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Abstract: More and more researchers use single-cell RNA sequencing (scRNA-seq) technology to 

characterize the transcriptional map at the single-cell level. They use it to study the heterogeneity 

of complex tissues, transcriptome dynamics, and the diversity of unknown organisms. However, 

there are generally lots of technical and biological noises in the scRNA-seq data since the random-

ness of gene expression patterns. These data are often characterized by high-dimension, sparsity, 

large number of “dropout” values, and affected by batch effects. A large number of “dropout” val-

ues in scRNA-seq data seriously conceal the important relationship between genes and hinder the 

downstream analysis. Therefore, the imputation of dropout values of scRNA-seq data is particularly 

important. We classify, analyze and compare the current advanced scRNA-seq data imputation 

methods from different angles. Through the comparison and analysis of the principle, advantages 

and disadvantages of the algorithm, it can provide suggestions for the selection of imputation meth-

ods for specific problems and diverse data, and have basic research significance for the downstream 

function analysis of data. 
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1. Introduction 

Bulk cell RNA sequencing (RNA-seq) data are usually used in transcriptome analy-

sis, such as transcriptional structure, splicing patterns, genes, as well as transcriptional 

expression levels [1]. However, in the traditional bulk cell transcriptome sequencing, gene 

expression is measured by the average reading of a large number of cells, which masks 

the heterogeneity between cells. Fortunately, scRNA-seq technology provides a more ac-

curate insight into the function of individual cells, and it is also used to reveal the dynam-

ics of heterogeneous cell populations and complex tissues [2–8]. Single-cell transcriptomic 

analysis has provided unprecedented opportunities to study complex phenomena, such 

as cancer, tumor, development, and microbial ecology in biological systems [9]. Ting et al. 

used scRNA-seq technology to obtain high-quality transcripts from mouse pancreatic cir-

culating tumor cells (CTCS), and compared them with scRNA-seq data from human pan-

creatic cancer patients. They found that the gene SPARC is very much related to the inva-

sion and metastasis of pancreatic cancer [10]. Furthermore, assessing gene expression dif-

ferences between individual cells has the potential to identify rare populations that are 

not detected from bulk cell analysis, and the ability to study outlier cells within a popula-

tion can help people understand the drug resistance in cancer and tumor treatment [11]. 

In 2015, Kim et al. executed scRNA-seq analysis of cells isolated from a xenograft tumor 

of a lung adenocarcinoma (LUAD) patient, and they found a subpopulation of tumor cells 

associated with anticancer drug resistance [12]. Moreover, single cell sequencing can be 

used to analyze individual cell in tumors and investigate what roles they play, so as to 

provide new insights into treatment [13]. In 2017, Puram et al. found that the cells exhib-

iting p-EMT activation were located at the outer area of primary tumors and promote the 
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invasion and metastasis of tumor cells [14]. Part of the application of scRNA-seq is shown 

in Figure 1 [15]. 

In scRNA-seq datasets, more than 50% of the expression in the count matrix is usually 

found that to be equal to 0 [16,17]. As we know, a lot of technical noise can affect the 

scRNA-seq data, and one important feature is called “dropout”, in which the gene is mod-

erately expressed in one cell but not detected in another [18]. This is because most scRNA-

seq techniques usually require heavy amplification due to the picogram level of RNAs in 

a single cell after reverse transcription. RNAs transcripts may be lost in the reverse tran-

scription and amplification steps, so they will not be detected in subsequent sequencing 

[6]. The dropout events caused by technology improve the cell-to-cell variability, leading 

to signal influence on each gene, and obscuration of gene–gene and cell–cell real relation-

ships. Thus, the presence of dropout values will greatly reduce the accuracy of the down-

stream analysis [19,20]. Moreover, by the selective gene expression, there are many truly 

unexpressed genes in single cell, which results in a confusion of biological zeros with the 

technology-induced zeros. Distinguishing between these two cases is a very important 

but yet not fully resolved problem. 

In recent years, there are many imputation methods are proposed to recover gene 

expression data [21–25]. These methods can be roughly divided into the following catego-

ries: probabilistic models are used in some methods to identify the zeros are technique-

induced dropout values rather than true zeros, they usually only impute dropout zeros, 

while not involving other values that are not affected by the dropout events. In this cate-

gory, we find scImpute [4], SAVER [26], SAVER-X [27], CIDR [28], etc. scImpute estimated 

dropout rates by using the Gamma-Normal mixture model and population-specific 

thresholds while SAVER using Possion-Gamma model to pool expression values across 

genes within each cell [3,15]. SAVER-X performs single-cell analysis by exploiting expres-

sion recovery from external data, the approach that combines a Bayesian hierarchical 

model with a trainable deep autoencoder [27]. CIDR is an ultra-fast algorithm, which es-

timates the relationship between dropout rate and gene expression level by identifying 

the neighbors of dropout value [28]. Another class of methods can reconstruct the expres-

sion value from the simplified representation of the observed data matrix, including 

scRMD [6], McImpute [3], etc. scRMD imputes the gene expression value by robust matrix 

decomposition [6]. McImpute models the gene expression matrix as a low-rank matrix, 

takes the preprocessed gene expression matrix as the input of the nuclear norm minimi-

zation algorithm and recovers the gene expression value of the complete matrix by solving 

non-convex optimization problems [3]. Some methods adjust the expression values of 

every cell by utilizing expression levels of “similar” cells. These methods typically change 

all expression values, containing the dropout values and true zero values as well as the 

observed non-zero values. For example, the kNN-smoothing uses a Possion distribution 

and aggregated information from similar cells [29]. With regard to DEWÄKSS denoise 

expression data using weighted affinity kernels and self-supervised, [30] used a self-su-

pervised technique to tune the parameters. Some authors use scTSSR to impute the “drop-

out” values [31]. Some methods identify potential spatial representations of cells based on 

deep learning theory, the observed gene expression matrix is then reconstructed from the 

estimated potential space. DCA is a neural network-based method that uses deep autoen-

coding networks for unsupervised learning [32]. DeepImpute and scVI are imputation 

algorithms based on deep neural network to learn the distribution patterns in the data to 

accurately impute the dropout values [22,33]. In addition, a recent study proposed a new 

algorithm called scMOO [34]. These methods recover the gene expression data in various 

degrees and improve the accuracy of downstream analysis. 

Using scRNA-seq data, people can perform downstream analyses, such as cell clus-

tering, differential expression analysis, identification of cell-type specific genes, and re-

construction of differentiation trajectory, which can help people to find rare cell subpop-

ulation within seemingly similar cells. This is particularly advantageous for studying cell-

to-cell heterogeneity and cell development dynamics. These downstream analyses are all 
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highly dependent on the accuracy of the gene expression measurements, so it is impera-

tive to impute the dropouts events caused by technology in the scRNA-seq data by impu-

tation methods [4,6]. However, for massive biological datasets, there is still no universal 

and effective imputation algorithm to eliminate batch effects and find rare cell types, and 

there is no clear selection strategy for the imputation method necessary for different char-

acteristics of datasets and specific research problems. Therefore, we classify, analyze, and 

compare the current advanced single-cell transcriptome sequencing data imputation 

methods from different perspectives and put forward corresponding recommendations 

for researchers, it can ensure the accuracy of downstream analysis. 

 

Figure 1. Application of scRNA-seq data [15]. 

2. Imputation Methods 

For the presence of dropout values of scRNA-seq data, many methods first pre-pro-

cess and normalize the data, to eliminate the adverse effects of outliers. Then, an im-

portant process is to distinguish these zero values is true zero or dropout value caused by 

technology. Finally, these methods choose a certain strategy to impute the dropout value. 

As described in [21–25], classifying and comparing currently popular imputation methods 

is very necessary to help users provide advice when facing different datasets and different 

needs. Most of the current methods can be divided into the following four cases: (1) 

Model-based methods: these methods assume the statistical model of technical and bio-

logical variability and noise distribution, and impute by estimating the parameters of the 

distribution. (2) Low-rank matrix-based methods: the method based on the low rank ma-

trix identifies the potential spatial representation of the cell by capturing the linear rela-

tionship, and then reconstructs the expression matrix from the low rank that is no longer 

sparse. (3) Data smoothing methods: the method based on data smoothing typically uses 

gene expression values in similar cells to adjust all values (usually including zero and non-

zero values). (4) Deep learning methods: the method based on deep learning identifies the 

potential spatial representation of cells based on the deep learning method, and by using 

estimated potential space to reconstruct the observed expression matrix [21–25]. For de-

tailed division, see Figure 2 [35–77].  
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Figure 2. Classification method I of imputation method is divided into model-based method, data 

smoothing-based method, deep learning-based method and low-rank matrix-based method. 

The second classification angle divides imputation methods into statistical methods 

and machine learning methods. Most of the statistical methods make assumptions based 

on the dataset itself, and then use the original dataset to fill the “dropout” data accord-

ingly. This kind of method does not consider the category of the data object itself, and the 

filling value is often affected by other types of objects, and the accuracy of the filling result 

is poor. The common methods include the EM (expectation maximization) filling algo-

rithm, regression analysis, multiple imputation, and so on. Generally speaking, the ma-

chine learning method is to classify or cluster the “dropout” dataset and then fill it. Such 

methods have sprung up with the upsurge of machine learning in recent years. Repre-

sentative methods are K nearest neighbor filling, K-means filling, Bayesian network, and 

so on. Among them, the classification method classifies the “dropout” attributes as the 

target, and then fills them in each category, but when there are too many “dropout” at-

tributes, it is easy to lead to too many categories and low efficiency, meanwhile, the clus-

tering method first clusters the original data to multiple clusters, while according to the 

similar objects in the cluster to fill, the number of “dropout” attributes will not affect the 

number of clusters, this kind of method has a wide range of applications, and is also the 

focus of the current research. The third classification divides imputation methods into (1) 

global methods and (2) local methods according to the way imputation information is 

used from observed data, and the fourth classification divides imputation methods into 

two categories according to whether they are based on Bayesian or not [21].  

Using the second method for classification (Table 1) can be divided into statistical 

methods and machine learning methods. Statistical methods also include mean/mode 

completer, expectation maximization imputation, hot deck imputation, cold deck impu-

tation, regression imputation. The mean/mode completer include bayNorm. The expecta-

tion maximization imputation includes SCRIBE, URSM, SCC [78], JOINT [79], SIMPLEs, 

ZIFA. The hot deck imputation includes G2S3, scHinter, scNPF, MAGIC, CMF-Impute, 

deepMc, PBLR, Randomly, WEDGE, FRMC, scRMD and SDImpute. The cold deck impu-

tation include netSmooth, netNMF-sc and ADImpute [80]. The method of regression im-

putation include CIDR, SAVER, scImpute, VIPER, ZINB-WaVE, MISC, scTSSR, RIA, I-

Impute [81] and EinImpute. The main method of machine learning is clustering imputa-

tion, include BISCUIT, BUSseq, DEWÄKSS, kNN-smoothing, LSImpute, PRIME, DrIm-

pute, RESCUE, 2DImpute, AutoImpute, SAUCIE, ENHANCE, McImpute, SAVER-X, 

GraphSCI, SAUCIE, SISUA, TRANSLATE, ZINBAE [82], GNNImpute and ccImpute. The 

third way can be categorized into local or global methods according to how the imputa-

tion information is used from the observed data (Figure 3). The fourth classification (Fig-

ure 4) can be divided into Bayesian and non-Bayesian method. For detailed division, see 

Figures 3 and 4. 
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Table 1. Dropout types, advantage and disadvantages and scope of application of “dropout” values 

of statistical methods and machine learning methods. 

Method Type Dropout Type Advantage Disadvantage Scope of Application 

Mean Completer 
Complete random dele-

tion 
The operation process is simple 

Only the observed information 

is used, which is subjective, un-

stable and error 

The data scale is small, the 

missing proportion is small, 

and the distribution is concen-

trated 

Expectation Maxi-

mization Imputa-

tion 

Complete random dele-

tion or random deletion 
Good stability and small error 

It is not suitable for high-di-

mensional data 

It is applicable to data sets with 

Normal distribution or approxi-

mate Normal distribution 

Hot Deck Imputa-

tion 
Random deletion 

It has a better effect on maintaining 

the empirical distribution of varia-

bles 

The mean square error formula 

is not clear, and the filling 

value is easily affected by aux-

iliary variables 

Between data sets collected in 

the same batch 

Cold Deck Imputa-

tion 
Random deletion The operation process is simple 

The filling effect depends on 

the quality of previous data, 

and there is estimation devia-

tion 

Between data sets collected in 

different batches 

Regression Imputa-

tion 
Random deletion 

The operation process is simple and 

makes full use of the relationship be-

tween variables 

Without considering the uncer-

tainty of data, it is not suitable 

for high-dimensional data 

It is applicable to data sets with 

Normal distribution or approxi-

mate Normal distribution and 

multiple auxiliary variables 

Clustering Imputa-

tion 
Random deletion 

Low variable type requirements, 

good fitting effect, high stability and 

small error, suitable for high-dimen-

sional data 

The operation process is com-

plex and the time cost is high 

It is suitable for any missing 

pattern and various distribution 

types of data sets 

 

 

Figure 3. The third classification of imputation method for the detailed division of global methods 

and local methods. 

 

Figure 4. The four classification of imputation method for the detailed division of Bayesian and non-

Bayesian methods. 
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Without loss of generality, we chose the first classification method to give detailed 

description and recommendation. In order to classify and describe the methods clearly, 

we statement them in much more detail form in the following such as the description in 

[83]. 

2.1. Model-Based Methods 

The model-based method assumes the statistical models of technical and biological 

variability and noise distribution, and interpolates by estimating the parameters of the 

distribution, such as scImpute, SAVER, SAVER-X, BISCUIT, VIPER, and bayNorm. The 

availability links, programming language, whether a package is available, year of presen-

tation, operative system, distribution compatibility and reference of the representative 

methods based on model see Table 2. 

(1) scImpute reduces the dimension of gene expression matrix by principal component 

analysis (PCA) and uses spectral clustering. The hierarchical model of Gamma dis-

tribution and Normal distribution is established for the gene expression in each cell 

subpopulation, the Gamma distribution can explain “dropout” and the Normal dis-

tribution represents the real gene expression level. Then, the Gamma-Normal mixed 

model is used to estimate which values are affected by dropout, then the dropout 

values are subsequently imputed by non-negative least square (NNLS) regression 

using the most similar cells in its neighbors, as shown in Figure 5. The specific work-

flow is as follows [4]:  

(a) The count matrix is normalized according to the library size of each sample 

(cell), and the logarithmic transformation is performed to prevent the effect of 

outliers. 

(b) Cell sub-population and outliers are detected using spectral clustering. 

(c) Dropout values were identified using a Gamma-Normal mixed model. 

(d) Information from the same genes is borrowed from similar cells to impute in the 

dropout values. 

 

Figure 5. The framework of scImpute method [4]. 

(2) SAVER assumes that the count of each gene in each cell follows the Possion-Gamma 

mixed distribution. Specifically, the technical noise in the gene expression signal is 

approximated by the Possion distribution, while the Gamma distribution explains 

the uncertainty in the real expression. The method does not specify a gamma prior, 

but instead uses the expression of other genes as the predictors, by using a Poisson 

Lasso regression to estimate a few prior parameters in the empirical Bayes-like ap-

proach. Once the prior parameters are estimated, the SAVER outputs the posterior 

distribution of the true expression that quantifies the estimated uncertainty, and the 

posterior mean is used as the expression value for the SAVER recovery, for more 

detail, please refer to Ref. [26]. We give a simple framework as shown in Figure 6. 



Appl. Sci. 2022, 12, 10684 7 of 18 
 

 

Figure 6. The framework of SAVER method [26]. 

(3) SAVER-X combines a Bayesian hierarchical model with a pre-trained depth autoen-

coder by recovering the expression of external data for single cell analysis. The pre-

training of automatic encoder in SAVER-X includes the sharing network between 

humans and mice. Specifically, for the target data with UMI counting matrix, SAVER-

X trains the target data using an autoencoder without selecting a pre-training model, 

then uses cross validation to filter unpredictable genes, and uses empirical Bayesian 

shrinkage to estimate the final denoising value [27].  

(4) BISCUIT is a hierarchical Bayesian mixture model with a specific cell scaling, which 

is realized by incorporating the parameters representing technical variation into the 

hierarchical Dirichlet process hybrid model, and infers cell clusters according to sim-

ilar gene expression and determines the technical variation of each cell. In addition, 

the model can impute dropout values based on cells with similar co-expression pat-

terns [35].  

(5) VIPER borrows information from cells with similar expression patterns to impute the 

expression measurements of interested cells. However, unlike other methods, it does 

not perform cell clustering before imputation, and it uses a sparse non-generative 

regression model to actively select a sparse set of local neighborhood cells, the selec-

tion of these cells estimates their associated imputation weights in the final estima-

tion step [48].  

(6) bayNorm is a Bayesian method for recovering the true counts of scRNA-seq. The 

likelihood function for the mRNA capture of the proposed method follows a Bino-

mial model, and uses an empirical Bayesian method to estimate its prior from expres-

sion values across cells. In order to simulate biological variability, bayNorm makes a 

priori analysis of the potential real gene expression level by modeling them as a var-

iable following NB distribution. The parameters can then be estimated locally or 

globally, depending on one’s interest in magnifying or not magnifying the differ-

ences between cell groups [38]. 

Table 2. The availability links, programming language, whether a package is available, year of 

presentation, operative system, distribution compatibility and reference of the representative meth-

ods based on model. 

Method Availability Code Pkg 
Operative System and Distribution 

Compatibility 
Year Ref 

bayNorm 
https://bioconductor.org/packages/re-

lease/bioc/html/bayNorm.html 
R R Linux, Mac and Windows 2020 [38] 

BISCUIT NA NA NA NA 2016 [35] 
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BUSseq 
https://github.com/songfd2018/BUSseq-

Rpackage 
C++ R 

Ubuntu 18.04, Mac OX X 10.04 Mojave 

and Windows 10 Enterprise 
2020 [41] 

CIDR https://github.com/VCCRI/CIDR C++/R R Linux, Mac and Windows 2017 [28] 

SAVER https://github.com/mohuangx/SAVER R R Windows 10 and Ubuntu 20.04 LTS 2018 [26] 

SAVER-X https://github.com/jingshuw/SAVERX R R NA 2019 [27] 

scImpute https://github.com/Vivianstats/scImpute 
R/HTML/Jupy-

ter Notebook 
R NA 2018 [4] 

scRecover https://github.com/XuegongLab/scRecover R R Unix, Mac and windows 2019 [43] 

SCRIBE NA NA NA NA 2019 [44] 

URSM NA NA NA NA 2018 [45] 

VIPER https://github.com/ChenMengjie/VIPER C++/R R NA 2018 [48] 

SCC https://github.com/nwpuzhengyan/SCC R NULL NA 2021 [78] 

JOINT 
https://github.com/wanglab-

georgetown/JOINT 
Python NULL NA 2021 [79] 

SIMPLEs https://github.com/JunLiuLab/SIMPLEs R NULL NA 2020 [46] 

MISC NA NA NA NA 2018 [42] 

NA: The research did not mention. NULL: Null value. 

2.2. Low-Ranked Matrix-Based Methods 

The method based on the low rank matrix identifies the potential spatial representa-

tion of the cell by capturing the linear relationship, and then reconstructs the expression 

matrix from the low rank that is no longer sparse. The availability links, programming 

language, whether a package is available, year of presentation, operative system, distri-

bution compatibility and reference of the representative methods based on low-rank ma-

trix see Table 3. 

(1) scRMD imputes the gene expression value by robust matrix decomposition (RMD). 

It reasonably decomposes the observed gene expression matrix into three contents: 

potential gene expression matrix, dropouts, and noise, and transforms the dropout 

value imputation problem into an optimization problem. The optimal gene expres-

sion value affected by dropout events is estimated by the alternating direction mul-

tiplier method, for more detail, please refer to Ref. [6]. We give a simple frameworkas 

shown in Figure 7. 

 

Figure 7. The framework of scRMD method [6]. 

(2) McImpute models the gene expression matrix as a low-rank matrix, takes the prepro-

cessed gene expression matrix as the input of the Nuclear-norm minimization algo-

rithm, and recovers the gene expression value of the complete matrix by solving non-

convex optimization problems. A remarkable feature of McImpute is that it does not 
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assume that gene expression follows a certain distribution, for more detail, please 

refer to Ref. [3]. We give a simple framework as shown in Figure 8. 

 

Figure 8. The framework of McImpute method [3]. 

(3) PBLR is a bounded low-rank method based on cell subsets, it not only considers the 

information of cell heterogeneity and gene expression, but also uses the change of 

gene expression to impute dropouts. The PBLR first extracts the data for the selected 

high-variable genes, and calculates the three affinity matrices based on the Pearson, 

Spearman, and Cosine metrics, respectively. PBLR then learns the consensus matrix 

by performing SymNMF (symmetric non-negative matrix factorization) on the three 

affinity matrices INMF (incomplete NMF) of the sub-matrix of the selected genes. 

PBLR further infers cell sub-populations by performing a hierarchical clustering of 

the consensus matrix. Finally, PBLR estimates the expression upper bound for the 

‘dropout’ values and recovers the zero gene expression by performing a bounded 

low-rank recovery model for each sub-matrix determined by each cell sub-popula-

tion [72].  

(4) ENHANCE utilizes PCA and KNN to reduce the noise for the gene expression val-

ues. The method consists of two main steps. The first aggregates the expression val-

ues to reduce the bias against highly expressed genes. In the second stage, the aggre-

gation matrix is projected onto the first k principal component, where k only repre-

sents the real biological difference. Finally, the selected components can obtain the 

final denoising matrix [69].  

Table 3. The availability links, programming language, whether a package is available, year of 

presentation, operative system, distribution compatibility and reference of the representative meth-

ods based on low-rank matrix. 

Method Availability Code Pkg 

Operative System and 

Distribution 

Compatibility 

Year Ref 

CMF-Im-

pute 

http://bioconductor.org/packages/re-

lease/bioc/html/SC3.html 
R R Linux, Mac and Windows 2020 [70] 

deepMc 
https://github.com/hemberg-

lab/scRNA.seq.course 

TeX/Perl/Dockerfile/R/CSS/Py-

thon/Other 
NULL Windows and Unix 2018 [71] 

netNMF-sc 
https://github.com/raphael-group/netNMF-

sc 
Jupyter Notebook/Python NULL NA 2020 [75] 

PBLR https://github.com/amsszlh/PBLR MATLAB/R/Fortran/C NULL NA 2021 [72] 

Randomly https://github.com/RabadanLab/randomly Jupyter Notebook/Other Python NA 2020 [76] 
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WEDGE https://github.com/QuKunLab/WEDGE 
C++/Fortran/CMake/C/Cuda/P

ython/Other 
NULL 

Ubuntu20.04 and Win-

dows10, vs2017 and Mac 
2020 [74] 

I-Impute https://github.com/xikanfeng2/I-Impute Python/R R NA 2020 [81] 

FRMC https://github.com/HUST-DataMan/FRMC Python/Jupyter Notebook NULL NA 2021 [73] 

McImpute 
https://github.com/aanchalMongia/McIm-

pute_scRNAseq 
MATLAB NULL NA 2019 [3] 

scRMD https://github.com/XiDsLab/scRMD R R NA 2020 [6] 

ZIFA https://github.com/epierson9/ZIFA Python NULL Mac 2015 [77] 

ALRA https://github.com/KlugerLab/ALRA R R OS X, Linux, and Windows 2018 [68] 

EN-

HANCE 

Python:https://github.com/yanailab/en-

hance 

R:https://github.com/yanailab/enhance-R 

Python/R NULL Linux and Mac 2019 [69] 

NA: The research did not mention. NULL: Null value. 

2.3. Data Smoothing Methods 

Based on data smoothing methods typically use gene expression values in similar 

cells to adjust all values (usually including zero and non-zero values). The availability 

links, programming language, whether a package is available, year of presentation, oper-

ative system, distribution compatibility and reference of the representative methods based 

on smoothing see Table 4.  

(1) MAGIC is a method for explicit and genome-wide inference of single-cell gene ex-

pression profiles. This method is based on the concept of thermal diffusion and cal-

culates the dropout gene expression values by sharing information among similar 

cells. MAGIC constructs the Markov transition matrix by normalizing the similarity 

matrix of a single cell, and then carries out ‘soft’ clustering to replace the original 

expression of genes with their weighted average expression in clustering, thus real-

izing dropout value imputation, for more detail, please refer to Ref. [36]. We give a 

simple framework as shown in Figure 9. 

 

Figure 9. The framework of MAGIC method [36]. 

(2) DrImpute first identifies similar cells based on clustering, and then recovers single 

cell data by averaging expression values from similar cells. In order to achieve robust 

estimation, it uses different cell clustering to perform multiple imputing “dropout”, 

then averaging multiple estimation results of the final imputation, as shown in Figure 

10. The specific workflow is as follows [49]:  

(a) Raw read counts are normalized by size factor and then log-transformed on the 

data. 

(b) The first 5% principal components of the similarity matrix are clustered with the 

k-means using the Pearson and Spearman correlations.  

(c) Borrowing average expression values from similar cells to recover single-cell 

gene expression data.  
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Figure 10. The framework of DrImpute method [49]. 

(3) kNN-smoothing models’ technical variance using a Poisson distribution and impu-

tation is conducted via discreet smoothing or variance-stabilization of the expression 

profiles. kNN-smoothing 2 is a major improvement over the original algorithm, and 

performs much better whenever the data contain cell populations with very similar 

expression profiles. kNN-smoothing 2 completely replaces the original version. It 

takes two parameters (k and d). k is the number of neighbors to use for smoothing 

(same as in the original version), and d is the number of principal components used 

for determining the nearest neighbors in each smoothing step [29]. MAGIC, DrIm-

pute, and kNN-smoothing are three classical data smoothing methods. 

Table 4. The availability links, programming language, whether a package is available, year of 

presentation, operative system, distribution compatibility and reference of the representative meth-

ods based on smoothing. 

Method Availability Code Pkg 

Operative System and 

Distribution 

Compatibility 

Year Ref 

DEWÄKSS 
https://gitlab.com/Xparx/dewakss/-

/tree/Tjarnberg2020branch 
Python Python NA 2021 [30] 

G2S3 https://github.com/zwang-lab/g2s3 MATLA/R NULL NA 2021 [55] 

kNN-smooth-

ing 
https://github.com/yanailab/knn-smoothing Python/R/MATLAB NULL NA 2018 [29] 

netSmooth 
https://github.com/BIMSBbio-

info/netSmooth 
R R Linux, Mac and Windows 2021 [37] 

PRIME https://github.com/hyundoo/PRIME R/C++ R NA 2020 [52] 

RESCUE https://github.com/seasamgo/rescue R/Python R NA 2019 [53] 

scHinter https://github.com/BMILAB/scHinter MATLAB NULL NA 2019 [50] 

scNPF https://github.com/BMILAB/scNPF R R NA 2019 [54] 

MAGIC https://github.com/DpeerLab/magic 

Jupyter Note-

book/Py-

thon/MATLAB 

Python|R NA 2018 [36] 

scTSSR https://github.com/Zhangxf-ccnu/scTSSR R R NA 2020 [31] 

DrImpute https://github.com/gongx030/DrImpute R/C++ R Linux 2018 [49] 

NA: The research did not mention. NULL: Null value. 

2.4. Deep Learning Methods 

This type of approach identifies the potential spatial representation of cells based on 

the deep learning method (capturing nonlinear relationships) and then reconstructs the 

observed expression matrix from the estimated potential space. The availability links, 
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programming language, whether a package is available, year of presentation, operative 

system, distribution compatibility and reference of the representative methods based on 

deep learning see Table 5. 

(1) DCA is an imputation method based on automatic encoder, it uses a negative bino-

mial noise model with or without zero expansion. By considering the count distribu-

tion, super-dispersion, and sparsity of data, it can capture nonlinear gene–gene de-

pendence. DCA learns gene-specific distribution parameters by minimizing the re-

construction error in an unsupervised manner, rather than reconstructing the input 

data itself, for more detail, please refer to Ref. [32]. We give a simple framework as 

shown in Figure 11 (a). 

(2) LATE uses the initial values of a randomly generated parameter to train an autoen-

coder on highly sparse scRNA-seq data, and the TRANSLATE method builds on 

LATE, further using the reference gene expression data set to provide LATE with an 

initial set of parameter estimates. Hence, the user can train the autoencoder on a ref-

erence gene expression dataset and then use the weights and biases as initial values 

for imputing the dataset of interest. These algorithms are highly scalable in graphics 

processing units and can handle more than 1 million cells in a few hours [60].  

(3) scVI is a fully probabilistic method for the standardization and analysis of scRNA-

seq data. The method is based on a hierarchical Bayesian model with conditional dis-

tribution specified by a deep neural network. The transcriptome of each cell is en-

coded into low-dimensional potential vectors of normal random variables by nonlin-

ear transformation. This potential representation is decoded by another nonlinear 

transformation to generate an a posteriori estimate of the distributional parameters 

of each gene in each cell, for more detail, please refer to Ref. [84]. We give a simple 

framework as shown in Figure 11 (b). Both the deep learning method and the low-

rank matrix representation method use the idea of data reconstruction. 

 

Figure 11. The framework of DCA (a) and scVI (b) method [32,84]. 
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Table 5. The availability links, programming language, whether a package is available, year of 

presentation, operative system, distribution compatibility and reference of the representative meth-

ods based on deep learning. 

Method Availability Code Pkg 

Operative System and 

Distribution  

Compatibility 

Year Ref 

2DImpute https://github.com/zky0708/2DImpute R R NA 2020 [65] 

AutoImpute 
https://github.com/divyanshu-talwar/Au-

toImpute 
Python/R NULL NA 2018 [57] 

GraphSCI 
https://github.com/biomed-

AI/GraphSCI 
Jupyter Notebook/Python NULL NA 2021 [59] 

RIA NA NA NA NA 2019 [66] 

SAUCIE 
https://github.com/Krishnaswa-

myLab/SAUCIE/ 
Python NULL NA 2019 [62] 

SISUA https://github.com/trungnt13/sisua 
Jupyter Notebook/Py-

thon/HTML 
Python NA 2020 [64] 

TRANSLATE https://github.com/audreyqyfu/LATE 
Python/Jupyter Note-

book/Shell/R 
Python NA 2020 [60] 

ZINBAE https://github.com/ttgump/ZINBAE Python NULL NA 2021 [82] 

DCA https://github.com/theislab/dca Python Python NA 2019 [32] 

scVI https://github.com/YosefLab/scVI Python Python NA 2018 [84] 

scIGANs https://github.com/xuyungang/scIGANs Python/shell/R NULL 
Linux/Unix-based sys-

tems 
2020 [61] 

DeepImpute 
https://github.com/lanagarmire/DeepIm-

pute 
Python/Makefile/Dockerfile Python NA 2019 [33] 

scScope 
https://github.com/AltschulerWu-

Lab/scScope 
Python Python Ubuntu 14.4 2019 [63] 

EnImpute 
https://github.com/Zhangxf-ccnu/En-

Impute 
R R NA 2019 [58] 

NA: The research did not mention. NULL: Null value. 

3. Conclusions and Discussion 

We review most imputation methods used in recent references. And we find that 

these methods can be divided into four categories. The first category includes imputation 

methods that use probability models to directly represent sparsity. In the imputation func-

tion, it may not be possible to distinguish between biological zeros and technical zeros, 

usually only technical zeros are considered. This method produces fewer false positives, 

but it depends on the homogeneity or heterogeneity of the data. The second category in-

cludes methods for smoothing or adjusting zero and non-zero values through average 

expression values or their diffusion. This method helps to reduce noise, but it may pro-

duce many false positives. Interestingly, in datasets with small effect size genes, the first 

kind of method may be better than the second kind of algorithm. The third category is 

based on low-rank matrix, and the fourth category is based on deep learning neural net-

work. The third and fourth methods are based on data reconstruction. The method based 

on low-rank matrix captures the linear relationship, while the deep learning method deals 

with the nonlinear relationship. 

Through the analysis of various imputation methods, we find that CIDR, MISC, 

PRIME, RESCUE, RIA, TRANSLATE, and others provide the best performance in terms 

of computing time. In terms of memory consumption, SCC, G2S3, and others provide the 

highest memory efficiency. In terms of scalability, AutoImpute, GraphSCI, netSmooth, 

SAUCIE, scImpute, TRANSLATE, MAGIC, kNN-smoothing etc. demonstrate high scala-

bility as the number of cells in the dataset increases. Based on a comprehensive compari-

son of time, memory, and scalability, ENHANCE, MAGIC, SAVER, SAVER-X, and scVI 

provide the best overall performance. 

We note that most methods seem to be difficulty to deal with non-UMI datasets, es-

pecially the full-length scRNA-seq datasets. This is because comparing with the large 

number of variables such as genes, the observations such as cells are always small. At this 

point, although the bayNorm is originally designed for the scRNA-seq protocol that 
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includes UMI, it also applies to non-UMI data. In addition, we also note that methods 

using biological variability and technical noise assumptions (SAVER, SAVER-X, scVI, etc.) 

usually show better performance, which is because they use a priori knowledge in their 

algorithms. It is also shown that model-based methods usually perform well in imputa-

tion and expression recovery, but they are usually costly and poor in the enhancement of 

cell similarity. Techniques based on matrix theory show good performance in character-

izing cell similarity, as well as noteworthy scalability, even in the case of big datasets. At 

last, data smoothing methods usually show good performance, but there are significant 

differences according to specific tasks. 

We believe that the best imputation method depends on genes and datasets. That is, 

there is no single best way to perform. For example, a network-based approach may per-

form well in cell types that meet the co-expression model assumptions, while it may fail 

(for the same gene) in other cell types that do not meet these assumptions. Therefore, the 

best imputation method depends on genes and datasets. We should no longer look for a 

single best imputation method. Instead, the future task will be to find the best way for a 

specific combination of genes and experimental conditions. 

Finally, we point out that imputation methods for precision-imputing of scRNA-seq 

data in the presence of dropout values pave the way for specific downstream analyses, for 

example, where improved reliability and accuracy of scRNA-seq data enable more accu-

rate investigation of single-cell genotypes and phenotypes. Moreover, this allows one to 

better estimate metabolic fluxes from scRNA-seq data, and act into cancer metabolic stud-

ies. In the face of the emergence of massive data, the recommended selection of imputa-

tion methods from different angles enhances the accuracy and reliability of the data, and 

has basic research significance for the further development of the concept of model-driven 

and data-driven combination. It provides data support for the in-depth study and exper-

imental verification of the essence and cell fate determination mechanism of systems bi-

ology and molecular biology. Further, since human cancer is a complex ecosystem of cells 

with different molecular characteristics, this intra-tumoral heterogeneity poses a major 

challenge to the diagnosis and treatment of cancer, and recent advances in single-cell tech-

nologies such as scRNA-seq have brought unprecedented insights into cellular heteroge-

neity, from which people can discover the metabolism of different cell types, thus enabling 

early diagnosis of cancer [85,86]. Therefore, the recovery of gene expression value of sin-

gle-cell transcriptome sequencing data is of great significance for overcoming major dis-

ease problems and the development of precision medicine and smart medicine in the fu-

ture. 
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