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Abstract: With polydisperse inhomogeneities, the analysis of small-angle scattering (SAS) data is
possible by fitting the experimental data to theoretical models. Despite scientific software being
available for this task, many scientists in different fields prefer other techniques for their investigations.
With the simplified polydispersion analysis (SPA) presented here, it is possible to analyse the SAS data
in a much simpler way. A straightforward interpolation of SAS data using any commercial software,
requiring no advanced computational skills, allows the determination of the size distribution function
(SDF) of the polydisperse inhomogeneities. Here, this innovative approach was tested against
simulated SAS data of spherical inhomogeneities, as well as experimental data with excellent results.
The results reported here offer new opportunities for many scientists to use the SAS technique to
investigate polydisperse systems.
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1. Introduction

Small-angle scattering (SAS) is widely used to investigate inhomogeneities in many
different types of materials. It is a versatile technique providing quantitative results in a non-
destructive way. Tens of thousands of studies have been published over the last few years
with results obtained by SAS in many different scientific fields, signalling significant interest
from the scientific community. During the first period of SAS applications, experimental
data were not calibrated, and users mainly limited their analysis to the calculation of
the gyration radius and molecular weight. Polydispersion of the inhomogeneities that
create forward scattering was rarely investigated due to the complications of the required
process. In the decades to follow, the analysis of SAS data became more sophisticated
and more complete results are now obtained from SAS data, including many corrections
of experimental smearings that may affect the experimental data. Nevertheless, SAS is
widely used, and the inhomogeneities are rarely monodisperse, especially in the case of
precipitates in alloys, in gas bubbles in irradiated materials, and in many other materials,
where polydispersion affects the mechanical properties of the materials. An exhaustive
introduction to the application of SAS to materials science can be found in [1]. Therefore,
efficient polydispersion analyses have been implemented to obtain information on the size
distribution function (SDF) of the inhomogeneities. In all the SAS manuscripts published
in the last few years, around 10% use the lognormal SDF for its simple mathematical
handling and because it serves to mimic the polydispersion of inhomogeneities in many
different materials. It has been successfully employed in a very large number of diverse
applications. Among them are the investigations on composite particles of ferrofluids [2,3],
on maraging steel [4], on the structure of ferritic alloys [5], on the α-Fe-Nb-C system [6],
on Ni-Fe superalloys [7], on dispersed silver nanoparticles, surrounded by a stabilizing
polymeric shell of poly(acrylic acid) [8], on irradiated Fe-Cu-Mn alloys [9], on Mg-Zn-Al(-
Ca) alloys [10], on microalloyed steels [11], on the mesoscopic metallic system [12], on gold
nanoparticles [13], on the Al-Zn-Mg-Cu alloy [14], on non-porous nanoparticles [15], on
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colloidal ThO2 sols [16], on aerosol nanoparticles [17,18], and on Ni/SiO2 catalysts [19].
As shown above, the characterization of the SDF of nanoparticles is important in many
areas, and a potential field of application could be, for instance, the investigation of metallic
nanoparticles for catalysis applications [20,21]

The applications of the lognormal SDF have been also extensively discussed in a
large number of methodological manuscripts, among which is [22], and used in software
developed to support the scientific community in the analysis of SAS data, including
SASFIT [23], FLAC [24], and IRENA [25]; a comprehensive list of the software packages
was compiled by [26].

2. SAS Theoretical Background

The SAS technique is sensitive to the presence of inhomogeneities in materials, such as
precipitates in the matrix, proteins in solutions, or cavities in metals. In all cases, the incident
radiation, mainly neutrons and X-rays, is scattered as a function of the change in the density
of the quantity that controls the interaction with the target material, namely the scattering
length density and the electron density for neutrons and X-rays, respectively. In a SAS
experiment, the coherent macroscopic scattering cross-section (SCS) dΣ

dΩ is measured as
a function of the scattering vector ~Q, whose module is defined as

Q =
4π

λ
sin(θ) (1)

where 2θ is the full scattering angle and λ is the wavelength of the incident radiation.
In a general way, the SCS can be written [27] as

dΣ
dΩ

(~Q) =
1

VT

∣∣∣∣ ∫VT

ei~Q~rρ(~r)d3~r
∣∣∣∣2 (2)

where VT is the investigated volume,~r is the position vector, and ρ is the contrast, i.e.,
the difference of the scattering length density (SLD), the electron density (ED), and the
refractive index density (RID), for neutrons, X-rays, and light, respectively. From now on, I
will refer to the neutron case for clarity. However, it is trivial to move the following picture
to the X-ray or light cases.

Under the following conditions usually found in experiments:

• The inhomogeneities, as well as the sample matrix, or solvent, are homogeneous: the
so-called two-phase system.

• The scattering is isotropic, and the SCS depends on the modulus of the scattering
vector Q.

• The system is diluted, i.e., the concentration of the inhomogeneities is so low that the
coherence between neutrons scattered by different inhomogeneities is negligible

Equation (2) can be simplified, taking the following form:

dΣ
dΩ

(Q) =
1

VT
(∆ρ)2

NT

∑
i=1

V2
i |Fi(Q)|2 (3)

where Vi is the volume of an inhomogeneity, ∆ρ is the difference of the SLD between
the inhomogeneities and the matrix, or solvent, and Fi(Q) is the form factor of the i-th
inhomogeneity averaged over all the possible orientations. The sum in Equation (3) runs
over all NT inhomogeneities. A short overview of the main scattering formulas is here
reported for clarity.
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2.1. Monodisperse Inhomogeneities

In the very simple case of identical inhomogeneities, Equation (3) yields a much
simpler form:

dΣ
dΩ

(Q) = NV2(∆ρ)2|F(Q)|2 (4)

N is the number density of the inhomogeneities, i.e., the number of inhomogeneities per
unit volume; V is the volume of a single inhomogeneity; |F(Q)|2 is the form factor of
the inhomogeneity.

At small values of Q, Guinier showed that |F(Q)|2 can be approximated by a Gaussian
form [27], and the SCS takes the following form:

dΣ
dΩ

(Q) ∼=
dΣ
dΩ

(0)exp(−
Q2R2

g

3
) (5)

where Rg is the gyration radius of the single inhomogeneity, defined as

R2
g =

1
V

∫
V

r2dV (6)

and the SCS at Q = 0 is given by

dΣ
dΩ

(0) = (∆ρ)2NV2 (7)

In the case of a sharp interface between the inhomogeneities and the matrix, or sol-
vent, the asymptotic behaviour of |F(Q)|2 can be approximated by the so-called Porod
approximation [28]:

dΣ
dΩ

(Q) ∼=
2π(∆ρ)2NS

Q4 (8)

where S is the surface of an inhomogeneity, and therefore, ST = NS represents the total
surface of the inhomogeneities per unit volume.

2.2. Polydisperse Inhomogeneities

When the inhomogeneities still have the same shape, but their dimensions are spread
over an SDF N(R), Equation (3) takes the following form:

dΣ
dΩ

(Q) = (∆ρ)2
∫

N(R)V(R)2|F(Q, R)|2dR (9)

where R is the linear dimension describing the inhomogeneities, such as, for example,
the radius of a sphere, N(R)dR is the number density of inhomogeneities with dimension
between R and R + dR, V is the volume, and |F(Q, R)|2 is the form factor of the inhomo-
geneities of dimension R. It is important to underline that the SCS dΣ

dΩ (Q) shall be measured
in absolute units, i.e., in cm−1, by proper calibration of the experimental data, in order to
obtain important physical quantities of the inhomogeneities, such as the total number per
unit volume N and the volume fraction cv.

The number density of the inhomogeneities N, i.e., the total number of inhomo-
geneities per unit volume, is then given by

N =
∫

N(R)dR (10)

and the n-th momentum of the size distribution function 〈Rn〉 is defined by

〈Rn〉 = 1
N

∫
N(R)RndR (11)
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For polydisperse inhomogeneities, the Guinier approximation described above
(Equation (5)) is still valid; however, the effective gyration radius Rg∗ takes the following form [1]:

R2
g∗ =

〈V2R2
g〉

〈V2〉 (12)

where 〈V2R2
g〉 and 〈V2〉 are the average values of V2R2

g and of V2 of the inhomo-
geneities, respectively.

The SCS at Q = 0 is defined as

dΣ
dΩ

(0) = (∆ρ)2N〈V2〉 (13)

In the case of a sharp interface between the inhomogeneities and the matrix, or solvent,
thanks to the properties of |F(Q, R)|2, the Porod approximation yields

dΣ
dΩ

(Q) ∼=
2π(∆ρ)2N〈S〉

Q4 =
Ap

Q4 (14)

where 〈S〉 is the average surface of the inhomogeneities, and for simplicity, we define the
constant of proportionality of the asymptotic behaviour Ap, as the Porod constant.

2.3. Spheres

If the inhomogeneities have a spherical shape, Equations (12) and (13) and the Porod
constant Ap in Equation (14) take the following form:

R2
g∗ =

3
5
〈R8〉
〈R6〉 (15)

dΣ
dΩ

(0) = (
4
3

π)2(∆ρ)2N〈R6〉 (16)

Ap = 8π2(∆ρ)2N〈R2〉 (17)

3. Lognormal Distribution Function

The lognormal SDF is widely used to model the SCS of polydisperse systems, because
of its useful properties and easy mathematical handling. It is defined as

N(R) = No exp(−
(ln( R

Ro
))2

2σ2 ) (18)

and it depends on the following three parameters: No, Ro, and σ, which are measured in
L−4, L, and L0, respectively.

The n-th momentum of the lognormal SDF is given by

< Ri > =
1
N

No Ri+1
o exp(

(i + 1)2

2
σ2) σ

√
2π (19)

The number density N is given by

N = < Ro > =
∫

N(R)dR = NoRo exp(
1
2

σ2) σ
√

2π (20)

4. Simplified Polydispersion Analysis

Usually, the analysis for the interpretation of the SAS data of polydisperse inhomo-
geneities is performed by fitting the experimental SCSs with theoretical models, and this
sometimes represents a barrier for many scientists to use the SAS technique. This sim-
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plified polydispersion analysis (SPA) allows the polydispersion analysis of the SAS data
to take place using a simplified approach that does not require a high level of computa-
tional skills. The SPA opens up the SAS technique with polydispersion analysis to the
fraction of the scientific community with no experience in fitting experimental data and
has the ambitious goal to recruit more scientists interested in obtaining their results via this
powerful technique.

The calculation of the SDF using global scattering functions was introduced by [22],
and the present SPA approach represents a further simplification in the determination of
the SDFs described below.

By considering the lognormal SDF and its momenta given in Equation (19),
Equations (15)–(17) can be written as follows:

R2
g∗ =

3
5

exp(16σ2)R2
o (21)

dΣ
dΩ

(0) = (
4
3

π)2(∆ρ)2NoR7
oexp(

49
2

σ2)σ
√

2π (22)

Ap = 8π2(∆ρ)2NoR3
oexp(

9
2

σ2)σ
√

2π (23)

By defining the following quantities:

A =
dΣ
dΩ (0)

( 4
3 π)2(∆ρ)2

= NoR7
oexp(

49
2

σ2)σ
√

2π (24)

B = R2
g∗ =

〈R8〉
〈R6〉 = R2

o exp(16.0σ2) (25)

C =
Ap

8π2(∆ρ)2 = NoR3
oexp(

9
2

σ2)σ
√

2π (26)

the three equations above relate the three main physical quantities obtained from the
experimental SCS to the three independent parameters of the lognormal SDF, which are
found to be

σ =
1

12
ln

B2C
A

(27)

Ro = [B exp(−16σ2)]1/2 (28)

No =
C

R3
o exp( 9

2 σ2) σ
(29)

A complete analytical solution of the system with the three equations above is possible.
However, for the sake of simplicity, I suggest first calculating σ by using Equation (27) and
then calculating the other two quantities.

The uncertainties σ∗ (different from σ, the parameter of the lognormal SDF) of the
estimated parameters of the lognormal SDF are given by

σσ =
1

24σ
[(

σA
A

)2 + (2
σB
B
)2 + (

σC
C
)2](

1
2 ) (30)

σRo = Ro[(
σB
2B

)2 + (−16σσσ)
2](

1
2 ) (31)

σNo = No[(
σc

C
)2 + (3

σRo

Ro
)2 + (−9σ2 + 1

σ
σσ)

2](
1
2 ) (32)

where the estimated uncertainties of the quantities A, B, and C are given by

σA =
σ dΣ

dΩ (0)

( 4
3 π)2(∆ρ)2

(33)
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σB = 2B
σRg∗

Rg∗
(34)

σC =
σAp

8π2(∆ρ)2 (35)

where σ dΣ
dΩ (0), σRg , and σAp are the estimated uncertainties of dΣ

dΩ (0), the effective radius of
gyration Rg∗, and the Ap constant, respectively.

Last but not least, the uncertainty of the n-th momentum of the lognormal SDF can
be calculated by the propagation of the estimated uncertainties of the three parameters
defining the SDF:

σN<Ri>

N < Ri >
=

√
(

σNo

No
)2 + [(i + 1)

σRo

Ro
]2 + [((i + 1)2σ +

1
σ
)σσ]2 (36)

Hence, with the determination of the three quantities Rg∗, dΣ
dΩ (0), and Ap from the

experimental SCS, it is possible to uniquely define the SDF of polydisperse inhomogeneities
through Equations (27)–(29). Provided the experimental SCS fulfils the condition of a Q
range wide enough to contain the Guinier, as well as the Porod approximations, this is pos-
sible by performing a simple analysis of the experimental SCS, consisting of interpolating
straight lines in the ln dΣ

dΩ −Q2 plot at low Q values for the Guinier approximation and in
the log dΣ

dΩ − logQ plot at large Q values for the Porod approximation.
In the ln dΣ

dΩ − Q2 plot, the SCS is fit with a straight line ln dΣ
dΩ = aQ2 + b, where

a = −R2
g/3 and b = ln dΣ

dΩ (0). Similarly, the power law in Equation (14) turns into a
straight line in the log dΣ

dΩ − logQ plot, and therefore, the SCS can be fit with the straight line
log dΣ

dΩ = c + dlog(Q), where c = log(Ap) and d is the coefficient of the power law, ideally
equal to −4 for sharp interface.

The presence of an incoherent background in the SCSs affects the application of the
SPA by not allowing a linear fit in the log dΣ

dΩ − logQ plot at large Q values for the Porod
approximation. In this case, the SCS shall be fit against the following function with a power
law and constant background B,

dΣ
dΩ

=
Ap

Q4 + B (37)

the linear interpolation no longer being possible. In the dΣ
dΩ −Q plot, the SCS is fit with the

straight line dΣ
dΩ = c

Q4 with c = Ap, plus the incoherent background B.
The parameters a, b, and c are then used for the SPA, with their estimated uncertainties

σa, σb, and σc.
Interpolations of the SCS can be performed with many user-friendly commercial

software packages that usually include fitting capabilities with predefined and user-defined
fitting functions.

Alternatively, one can also consider using a user-defined function in commercial
software to interpolate the SCS with a non-linear fit by directly optimizing the physical
quantities dΣ

dΩ (0), Rg∗, and Ap.

5. Simulations

The SCSs of polydisperse systems of spherical inhomogeneities were calculated by
using a lognormal SDF defined between 1 and 250 Å, with Ro of 20 Å, four values of σ (0.1,
0.2, 0.3, and 0.4), and normalized to a volume fraction Cv of 1.0%. The SDF functions used
to simulate the SCSs are shown in Figure 1. The nominal values of the three parameters No,
Ro, and σ calculated with the SDFs are reported in the upper part of Table 1.

A contrast factor (∆ρ)2 of 1.0× 10−12Å
−4

was used to simulate the SCSs in absolute
units (cm−1) in the ideal Q range between 0.00005 and 10 Å

−1
to ensure the presence of
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the Guinier and of the Porod approximations. An experimental error of 5% was applied to
mimic the experimental conditions. The simulated SCSs are shown in Figure 2.

Figure 1. SDFs used to simulate the SCSs of polydisperse inhomogeneities; No are normalized to
ensure a volume fraction of 1%; Ro = 20 Å; four values of σ are considered (0.1, 0.2, 0.3, and 0.4).

Table 1. Nominal and calculated values of the three parameters of the lognormal SDF of spherical
inhomogeneities obtained by applying the SPA to the simulated SCSs.

Parameter σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

nominal values
No (1024 cm−4) 5.49 2.16 0.97 0.41
Ro (Å) 20.0 20.0 20.0 20.0
σ 0.1 0.2 0.3 0.4

calculated values
No (1024 cm−4) 6.13± 1.03 2.22± 0.17 0.97± 0.07 0.35± 0.02
Ro (Å) 20.2± 0.4 20.5± 0.4 20.1± 0.4 22.7± 0.4
σ 0.09± 0.01 0.19± 0.01 0.30± 0.01 0.37± 0.01

Figure 2. Simulated SCSs of a lognormal SDF of spherical inhomogeneities; No are normalized to
ensure a volume fraction of 1%; Ro = 20 Å; four values of σ are considered (0.1, 0.2, 0.3, and 0.4). The
Guinier and the Porod approximations are present in the investigated Q range.

For σ = 0.1, the simulated system shows reduced polydispersion, and therefore, the
oscillations typical of the monodisperse systems are not smeared out. In this respect, it is
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worth bearing in mind that the form factor of a sphere depends on the spherical Bessel
function J1.

The Guinier and the Porod approximations were fit to the simulated SCSs, each on the
proper Q-range. As an example, the linear fits for the simulated SCS with σ = 0.2 are shown
in Figures 3 and 4 for the Guinier and the Porod approximations, respectively. In both
cases, the points used for the fit are shown with black symbols with their error bars, while
the other simulated points are shown in red. With the SPA approach, the SCSs were fit by
using two linear fits in the two plots described above, i.e., ln dΣ

dΩ −Q2 at low Q values for
the Guinier and log dΣ

dΩ − logQ at large Q values for the Porod approximation, respectively.

Figure 3. Guinier approximation of the simulated SCS by using the SDF with σ = 0.2. The points
used for the Guinier approximation are shown with black symbols, while the others are red. The fit is
shown with a red line.

In the case shown in Figure 3, QmaxRg was found to be 1.13, beyond the theoretical
limit of validity of the Guinier approximation (QmaxRg . 1.0) in order to obtain a more
precise result. There is a two-fold argument for this exception: (1) the data are effectively
reproduced by a straight line even at higher Q values than the theoretical limit, and
moreover, (2) the difference in the results is smaller than the calculated uncertainty.

Figure 4. Porod approximation of the simulated SCS by using the SDF with σ = 0.2. The points used
for the fit are shown with black symbols, while the others are red. The fit is shown with a red line.

From the optimized parameters of the linear interpolations and their estimated errors,
it is possible to calculate the physical quantities needed to apply the SPA, i.e., dΣ

dΩ (0),
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Rg∗, and Ap, and from them, the SDF parameters. In principle, it is also possible to use
a non-linear fit of the SCSs to calculate the three physical quantities to optimize, but the
conversion from the linear parameters to the physical quantities is straightforward.

The values of the SDF parameters used to simulate the SCSs, as well as those calculated
by using the SPA are shown in Table 1. The fit was performed by using commercial
software with the linear interpolation option in the ln( dΣ

dΩ )−Q2 plane for the Guinier and
in the log( dΣ

dΩ )− logQ plane for the Porod approximations, respectively. The analysis of
polydisperse SAS data by SPA then becomes a very easy process.

The SDFs’ parameters are in excellent agreement with the nominal values, and their
estimated uncertainties are acceptable.

The main physical quantities of the inhomogeneities, such as number density N,
average radius 〈R〉, total surface S and volume fraction Cv, were calculated and the results
shown in Table 2. The values calculated with the nominal parameters of the SDF and those
calculated by the SPA are in excellent agreement.

Table 2. Nominal and calculated values of the main physical quantities, the number density N, the av-
erage radius 〈R〉, the average surface 〈S〉, and the volume fraction Cv, of spherical inhomogeneities
obtained by applyingthe SPA on the simulated SCS.

Parameter σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

nominal values
N (1017 cm−3) 2.77 2.21 1.52 0.90
〈R〉 (Å) 20.3 21.2 22.9 25.4
〈S〉 (105 cm−1) 1.45 1.30 1.09 0.86
Cv(%) 1.00 1.00 1.00 1.00

calculated values
N (1017 cm−3) 2.75± 0.62 2.15± 0.19 1.52± 0.11 0.78± 0.05
〈R〉 (Å) 20.4± 6.6 21.6± 2.8 22.9± 2.6 27.7± 2.4
〈S〉 (105 cm−1) 1.45± 0.35 1.31± 0.14 1.10± 0.11 0.86± 0.07
Cv(%) 1.00± 0.25 1.01± 0.13 1.00± 0.12 1.04± 0.09

The agreement between the values of the physical quantities calculated using the
nominal SDF parameters and those calculated using SPA is excellent, and the estimated
uncertainties are acceptable.

The SDFs reconstructed with the SPA are shown in Figure 5 for the four different cases.
The agreement between the original and reconstructed SDFs is excellent.

Figure 5. SDFs reconstructed with the parameters (No, Ro and σ) calculated with the SPA for the four
cases (σ = 0.1, 0.2, 0.3 and 0.4). The original SDFs are shown in Figure 1.
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Background

The presence of an incoherent background affects the analysis of the SCS, it being up
to several orders of magnitude below the incoherent background, and it may disappear
into it. To assess the sensitivity of the SPA, backgrounds of 1.0 × 10−5, 1.0 × 10−4, and
1.0 × 10−3 cm−1 were added to the experimental data. In this case, a power law with the
exponent fixed to the theoretical value of −4, as predicted by the Porod approximation
of sharp interfaces, was considered using commercial software. The SCS with an added
background of 1.0 × 10−4 cm−1 along with the fit of the Guinier approximation is shown
in Figure 6.

Figure 6. Guinier approximation of the simulated SCS by using the SDF with σ = 0.4 and an incoherent
background of 1.0 × 10−4 cm−1. The points used for the Guinier approximation are shown with
black symbols, while the others are red. The fit is shown with a red line.

The fit of the Porod approximation is shown in Figure 7.

Figure 7. Porod approximation of the simulated SCS by using the SDF with σ = 0.4 and an incoherent
background of 1.0 × 10−4 cm−1. The points used are shown with black symbols, while the others are
red. The fit is shown with a red line.

The results are shown in Table 3; the values obtained by the SPA with an added
background can be compared to those obtained without an added background, shown in
Table 1.
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Table 3. Calculated values of the three parameters of the lognormal SDF of spherical inhomogeneities
obtained by the SPA of the simulated SCS with the backgrounds added to the case of σ = 0.4.

Background (cm−1)
1.0 × 10−5 1.0 × 10−4 1.0 × 10−3

calculated values
No (1023 cm−4) 2.77± 0.83 2.89± 1.25 3.35± 1.58
Ro (Å) 25.3± 2.3 24.9± 3.2 23.9± 3.3
σ 0.34± 0.02 0.34± 0.02 0.35± 0.02

The reconstructed SDFs are shown in Figure 8 along with the original one.

Figure 8. SDFs reconstructed with the parameters (No, Ro, and σ) calculated with the SPA for the
case σ = 0.4 without (red line) and with additional backgrounds of 1.0 × 10−5 (B1—blue line),
1.0 × 10−4 (B2—green line), and 1.0 × 10−3 cm−1 (B3—yellow line). The original SDF is also shown
for comparison (black line).

Figure 8 demonstrates the validity of the proposed SPA, the reconstructed SDFs being
with and without the additional backgrounds, in good agreement with the original SDF.
Surprisingly, the SDF of the case with the highest background (1.0 × 10−3 cm−1) is very
close to the SDF reconstructed without any additional background. Indeed, the SPA is able
to reconstruct the SDF.

6. SANS Experiment

The effect of a concentration of polydisperse silica particles LUDOX HS30 was inves-
tigated by small-angle neutron scattering [29]. Different samples with a volume fraction
ranging from 0.3 up to 16.5% were considered, and the SDF of the silica particles was
calculated from the SCS of the sample with the lowest volume fraction by fitting the SCS
with the Weibull SDF.

The SPA with user-defined functions and non-linear fits was applied here to the same
data, and the results are shown in Figure 9a, where in Figure 9b, the SCSs are shown
with the fit using the traditional fitting procedure with a Weibull SDF, taking into account
corrections for the wavelength spread (∆λ/λ = 18%) and for multiple scattering. The
Weibull SDF obtained with the fitting procedure and the lognormal SDF calculated with
the SPA are compared in Figure 10.
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Figure 9. Analysis of experimental SCS of Ludox silica particles HS30 with a 0.3% volume fraction:
(a) The SPA with the fits of the Guinier (red line), as well as of the Porod (blue line) approximations
along with the values of the optimized parameters and their uncertainties. The points used for both
fits are shown with black symbols, while the others are red. (b) A fitting procedure with a Weibull
SDF, where corrections for the wavelength spread (∆λ/λ = 18%) and for the multiple scattering
were applied [29].

Figure 10. Ludox silica particles HS30 with a 0.3% volume fraction: the Weibull SDF (blue line)
obtained with the fitting procedure, with corrections for the wavelength spread (∆λ/λ = 18%) and
for the multiple scattering, and the lognormal SDF (red line) calculated with the SPA.

The Ludox HS30 average radius and the volume fraction were found to be 61.3 ± 19.0 Å
and 0.41 ± 0.13% with the SPA and 62.3 ± 2.3 Å and 0.25 ± 0.01% with the fitting procedure,
respectively. The values and the SDFs obtained by the SPA and by the fitting procedure are
in surprisingly good agreement with each other, bearing in mind the differences in the two
procedures. The estimated uncertainties in the case of the SPA are larger, but still acceptable,
as this is largely justified by the simplicity of the SPA method.

7. Conclusions

The SPA was used to perform a simplified analysis of the SAS data of polydisperse
samples using simple interpolations employing commercial software, and it does not
require a high level of computational skills. To summarize, the SPA can be applied when
the following conditions are met:

• Two-phase system;
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• Isotropic scattering;
• Sharp interfaces of the inhomogeneities;
• The Q-range includes both the Guinier and Porod approximations;
• Presence of one family of inhomogeneities, described by a lognormal SDF;
• The presence formalism has been developed for spherical inhomogeneities; however,

it can be extended to other shapes.

The SPA provides the log-normal SDF of the investigated samples by performing
the interpolation of the two approximated trends at small and large Q values, where the
three parameters needed to define the SDF are calculated numerically from the optimized
parameters. The check-list below summarizes the workflow of the determination of the
SDF once the experimental SCSs are available:

• Guinier approximation available in the experimental Q range (Equation (5));
• Porod approximation available in the experimental Q range (Equation (14));
• The three parameters Rg∗, dΣ

dΩ (0), and Ap are calculated;
• The three parameters A, B, and C are calculated (Equations (24)–(26));
• The three quantities describing a lognormal SDF are calculated (Equations (27)–(29)).

The SPA was applied to both simulated (with and without an additional incoherent
background) and experimental SCSs, and in all cases, the validity of the proposed method
was demonstrated, where the values of the physical quantities were clearly reproduced
and their uncertainties were larger than those estimated with the traditional fitting method.
Last but not least, in many large-scale facilities, the simple SPA approach can be applied to
real-time analysis during experiments for the efficient tuning of experimental details.
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The following abbreviations are used in this manuscript:

ED electron density
RID refraction index density
SAS small-angle scattering
SCS scattering cross-section
SDF size distribution function
SLD scattering length density
SPA simplified polydispersion analysis
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