledge completion.

Nevertheless, there are issues worth discussing that have not yet been addressed in
our current work. Notice that we assume that all the concepts in schematic knowledge
or ontologies are static and correct. However, the axioms are usually updating in real
scenarios. An incremental embedding method for schematic knowledge embedding should
be explored, so as to avoid repeating training all over again whenever axioms update. On
the other hand, if there are some wrong axioms asserted in ontologies without labeling,
how to detect these wrong axioms and encode the correct ones at the same time becomes
challenging. Therefore, one kind of embedding method that can be compatible with wrong
axioms still needs to be considered.

7. Conclusions

In this paper, we presented a cosine-based embedding model called CosE for com-
pleting lightweight schematic knowledge in DL-Litecore, by which the transitivity and
symmetry of relations in axioms could be preserved simultaneously. To sufficiently learn
the vector representation of concepts in axioms, we introduced the two semantic spaces and
designed two types of score functions for them, which are tailored for axioms expressed
in DL-Litecore. Furthermore, we proposed a strategy of negative sampling derived from
the mutual exclusion between subclassO f and disjointWith relations. In this way, CosE
could learn better vector representations of concepts for completing schematic knowledge.
We implemented and evaluated our model on four standard datasets generated using real
ontologies. Experimental results have shown that CosE could simultaneously keep the
logical properties (i.e., transitivity, symmetry) of relations and outperform state-of-the-art
models in most cases.

For future works, we will study further along three directions: (1) CosE is an embed-
ding model to complete the axioms of lightweight schematic knowledge, but it is limited to
DL-Litecore. It is worth extending CosE to more expressive ontology languages of schematic
knowledge such as DL-LiteA [51]. (2) Deep learning networks with the transformer ar-
chitecture (e.g., BERT [52], GPT-3 [53], and their variants [54]) can be utilized to further
optimize our model. All of them can take full advantage of large and external knowledge
sources. Incorporating such models into our method can facilitate better performances
being obtained for schematic knowledge completion. (3) The embedding of concepts could
be helpful for the related tasks of ontologies and KGs. We will try to extend CosE so that it
can be applied in these tasks and improve their performances, such as ontology-based data
access [55], ontology matching [56], and knowledge graph refinement [57].
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