
Citation: Zendebudi, A.; Choudhury,

S. Designing a Deep Q-Learning

Model with Edge-Level Training for

Multi-Level Task Offloading in Edge

Computing Networks. Appl. Sci.

2022, 12, 10664. https://doi.org/

10.3390/app122010664

Academic Editors: Wenjia Li, Jinsong

Wu and Feng Zeng

Received: 13 September 2022

Accepted: 18 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Designing a Deep Q-Learning Model with Edge-Level Training
for Multi-Level Task Offloading in Edge Computing Networks
Ahmad Zendebudi * and Salimur Choudhury

Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
* Correspondence: azendebu@lakeheadu.ca

Abstract: Even though small portable devices are becoming increasingly more powerful in terms of
processing power and power efficiency, there are still workloads that require more computational
capacity than these devices offer. Examples of such workloads are real-time sensory input processing,
video game streaming, and workloads relating to IoT devices. Some of these workloads such as
virtual reality, however, require very small latency; hence, the workload cannot be offloaded to a
cloud service. To tackle this issue, edge devices, which are closer to the user, are used instead of cloud
servers. In this study, we explore the problem of assigning tasks from mobile devices to edge devices
in order to minimize the task response latency and the power consumption of mobile devices, as
they have limited power capacity. A deep Q-learning model is used to handle the task offloading
decision process in mobile and edge devices. This study has two main contributions. Firstly, training
a deep Q-learning model in mobile devices is a computational burden for a mobile device; hence, a
solution is proposed to move the computation to the connected edge devices. Secondly, a routing
protocol is proposed to deliver task results to mobile devices when a mobile device connects to a
new edge device and therefore is no longer connected to the edge device to which previous tasks
were offloaded.

Keywords: mobile edge computing; task offloading; deep Q-learning; optimization

1. Introduction

Small, portable devices have limited processing and energy capacity, but they are usu-
ally required to perform processing intensive tasks such as image processing, augmented
reality, real-time sensory input processing [1], and Internet of things [2]. An obvious so-
lution to this issue is to use more advanced and power-efficient chips. This, however, is
not always possible, as the use of cutting-edge chip technologies can be very expensive
and might require many more years of advancement before it becomes a viable solution.
Another approach is to offload tasks to the cloud, where the tasks are executed and the
results sent back to the portable devices. This method also is not always possible, as some
applications require a very small processing delay and transmitting data over the network
through several routers is simply too slow to be applicable. A third method is to use a set
of computational devices located at the edge of the network. That is, these computational
devices are either directly connected to mobile devices or they are much closer to the mobile
devices compared to cloud servers [3]. Using this approach, mobile devices can offload
some of their tasks to these devices while maintaining a minimal transmission delay. As a
result, mobile devices can meet the time-delay requirements of their tasks without requiring
more advanced chips or running out of battery power [4].

By choosing the right tasks to offload to edge devices, edge processing can boast the
advantages of both local execution and cloud processing, while avoiding the disadvantages
associated with them. That is, selectively offloading tasks to edge devices can lower the
processing time to much lower than what can be achieved using a cloud solution or local
execution, as it avoids the latency of task propagation to the cloud or the slow execution of

Appl. Sci. 2022, 12, 10664. https://doi.org/10.3390/app122010664 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010664
https://doi.org/10.3390/app122010664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8220-4538
https://orcid.org/0000-0002-3187-112X
https://doi.org/10.3390/app122010664
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010664?type=check_update&version=1

Appl. Sci. 2022, 12, 10664 2 of 22

tasks locally. Additionally, it can provide the same energy-saving advantages of a cloud
solution without congesting the network or requiring more advanced and capable chips.

However, it is not always clear which tasks should be offloaded to edge devices and
which ones should be executed locally. For instance, a task with a high computational
requirements but a small task size might be more suitable for task offloading compared to
a task with lower computational requirements and a large task size, as the transmission
of a large file can be more time consuming than local execution of that task. Additionally,
the decision can also depend on the current workload of the mobile and connected edge
devices. If a connected edge device has a light workload while the mobile device has a
large number of tasks queued for local execution, then it might be better to offload a task
even if it has a large task size. One method for tackling this uncertainty is to hard-code
offloading rules for a specific environment. Such an approach, however, will be too rigid
and will require reconfiguration whenever the environment changes. Another approach is
to use a reinforcement learning agent to make the offloading decisions. In this work, we
use a deep Q-learning model in mobile and edge devices to make the offloading decisions.
Training an artificial neural network for the Q function of the Q-learning model, however,
can require significant computational and energy resources by itself, which is a burden for
the limited computational and energy capacity of mobile devices. This is an issue that is
barely addressed in the literature. In this work, we address this issue by training the neural
network for the Q function in edge devices and sending the trained network to mobile
devices for decision-making.

2. Related Work

The literature around task offloading varies considerably with regard to the network
model, the optimization criteria, and the methods used for optimization.

In [5], all connections are wireless, even the ones between edge devices. Additionally,
each mobile device is connected to at most one edge device, while edge devices can be
connected to multiple edge devices. In this model, 100 mobile devices are randomly
positioned in a plane, while four edge devices are positioned on four corners of a rectangle.
Each edge device in this model can further offload a task to another edge device as long as
the task was not received from an edge device. For the optimization criteria, they consider
a combination of task response delay and energy consumption of mobile devices. Two
methods are used for choosing the tasks to be offloaded: the mathematical programming
and deep Q-learning [6] methods. It demonstrates that the deep Q-learning method can
achieve results with similar performance as the mathematical programming solution with
the advantage of being an online machine-learning method.

Karimi et al. in [7] propose a deep reinforcement model for vehicular mobile devices.
In their work, a mobile device can have a number of applications that, in turn, produce
tasks with different quality of service (QoS) requirements. An acceptance criteria is then
introduced, which indicates whether a task can be accepted by an edge device considering
its QoS requirements. For the optimization criteria, the aim of a solution is to maximize
the percentage of tasks that are accepted by edge devices. One drawback of their deep
reinforcement model is that all the decisions are made by a central server and the states
in the trained deep reinforcement model also change size relative to the number of edge
devices in the system. This makes the system inflexible and unscalable, as the system
cannot have too many edge devices and the model should be retrained each time an edge
device is added or removed.

In [8], there are three types of devices: wireless users (WU), U-MEC, and F-MEC.
In their model, tasks arrive at WUs, which are responsible for making a decision to offload
the task to a U-MEC or a F-MEC. U-MECs are unmanned vehicle-assisted servers, which
have limited power and processing capacity but are generally closer to WUs and can
move around closer to WUs. On the other hand, F-MECs have a fixed location, but no
power restrictions and more processing power. For the optimization criteria, they used a
combination of total delay, energy consumption of WUs, and bandwidth of MEC devices.

Appl. Sci. 2022, 12, 10664 3 of 22

For the optimization model, they used SARSA [9] and dueling deep Q-learning [10] models.
SARSA is a reinforcement learning method in which the model is updated after each step
when a reward for a task is obtained. In a dueling deep Q-learning model, two networks
are used to estimate the value of the current state and the advantage of a chosen action.
They show that, generally, the dueling deep Q-learning model performs better than SARSA.

Zhang et al. [11] used a game theory model for the task offloading problem. They con-
sidered a model with one fixed MEC and one flying MEC as edge devices to serve mobile
users on the ground. In their model, all mobile users are connected to both fixed and
flying MECs and a decision to offload a task is made collectively. At each step, each mobile
device advertises the best decision it can take to minimize a linear combination of the delay
and power consumption costs for the current task. After all mobile devices have made
their advertisements, the mobile device with action for which the total cost function is
minimized “wins” and its decision is recorded on a list. This process is repeated until the
list does not change. Their report, however, did not take into account the delay introduced
by the execution of this game theoretic algorithm, as it can take several repetitions until the
list comes to an equilibrium. Additionally, it does not explain how tasks will be treated if
they do not arrive at the same time on all mobile devices.

In [12], the authors introduce the concept of a candidate network. In this model,
instead of training only one DQL network, n DQL networks are trained, where some are
trained after every C iterations while others are trained after every iteration. At each step,
the network with the smallest Q value is selected as the candidate network to be used
for action selection. Regarding the optimization criteria, it uses a combination of power
consumption, cost, and load balancing. The cost is a dynamic function of the amount of
processing resources remaining at an edge device at the moment.

In [13], each mobile device can connect to multiple edge devices and when a task is
offloaded to an edge device, it is either executed or dropped. Each task has a deadline
by which it needs to be fully executed; if an edge device does not have the resources to
execute a task on time, the task will be dropped. With regard to the cost function, if a task
is executed, the cost function will be a function of the time delay, and if a task is dropped, a
constant cost value is considered. The optimization problem is to minimize the total cost of
all tasks. To do this, a deep Q-learning model with LSTM [14] as mid-layer is employed.
In this model, mobile devices choose an edge device to train a neural network instead of
training it themselves. The reason for this is to alleviate the load on mobile devices, as edge
devices have more processing power. However, a separate model is trained on the edge
device for each mobile device using the experiences of that mobile device. This is a major
disadvantage, as the edge device will need to train a relatively large number of neural
networks which can use significant processing resources of the edge device. Additionally,
if the mobile device is disconnected from the chosen edge device, a new neural network on
another edge device must be trained and the previous experiences will be lost.

The authors of [15] also employed LTSM [14] mid-layers within their deep Q-network,
which allows the network to memorize more information and reduce training time. They,
however, introduced three types of MECs for task offloading: base stations (BS) with
more processing power, but which are usually farther from mobile devices, road side
units that have less processing power but are usually closer to mobile devices, and parked
idle vehicles, which can be thought of as other mobile devices not currently in use. This
architecture allows the system to take advantage of the mobile devices with no workload
to assist other mobile devices. Similarly, the authors in [16] introduced a pairing scheme
to pair resource-constrained mobile devices with idle mobile devices to balance the load
between them. They, however, built their model with the assumption that the number of
idle devices is always greater than the number of resource-constrained devices, which is
not always the case.

In [17], mobile devices do not perform local execution and it is assumed that each
mobile device is within the coverage of one and only one unmanned aerial vehicle (UAV),
to which it offloads its tasks. This requires that the area of coverage for UAVs not overlap.

Appl. Sci. 2022, 12, 10664 4 of 22

Additionally, UAVs may be connected to a number of edge clouds (ECs) to further offload
some of the tasks received from mobile devices. In a sense, in this system, UAVs can be
thought of as traditional mobile devices with limited processing and energy capacity, and
ECs as traditional MECs. Even though each UAV trains its own model for task offloading,
a multi-agent TD3 algorithm [18] is employed to promote cooperation between UAVs
instead of each UAV maximizing its own reward. On the contrary, Chen et al. in [19] argue
that it is fairer for each mobile device to minimize the workload and energy consumption
for itself, as mobile devices are owned by different users. Hence, they introduce a multi-
agent deep deterministic policy gradient (MADDPG) [20] framework to optimize in such a
cooperative–competitive environment.

3. System Model

In this model, we have n mobile devices M = {m1, m2, ..., mn} and m edge nodes
E = {e1, e2, ..., em}. Mobile devices and edge nodes can have wireless connections to each
other. Additionally, tasks can arrive at any time in mobile devices and should be computed
either in the mobile device or offloaded to an edge node. In the following subsections, the
task model, mobile devices, and edge nodes are described in more detail.

3.1. Task Model

Tasks can arrive at mobile devices at any time. In the simulation presented in this work,
task arrivals follow a Poisson process, where the exact task arrivals are random but the
average rate of task arrival is constant at λ. In our simulation, time is continuous and is not
discretized into time slots. This allows us to accurately simulate a Poisson process, which,
in turn, more accurately simulates the real-world conditions. In our model, task offloading
decisions are binary, which means each task must be fully executed by a mobile device or
an edge device. A task cannot be partially executed by both mobile and edge devices.

Let T be the set of all arrived tasks in our system T = {t1, t2, ...}. At the beginning,
the set T is empty, and as time passes, more tasks are added into the set. Let m(ti) = mj
indicate the mobile node mj at which task ti has arrived. Additionally, let l(ti) = l and
d(ti) = d indicate the size l and computational workload d of the task ti, respectively.
The computational workload of a task indicates the number of floating point operations
required to execute the corresponding task. In this work, we use floating point operations
instead of CPU cycles to indicate the workload of tasks. Flops is a unit of measurement
that stands for floating-point operations per second. This measurement is more accurate
than CPU cycles for tasks that require many floating point operations. For a task to be
executed in one second, a processor with a processing capacity of d(ti) flops is required. If
a processor has higher processing capacity, the task will execute in less than one second,
and if a processor has lower processing capacity, the task will run in more than one second.

3.2. Mobile Devices

When tasks arrive at mobile devices, the devices have the responsibility to execute the
tasks as quickly as possible. In out model, each mobile device is connected to at most one
edge node. Connecting to more edge nodes is not allowed here, as maintaining multiple
connections incurs more power consumption for mobile nodes, which need to conserve
their batteries. Additionally, it complicates decision-making for mobile nodes, which
requires them to dedicate more power for task offloading decisions and in turn, consume
more energy.

We define e(mi) = ej to denote the edge device ej that the mobile device mi is connected
to and r(mi) = r to denote the data rate r of the connection between mobile device mi and
its connected edge.

3.2.1. Task Offloading

After a task arrives at a mobile device, a decision is immediately made to either run
the task locally or transmit it to an edge node for remote execution. Different algorithms or

Appl. Sci. 2022, 12, 10664 5 of 22

models can be used to make this offloading decision. Later in this work, we discuss some
possible algorithms and their corresponding performance. If a task ti is to be executed
locally, it is then added to a local execution queue q(mi), that is, q(mi) ←− q(mi) ∪ {ti}.
Otherwise, if a task is to be transmitted to the connected edge, it is added to a transmission
queue t(mi), which can be represented as t(mi)←− t(mi) ∪ {ti}.

3.2.2. Local Execution

The local execution queue is a first-in-first-out queue. That is, tasks arriving in the
queue earlier will also be executed earlier. Each mobile device has p(mi) flops of processing
power. As a result, given task ti, the amount of time required to run the task locally is:

dl.e(ti) = d(ti)/p(mi) (1)

Additionally, the amount of time required for the task to wait in the local execution
queue is:

dl.eq(mk, ti) = α.dl.e(tc) + ∑
tj∈q(mk)

dl.e(tj) (2)

where α is the ratio of the currently executing task that is executed, tc is the currently
executing task, and mk is the corresponding mobile device. If no task is currently executing,
the value of term α.dl.e(tc) will be zero.

As a result, if a task ti is to be executed locally, it will require a dl.et(ti) amount of time:

dl.et(mk, ti) = dl.e(ti) + dl.eq(mk, ti) (3)

The energy consumption of executing a task ti at mobile device mj is

ee(mj, ti) = ce(mj).d(ti) (4)

where ce(mj) is the energy consumption in joules for performing one floating point opera-
tion in the mobile device mj.

3.2.3. Transmission

The transmission queue is also a first-in-first-out queue. Each task must wait until all
earlier tasks are transmitted before it can be transmitted. In our simulation, the data rate
for a connection is approximated using the Shannon–Hartley theorem (5).

r = B. log2(1 + P/N) (5)

where B is the bandwidth of the channel, P is the received power of a transmission in watts,
and N is the received noise power in watts. The received power is approximated using
Friis transmission equation

P = Pt.Gt.Gr.(ω/(4π.D))2 (6)

where Pt is the transmitted power of the transmitter in watts, Gt and Gr are the transmitter
and receiver gains in dBi, ω is the wavelength of the channel in meters, and D is the distance
between the transmitter and receiver in meters. The wavelength of the channel ω can be
calculated using the frequency of the channel f .

ω = c/ f (7)

where c is the speed of light. To calculate the received noise power, we approximate the
received noise with a Gaussian white noise Ng in dBi; then, we convert it into watts.

N = 10Ng/10 (8)

Appl. Sci. 2022, 12, 10664 6 of 22

Let r(mi, ej) be the data rate between mobile device mi and the edge device ej calculated
using Equation (5). The amount of time required to transmit a task tk is:

dl.s(mi, tk) = l(ti)/r(mi, ej) (9)

If there are tasks in the transmit queue, the arriving task must wait for them to be
transmitted first; the time for the task to wait in the transmit queue t(mi) is:

dl.sq(mk, ti) = α.dl.s(mk, tc) + ∑
tj∈t(mk)

dl.s(mk, tj) (10)

where α is the percentage of successful transmission for the task currently being transmitted,
tc is the task currently being transmitted, and mk is the corresponding mobile device. If no
task is being transmitted α.dl.s(mk, tc) will be set to zero. Consequently, it will take dl.st to
transmit the task ti:

dl.st(mk, ti) = dl.sq(mk, ti) + dl.s(mk, ti) (11)

The energy consumption of transmitting a task ti at mobile device mj is

es(mj, ti) = cs(mj).dl.s(mj, tk) (12)

where cs(mj) is the energy consumption in joules for one second of data transmission in
the mobile device mj.

3.3. Edge Nodes

After a task arrives at an edge node, a decision is immediately made to either execute
the task or further offload it to another edge node. Different approaches for this decision
will be discussed later in this report. If a task tk must be executed locally, it will be put in
the execution queue q(ei); if it must be further offloaded to another edge device ej, it will
be put in the transmission queue of the corresponding connection t(ei, ej), which can be
represented as t(ei, ej)←− t(ei, ej) ∪ {tk}.

3.3.1. Edge Execution

Similar to mobile devices, tasks in the execution queue are executed in a first-in-first-
out manner. Executing a task ti will take dr.e(ti) amount of time:

dr.e(ti) = d(ti)/p(ei) (13)

where p(ei) is the processing power of each core of an edge device. Edge nodes have
more processing cores and they can run multiple tasks concurrently. Whenever a core has
finished executing a task, it checks the execution queue and if there is a task waiting to be
executed, it will pick up the task for execution. The wait time dr.eq for each task ti is:

dr.eq(ek, ti) = α.dr.e(tc) + ∑
tj∈qc(ek ,tj)

dr.e(tj) (14)

where α and tc are the ration and the current task running at the corresponding core. If no
task is currently running at this core, α.dr.e(ek, tc) will be replaced with zero. qc is the set of
tasks that will be running on the corresponding core. This set is defined as:

qc(ek, tj) = {t|t ∈ q(ek), core(tj) = core(t)} (15)

where core(tj) indicates the processing core at which task tj will be run in edge node ek.
The total wait time for executing task tj at the edge node ek is

dr.et(ek, ti) = dr.e(ti) + dr.eq(ek, ti) (16)

Appl. Sci. 2022, 12, 10664 7 of 22

To calculate the total wait time for a task ti from the moment it arrives at the mobile
device mj until it is executed at the edge node ek, provided that the task is sent from a
mobile device to this edge device, we have

dr.o(mj, ek, ti) = dl.st(mj, ti) + dr.et(ek, ti) (17)

3.3.2. Transmission

When a task arrives at an edge node, it can be further offloaded to another edge node
if it is was not received from an edge node. This limitation is in place for the simplicity of
the network. Edge nodes, however, can maintain connections to multiple other edge nodes
at the same time. In our simulation, the data rate between each two connected edge nodes
r(ei, ej) is calculated using Equation (5). The time required for re-transmission of a task ti
from its current edge ec to another edge node ek is

dr.s(ec, ek, ti) = l(ti)/r(ec, ek) (18)

and the amount of time the task ti must wait in the transmission queue t(ec, ek) is

dr.sq(ec, ek, ti) = α.dr.s(ec, ek, tc) + ∑
tj∈t(ec ,ek)

dr.s(ec, ek, tj) (19)

where tc is the current task being transmitted. If no task is being transmitted, α.dr.s(ec, ek, tc)
should evaluate to zero. The total transmission time for task ti is

dr.st(ec, ek, ti) = dr.s(ec, ek, ti) + dr.sq(ec, ek, ti) (20)

Consequently, the total time to run a task ti after transmission to a second edge node
can be calculated as

dr.o2(mj, ec, ek, ti) = dl.st(mj, ti) + dr.st(ec, ek, ti) + dr.et(ek, ti) (21)

4. Problem Definition and Optimization Approaches

When a task arrives at a mobile device, it is the responsibility of the mobile device
to determine whether the task should be executed locally or be sent to the connected
edge device. Similarly, when a task arrives at an edge device, it is the responsibility of
the edge device to decide whether to further offload the task. Ultimately, we want to
make these decisions at mobile devices and edge devices so that the total time from the
moment a task arrives at a mobile device to the moment the task is executed is minimized.
Additionally, we want to minimize the energy consumption at mobile devices for processing
and transmitting tasks.

We can formulate these requirements into the following minimization problem:

Minimize : α. ∑
t∈T

(c1(t).dl.et(m(t), t)+

c2(t).dr.o(m(t), e(m(t)), t)+

c3(t).dr.o2(m(t), e(m(t)), ek(t), t))+

β. ∑
t∈T

(c1(t).ee(m(t), t) + (c2(t) + c3(t)).es(m(t), t))

(22)

subject to the following constraints

c1(t), c2(t), c3(t) ∈ {0, 1} ∀t ∈ T (23)

c1(t) + c2(t) + c3(t) = 1 ∀t ∈ T (24)

ek(t) ∈ c(e(m(t))) ∀t ∈ T (25)

Appl. Sci. 2022, 12, 10664 8 of 22

where c(ei) is a set of edge nodes to which edge node ei has a connection. α and β are
arbitrary coefficients used to modify the importance of time delay and energy consumption
with respect to each other.

In the proposed solutions, it is assumed that the workload of a task d(t) is not provided
to the algorithm that is making the offloading decisions. The reason for this restriction is
that in the real world, the workload of a task is not available before a task is executed in
most cases.

4.1. Greedy Approach

In the greedy approach, we try to minimize the cost of individual tasks with the aim
to minimize the overall cost of Equation (22). Firstly, as shown in Algorithm 1, we define
a function to approximate the workload of a task using the average observed workload
of M previously completed tasks. As is depicted in Algorithm 2, this procedure repeats
until all tasks have arrived. This algorithm is applied to both mobile and edge devices,
regardless of the type of device. In the algorithm, local will refer to the current device
at which task has arrived and remote will refer to an edge device to which a task may
be offloaded. At each repetition, if a task is arrived from the network and from an edge
device, meaning the current device is also an edge, the task is simply inserted into the
local execution queue. If a task is not arrived from an edge device, state information is
retrieved from the current device, including the size of the local execution queue (ls), the
total size of the tasks in the transmission queue(ss), the size of the current task (l(t)), and a
cached value representing the total number of tasks in the remote device. To acquire this
cached value, every edge device periodically sends the total number of tasks in its execution
queue to every other device, including both edge and mobile devices. This mechanism
is elaborated in Algorithm 3, which is also used in the deep Q-learning approach and is
explained in more details in the corresponding section.

Algorithm 1 Greedy algorithm—workload approximation

1: Wl ← an empty list . For storing task workloads
2: repeat
3: wait until a task result arrives
4: r ← newly arrived task result
5: w← the workload of task r
6: insert w into Wl
7: while the count of Wl is higher than M do
8: remove the oldest item in Wl
9: end while

10: wt ← average(Wl)
11: until all task results have arrived

Next, the delay and power consumption of local execution and transmission of the
task is approximated. These approximations are based on the number of tasks and their
size. Arguably, the difficulty in finding an accurate approximation to these values is
one of the drawbacks of the greedy approach. Having calculated the delay and power
consumption, the value α.dl + β.pl represents the cost of local execution and the value
α.dr + β.pt represents the cost of offloading, where dl , dr, pl , and pt are the delay for
local and remote execution and power consumption for local execution and transmission,
respectively. The values α and β are set using similar variables in Equation (22). Finally, if
the cost of local execution is less than offloading the task, the task is inserted into the local
execution queue. Otherwise, the task is inserted into the transmission queue.

Appl. Sci. 2022, 12, 10664 9 of 22

Algorithm 2 Greedy algorithm

1: repeat
2: wait until a task arrives
3: t← newly arrived task
4: if task arrived from an edge device then
5: insert task t into local execution queue
6: else
7: wt ← the average task workload obtained from the workload approximation

algorithm
8: ls ← retrieve local execution queue task count
9: ss ← retrieve transmission queue total task size

10: sc ← retrieve transmission queue task count
11: El ← local power consumption per floating point operation
12: Et ← local power consumption per second of data transmission
13: fl , fr, r ← local flops, remote flops, connection data rate
14: pl ← El .wt . approximating local execution power consumption
15: pt ← Et.l(t)/r . approximating transmission power consumption
16: dl = (ls + 1).wt/ fl
17: dr = (l(t) + ss)/r + (rc + sc + 1).wt/ fr
18: if α.dl + β.pl ≥ α.dr + β.pt then
19: insert task t into local execution queue
20: else
21: insert task t into transmission queue
22: end if
23: end if
24: until all tasks have arrived

Algorithm 3 Edge state update algorithm

1: while true do
2: q← number of tasks in local queue
3: e← the unique identifier of this edge
4: for all node in connected nodes do
5: transmit (e, q) to node
6: end for
7: wait for c seconds
8: end while

4.2. Deep Q-Learning Approach

To use Q-learning [21] for our problem, we should model our problem into a Markov
decision process (MDP) [22]. An MDP has a finite or infinite set of states and actions where
we take an action to go from one state to another. The new state after each action depends
on the previous state and the action taken. However, new states are not deterministic and
each action can result in many different states, though with different probabilities.

In a Q-learning algorithm, given an MDP, whenever we take an action to move from
one state to another, we receive a reward based on how good that action was. The purpose
of Q-learning is to choose an action from a set of possible actions at each state to maximize
the sum of all rewards earned during the execution of the algorithm. Q-learning in its
vanilla form uses a table to approximate the total reward that can be earned for every
possible combination of states and actions if we use the Q-learning algorithm with this
table thereafter. This approach, however, does not work if the state space is too large or
continuous, as the length of the table will become extremely large or infinite. Modeling our
problem with an MDP will result in an infinite number of states; hence the vanilla form
of Q-learning cannot be employed. To overcome this issue, we can use a deep Q-learning
model instead of keeping a table of records. In the following subsections, we explain

Appl. Sci. 2022, 12, 10664 10 of 22

the details of Q-learning, modeling our problem into an MDP, and the deep Q-learning
approach.

4.2.1. Q-Learning Algorithm

In the Q-learning algorithm [21], we keep a table to store a value for any state and
action. A typical table can have columns corresponding to actions and rows corresponding
to possible states, and each value approximates the total reward that can be earned for
the state and action it is specifying. To train this table, whenever we take an action at a
state, we update the Q-value in our table corresponding to that state and action. We define
(s1, s2, ...) to denote the sequence of states we will pass through during the execution of
this algorithm. We also define (a1, a2, ...) as the corresponding actions taken at each state.
Hence, at each step, we move from state st to state st+1 by taking action at. Additionally,
the Q-table is updated for state st and action at using

Q(st, at)←− Q(st, at) + α.δ(Q, st, at) (26)

where α is the learning rate and δ(Q, st, at) is the temporal difference [23] defined as

δ(Q, st, at) = r + γ. max
a∈A

Q(st+1, a)−Q(st, at) (27)

in which r is the reward earned from moving from state st to st+1 by taking action at, γ is
the discount factor, and A is the set of all possible actions. Both r and γ are values between
zero and one. The learning rate affects how quickly the table will converge. If the learning
rate is too small, the table might take a long time to converge, and if the learning rate is
too large, the table might never converge, as it might jump over the correct values. The
discount factor indicates how much we value earlier rewards. That is, if the discount factor
is closer to zero, we value the immediate reward more, and if the discount factor is closer
to one, the long-term reward is valued more over immediate reward.

4.2.2. Modeling the Markov Decision Process

As a decision on a newly arriving task must be taken both in a mobile device and an
edge node, we design two MDPs corresponding to each. To model an MDP, we need to
define the states and actions. Regarding the actions, in both cases, we have two possible
actions: executing a task locally or transmitting it to an edge node for execution. With
regard to states, for a mobile device, the states are designated as

(as, dr, lq, ts, tq, rq) (28)

where as is the arriving task size, dr is the average data rate of the connection to the
connected edge device, lq is the number of tasks in the local execution queue, and ts and
tq are the total size and total number of the tasks in the transmission queue, respectively.
rq is the total number of tasks in the connected edge node. For an edge device, states are
designed as

(at, as, dr, lq, ts, tq, rq) (29)

where at is the duration of time that has passed from the moment the task originally arrived
at a mobile device until the current moment, when we are making the offloading decision.
Other values are defined similarly to the values in the state of a mobile device. If an edge is
connected to multiple edge devices, the time for the execution of the task at each edge is
approximated and only the edge with the smallest time is used to complete the state. The
approximation is calculated using

dr.st(ec, ek, ti) + dr.et(ek, ti) (30)

where ec is the edge node making the decision, ek is a connected edge for which we are
approximating the task execution time, and ti is the current task. The main reason for using

Appl. Sci. 2022, 12, 10664 11 of 22

this approximation and not calculating the Q-value for every connected edge is to avoid
favoring the offloading of a task compared to local execution. To understand the reason
for this behaviors, let us assume that the Q-value has the probability of α to incorrectly
give a higher value for the action of transmission instead of local execution. If an edge is
connected to n other edge devices and we calculate the Q-value of all n edge devices, the
probability of receiving at least one incorrectly higher value to transmission will be

P(a > 0) = 1− (1− α)n (31)

where a is the number of connected edges for which the Q-value is incorrectly higher for
transmission. This value is clearly higher than α, which proves our notion that calculating
multiple Q-values will favor transmission of a task.

4.2.3. Deep Q-Learning Algorithm

The domain of states in our model for mobile and edge devices are N6 and N7, respec-
tively, and some of the values such as lw can become relatively large. As a result, using a
Q-table to approximate the total reward for each state st and action at is inefficient, taking a
huge amount of time for the table to converge. This, in turn, renders this method unusable,
as our model should quickly adapt to changes in a changing environment. To overcome
this issue, we can use an artificial neural network (ANN) to replace our Q-table. That is,
we feed a state st and an action at as the input of our ANN and receive one real value as
the output, which is our Q-value Qθ(st, at). The parameters in our ANN collectively are
denoted by θ. To train our ANN, we define the loss function as [6]

loss(θ, θ′) = E(st ,at ,st+1,r)∼U(Tb)
[(r + γ. max

a∈A
Qθ′(st+1, a)−Qθ(st, at))

2] (32)

where θ is the current value of our ANN parameters and θ′ is a snapshot of our ANN
parameters updated after every n number of trainings.

ANNs are known to be difficult to converge when used as the Q-function; hence,
the deep Q-learning model employs two techniques to alleviate this issue [6]. The first
technique is to break the correlation between consecutive transitions by randomly sampling
from a pool of transitions. This method is known as experience replay. The second
technique is to use a snapshot of network parameters θ′ when calculating the loss function,
which should reduce the correlation with the current state of network parameters θ.

With regard to the MDP, to calculate the state of a mobile or edge device, we need
information about the workload and task counts at the edges to which the node has
connections. To satisfy this requirement, each edge device periodically sends its workload
and task counts to all the devices to which it has a connection. Algorithm 3 illustrates
this process.

The algorithm repeats for the lifetime of the network. At each iteration, first, it
retrieves e and q, which are the unique identifier and task count in the execution queue
of the corresponding edge device. Then, it sends this pair (e, q) to every node it has a
connection to. Lastly, it waits for c seconds before repeating the process. Here, c is an
arbitrary constant; if the network has a high data rate, c can be very small, and if the
data rate is low, c can have a larger value. When c has a smaller value, mobile and edge
devices will have a more recent view of the state of the network and will be able to make
better decisions.

The procedure for when a task arrives at a mobile device is depicted in Algorithm 4.
The procedure is repeated until all tasks have arrived. When a task arrives, it is stored in
variable t.

Appl. Sci. 2022, 12, 10664 12 of 22

Algorithm 4 Task arrival algorithm for mobile devices

1: repeat
2: wait until a task arrives
3: t← newly arrived task
4: s← retrieve current state updated with task t
5: x ∼ U(0, 1)
6: if x < ε then
7: a← randomly choose from {0, 1}
8: else
9: a← argmaxa(Qθ(s, a)) where a ∈ {0, 1}

10: end if
11: if a = 0 then
12: insert task t into local execution queue
13: else
14: insert task t into transmission queue
15: end if
16: s′ ← retrieve current state
17: store (t, s, a, s′) into partial transition buffer
18: until all tasks have arrived

Next, an updated state of the mobile device, illustrated in Equation (28), is recorded
using the arrived task into variable s. Information received from the connected edge device
using Algorithm 3 is used to calculate the value for rq. Additionally, the values of lq and tq
are increased by one. This means we assume that the task is inserted into both local and
transmission queues and we want to remove the task from one of the queues by taking
an action. This way of looking at this problem is necessary for the Q-learning algorithm
to work properly, as we expect maxa∈A Q(st+1, a) to have a smaller value compared to
Q(st, at). In other words, when a task arrives, the workload of the task should be reflected
in the state of the mobile device, which is satisfied by adding it to both the local and
transmission queues.

A random value x is then drawn using uniform distribution U(0, 1). If x is smaller
than ε, we randomly choose an action. Hence, ε is used to control the rate of explo-
ration/exploitation of our model. If x is not smaller than ε, then the Q-value for both local
execution (a = 0) and transmission (a = 1) are calculated using the current parameters
θ for our ANN, and the value of a for which the Q-value is higher is returned. Based on
the chosen value for a, task t is inserted into the local or transmission queues. After the
insertion, the state of the mobile device is recorded into s′, this time without any modifi-
cation. Finally, the transition (t, s, a, s′) is recorded into the partial transition buffer. This
transition from s to s′ is considered partial because we still do not know the reward that
will be obtained for the action a. This reward will arrive when the task is executed and the
task result arrives at the mobile device.

As depicted by Algorithm 5, the procedure for when a task is received by an edge
device is almost identical to that of a mobile device. The only difference is that when a task
is received, first, we examine to determine if the task was received from an edge device,
that is, if the task was further offloaded by an edge device. If this is the case, we simply
insert the task into the execution queue and no record for this transition is put into the
partial transition buffer. Otherwise, an identical procedure to that of the mobile device
is employed.

Appl. Sci. 2022, 12, 10664 13 of 22

Algorithm 5 Task arrival algorithm for edge devices

1: repeat
2: wait until a task is received
3: t← newly arrived task
4: if t is received from an edge device then
5: insert task t into local execution queue
6: else
7: s← retrieve current state modified with task t
8: p← a uniform random value in [0, 1]
9: if p < ε then

10: a← randomly choose from {0, 1}
11: else
12: a← argmaxa(Qθ(s, a)) where a ∈ {0, 1}
13: end if
14: if a = 0 then
15: insert task t into local execution queue
16: else
17: insert task t into transmission queue
18: end if
19: s′ ← retrieve current state
20: store (t, s, a, s′) into partial transition buffer
21: end if
22: until all tasks have arrived

Algorithm 6 illustrates the procedure when a task is executed either on an edge device
or a mobile device. If a task is executed on an edge device, this procedure is executed first
on the edge device and again when the task is received by the mobile device. Firstly, the
received result is stored in variable a. If no item exists in this device’s partial transition
buffer for a, the rest of the procedure is ignored and the algorithm waits for the next task
result to arrive. On the other hand, if an item corresponding to a exists in this device’s
partial transition buffer, the item is retrieved, stored in (t, s, a, s′), and removed from the
partial transition buffer. Next, a reward value r is calculated for task t using the received
result a, and a completed transition (t, s, a, s′, r) is generated. If this device is a mobile
device, then the completed transition is sent to the connected edge device for training.
On the other hand, if this device is an edge device, first, the completed transition is added
to the edge transition arrival queue so that it will be used for training the Q-learning
algorithm. Secondly, the completed transition is also sent to nearby edge devices to help
them train their own Q-learning models.

Algorithm 6 Transition completion algorithm for mobile and edge devices

1: repeat
2: wait until a task result arrives
3: a← receive task result
4: if partial transition for a exists then
5: (t, s, a, s′)← retrieve partial transition for a
6: r ← calculate reward for a
7: if this device is a mobile device then
8: transmit completed transition (t, s, a, s′, r) to connected edge device.
9: else (this device is an edge device)

10: send (t, s, a, s′, r) to edge transition arrival queue
11: transmit completed transition (t, s, a, s′, r) to connected edge devices.
12: end if
13: end if
14: until all task results have arrived

Appl. Sci. 2022, 12, 10664 14 of 22

As a result, each edge device trains two Q-learning models: one for the connected
mobile devices and one for making decisions itself. With regard to connected mobile
devices, it receives transitions from all connected mobile devices and uses those transitions
to train a Q-learning model. Each edge device also transmits all the transitions that it has
received from mobile devices to connected edge devices, so that those edge devices can
also use those experiences. Hence, each edge device uses the experiences of the connected
mobile devices and the connected edge devices. This process is elaborated in Algorithm 7.
With regard to the Q-learning model for edge-level decision-making, experiences from
both the edge device and all the connected edge devices are used to train the Q-learning
model. To achieve this, whenever a transition is arrived at the transition arrival queue, it is
added to the transition buffer of the edge device for the purpose of training the model. The
procedure is explained in Algorithm 8.

Algorithm 7 Q-training algorithm in edge devices for connected mobile devices

1: i← 0
2: repeat
3: wait until a completed transition arrives
4: (t, s, a, s′, r)← receive transition
5: if transition was arrived from a mobile device then
6: transmit (t, s, a, s′, r) to connected edge devices
7: end if
8: store (t, s, a, s′, r) in transition buffer Tmb
9: if size(Tmb) > N then

10: remove oldest item from transition buffer Tmb
11: end if
12: i← i + 1
13: if i ≥ n then
14: S← sample m items from transition buffer Tmb
15: train(Qm

θ , S)
16: i← 0
17: end if
18: until all task results have arrived

Algorithm 8 Q-training algorithm in edge devices for edge level decision making

1: i← 0
2: repeat
3: wait until a completed transition arrives in edge transition queue
4: (t, s, a, s′, r)← receive transition
5: store (t, s, a, s′, r) in transition buffer Teb
6: if size(Teb) > N then
7: remove oldest item from transition buffer Teb
8: end if
9: i← i + 1

10: if i ≥ n then
11: S← sample m items from transition buffer Teb
12: train(Qe

θ , S)
13: i← 0
14: end if
15: until all task results have arrived

For both models, after every n new insertions into the transition buffer Tb, a sample S
of size m is drawn uniformly at random from the transition buffer Tb. This sample is then
used to train the ANN using the loss function in Equation (32). This is commonly known
as experience replay [6], as we are training our ANN using past experiences instead of
training our ANN after each task result is received.

Appl. Sci. 2022, 12, 10664 15 of 22

Lastly, as the procedure in Algorithm 9 shows, after every c seconds, the edge de-
vice sends the current parameters of the ANN model for the mobile devices to all its
connected mobile devices. When the parameters arrive, mobile devices will use them for
task-offloading decision-making.

Algorithm 9 Mobile ANN update algorithm

1: while true do
2: θ ← network parameters from Qm

θ
3: for all node in connected mobile nodes do
4: transmit θ to node
5: end for
6: wait for c seconds
7: end while

4.3. Routing Task Results after Disconnections

Before tasks are transmitted for offloading, a mobile node identifier value is packaged
with the task for transmission. When the task arrives at an edge device, if the task is to
be further offloaded, the node identifier of the edge device is also attached to the package
with the task for transmission. These identifiers can be used to trace back the origin of a
task in normal circumstances without disconnections.

In an event when a mobile device disconnects from an edge device and connects to
a new edge device, the mobile device puts its node identifier inside a list structure and
broadcasts a package containing the list into the network. For the sake of simplicity, we
call the package sent with this list structure containing the node identifiers a “discovery
package”. Each time an edge device receives a discovery package, it checks the node
identifiers inside the list. If the node identifier of the edge device is already inside the
list, the package is dropped. On the other hand, if the list does not contain the node
identifier of the edge device, the edge device adds its node identifier to the end of the list
and rebroadcasts the package. In the latter case, the edge device also stores the discovery
package in memory for later use.

When task execution is completed in an edge device, firstly the sequence of node
identifiers augmented with the task are used to send back the task result to the original
sender of the task. If the sequence requires transmission of the task results to a node to
which the current node does not have a connection, then the current node searches its stored
discovery packages to find another route to the mobile device. If no such route is found, the
task result is stored in a waiting list and reattempted after each discovery package arrival.
This process is repeated until the task result is delivered to the mobile device.

5. Results

A simulation was implemented and run for six task offloading approaches: greedy,
deep Q-learning, reinforce [24], random, all tasks executed locally, and all tasks offloaded.
For the greedy, reinforce, and deep Q-learning algorithms, both mobile and edge devices
use the same method. However, for the random, local, and remote algorithms, edge devices
always run all tasks locally without further offloading a task to another edge device. In the
following subsections, the model for the simulation and the results are explained.

5.1. Simulation Model

This simulation consisted of four edge devices and a varying number of mobile devices.
The environment for the simulation was a 90 m by 240 m rectangle where edge devices
are located at (30, 30), (30, 90), (75, 150), and (25, 210) coordinates. All mobile devices
were positioned randomly with a uniform random distribution in a rectangle within the
simulation environment. The simulation was repeated for two selection of rectangles
for placing the mobile devices. First, mobile devices were concentrated in a rectangle of
size 60 by 240 m in the bottom section of the simulation environment, as is depicted in

Appl. Sci. 2022, 12, 10664 16 of 22

Figure 1(left). Second, mobile nodes were concentrated in a rectangle of size 60 by 60
positioned at the vertical bottom and horizontal center of the simulation environment, as
is shown in Figure 1(right). For the purpose of simplicity, the first model Figure 1(left) is
referred to as “uniform” and the second model (right) is referred to as “centered”. The
reason for the asymmetry in the positioning of the edge and mobile devices is to better
represent real world scenarios and to examine the efficiency of the provided methods in
those settings.

0 50 100 150 200
0

20

40

60

80

0 50 100 150 200
0

20

40

60

80

Figure 1. Two representations of the simulation environment where the distribution of mobile nodes
is more uniform (left) and more centered (right).

After the simulation started, mobile nodes moved around the designated rectangle
for mobile nodes (centered or uniform rectangles) inside the simulation environment
using the random waypoint model. In the random waypoint model, each mobile node
selects a random destination to move to and a random speed, and moves towards that
destination in a straight line. After the node reaches its destination, it chooses another
random location and repeats the process. Edge devices remained in place for the entire
duration of the simulation.

The data rate between each pair of devices was modeled using Equation (5), with
a random value of white noise used to calculate this value. The random value of white
noise was calculated using a normal distribution. Additionally, the data rate for each task
transmission was further randomized to a value in [0.5, 1.5] of the calculated connection
data rate using a uniform distribution. The general configuration values for the simulation
are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

simulation duration 300 s
default task arrival rate 0.5
node state transmission interval 1 s
ANN parameters transmission interval 1 s
min task size 0.1 MBit
max task size 1.0 MBit
min floating point operation per tasks 0.25 trillion
max floating point operation per tasks 1.5 trillion
mobile power consumption per tflops 0.5 joules
mobile power consumption for transmission 0.04 watts
mobile device antenna gain 3 dBi
edge device antenna gain 10 dBi
channel frequency 2.4 GHz
channel bandwidth 20 MHz
mean Gaussian white noise −80 dBi
standard deviation Gaussian white noise −10 dBi
mobile CPU core speed 1 tflops
mobile CPU core count 1
edge CPU core speed 5 tflops
edge CPU core count 4
learning rate 0.001
discount factor 0.8
training batch size 200
training interval 5
training buffer size 10,000
delay cost coefficient 1
power cost coefficient 3
simulation environment rectangle size 80 × 240 m2

min mobile node velocity 1 m/s
max mobile node velocity 5 m/s

Appl. Sci. 2022, 12, 10664 17 of 22

In this simulation, tasks arrive using a Poisson process for the duration of the simula-
tion. Before the simulation starts, a number of template tasks are created with task size and
workload using a uniform distribution with the values in Table 1. During the execution of
the simulation, each time a task needs to be created, first, it is sampled using one of the
template tasks and then a small amount of noise is introduced in the task size and workload.
This approach allows us to simulate the task conditions of many real world applications
where similarly sized tasks have similar workloads. After a task arrives at a mobile device,
it makes a decision to run the task locally or offload it to an edge device. A similar decision
is made when an edge device receives a task from a mobile device. The greedy and deep
Q-learning models are used to make such decisions in this simulation with varying values
for task arrival rate and the number of mobile devices in our simulation. In the results
subsection, the results for these different conditions are presented and evaluated.

5.2. Results

In the first set of experiments, we evaluated the performance of our proposed algo-
rithm, DQL with edge training (DQL-edge), against five other methods: vanilla DQL where
training is performed in local devices without experience sharing (DQL-local), reinforce
using our proposed edge training architecture, greedy, local execution of all tasks, and
randomly offloading or executing each task. It is worth mentioning that DQL-local imposes
the burden of training the neural network on mobile devices; thus, comparing it with
DQL-edge raises the question of how to account for this overhead. As the workload of
training a neural network depends on hardware and software implementation, we neglect
the training overhead in DQL-local and, as with all other methods, will only consider the
workload for task execution. Even though this will give DQL-local an unfair advantage,
we show that our proposed method can outperform vanilla DQL even if we neglect the
training overhead. To compare the methods, tasks are binned in buckets of five seconds
from the start to the end of the simulation and the average cost, delay, and power are
calculated for each bin. For example, all the tasks arriving from t = 0 and t = 5 are placed
in the same bucket and used to calculate the averages. We also carried out the experiment
for 100 and 50 mobile nodes in the environment and with the mobile nodes using both
the more uniform and centered locations. The results of the experiment are illustrated in
Figure 2.

If the values for cost and delay increase overtime, it means that tasks are accumulating
more and more in the execution queues of mobile or edge devices; hence, the delay and cost
are getting worse over time. If this is the case, it means that the given method is unstable,
as the delay will eventually increase and pass any acceptable range. As can be seen from
the graphs, local execution of all tasks is always unstable, while the random and greedy
methods manage to stay stable in some configurations. The DQL-edge and DQL-local
methods on the other hand, managed to stay stable in all tested configurations, even though
DQL-edge performed better in most configurations. This behavior can be attributed to
the experience-sharing feature of DQL-edge, as the neural network will have more data to
work with, which can lead to faster training and more resilience of the trained network.
From the four tested configurations, 50 mobile nodes in the more uniform locations is the
easiest configuration for a method to stay stable, as there are fewer mobile nodes to offload
tasks to edge devices and the mobile nodes are distributed around all edge devices instead
of a select few. In this configuration, all methods except for local execution remained stable
and performed similarly. However, when the number of mobile nodes is 100 or when the
mobile nodes are centered, the random method also fails to remain stable, while the greedy,
DQL-local, and DQL-edge methods are still stable, even though the DQL-edge performs
considerably better than the other methods. Lastly, when the mobile nodes are centered
and we have 100 mobile nodes, only the DQL-local and DQL-edge methods manage to
give acceptable results. The greedy method, while staying stable, only begins to plateau
with a very high cost of around 50 units.

Appl. Sci. 2022, 12, 10664 18 of 22

0 50 100 150 200 250 300
0

10

20

30

40

av
er
ag

e
co
st
 p
er
 ta

sk

mobile nodes = 50, uniform

0 50 100 150 200 250 300

10

20

30

40

mobile nodes = 100, uniform

0 50 100 150 200 250 300

10

20

30

40

mobile nodes = 50, centered

0 50 100 150 200 250 300
0

50

100

150

mobile nodes = 100, centered

0 50 100 150 200 250 300
0

10

20

30

av
er
ag

e
de

la
y
pe

r t
as
k
(s
ec
on

ds
)

0 50 100 150 200 250 300

10

20

30

40

0 50 100 150 200 250 300
0

10

20

30

40

0 50 100 150 200 250 300
0

50

100

150

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

av
er
ag

e
po

we
r p

er
 ta

sk
 (j
ou

le
s)

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300
task arrival time(seconds)

0.2

0.4

0.6

0.8

1.0

DQL-edge DQL-local Reinforce-edge greedy random local

Figure 2. Comparing the cost, delay, and power consumption of the DQL-edge, DQL-local, reinforce-
edge, greedy, random, and local task-offloading models for the duration of the simulation. The
simulation was run for both centered and uniform positioning of mobile devices and when the
number of mobile devices was 50 and 100.

The results for DQL-edge, DQL-local, reinforce-edge, and greedy are depicted in more
detail in Figure 3. In this experiment, the simulation was run for mobile node numbers of
25, 50, 75, and 100, as well as for both uniform and centered configurations. As can be seen
from the figure, DQL-local starts with a higher cost compared to the other two methods
and closes the gap as time passes. This can be attributed to the slower learning speed of
DQL-local, as it only has the experience of a single mobile device for training the network.
We see some fluctuations with the reinforce method, which may be due to the fact that
the reinforce method works best when we have long trajectories of experiences, which
do not exist in our task offloading model. Overall, the DQL-edge method consistently
yields better results compared to the DQL-local, reinforce, and greedy methods in all other
tested configurations.

Next, we compare the mobile and edge processor utilization of our proposed method,
DQL-edge, with DQL-local, Reinforce-edge, greedy, and locally executing all tasks. As
can be seen from Figure 4, to minimize the power consumption of mobile devices, the
algorithms offload most tasks to edge devices when there are abundant processing resources
in edge devices, but when the resources on edge devices are constrained, they decide to
execute more tasks locally. Even though all methods struggle to fully utilize edge processors
in the centered with 100 mobile nodes configuration, DQL-edge manages to achieve an
almost 90 percent edge processor utilization, which is higher than all other methods in
that configuration.

Lastly, the cost values of an exhaustive experiment are presented in Table 2. These
compare our proposed method, DQL-edge, with all other six methods, which are DQL-local,
reinforce-edge, greedy, randomly choosing whether to offload a task (random), and all tasks
executed locally (local) or remotely (remote). It also examines seven configurations of task
arrival rates, λ, and mobile node counts in both centered and uniform settings. µ and σ are
the average cost and standard deviation of tasks for the entire duration of the simulation,
and the graph underneath is the average cost as a function of time in the simulation. The
graph, therefore, depicts the trend for cost as time passes. If the trend is upwards and the

Appl. Sci. 2022, 12, 10664 19 of 22

standard deviation is high, it means that the model for the given configuration is unstable
and unable to achieve a bounded cost if the simulation were to continue. Otherwise, the
method is considered stable for the given configuration. As can be seen from the table, DQL-
edge yields better results in almost all configurations when compared to other methods.
When the mobile node count is low or the task arrival rate is low, this difference is minor,
but when we increase either one, DQL-edge performs significantly better than any other
method, especially in the centered configuration.

0 50 100 150 200 250 300

2

4

6

8

10

12

av
er
ag

e
co
st
 p
er
 ta

sk

mobile nodes = 25

0 50 100 150 200 250 300

2

3

4

5

6

7

mobile nodes = 50

0 50 100 150 200 250 300

5

10

15

20

25

30
mobile nodes = 75

0 50 100 150 200 250 300
0

20

40

60

mobile nodes = 100

0 50 100 150 200 250 300

2

4

6

8

10

av
er
ag

e
de

la
y
pe

r t
as
k
(s
ec
on

ds
)

0 50 100 150 200 250 300

2

3

4

5

6

0 50 100 150 200 250 300

5

10

15

20

25

30

0 50 100 150 200 250 300
0

20

40

60

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

av
er
ag

e
po

we
r p

er
 ta

sk
 (j
ou

le
s)

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
task arrival time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

DQL-edge (centered) DQL-edge DQL-local (centered) DQL-local Reinforce-edge (centered) Reinforce-edge greedy (centered) greedy

Figure 3. Comparing the cost, delay, and power consumption of the DQL-edge, DQL-local, reinforce-
edge, and greedy task offloading models for the duration of the simulation. The simulation was run
for both centered and uniform positioning of mobile devices and when the number of mobile devices
was 25, 50, 75, and 100.

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

m
ob
ile
 p
ro
ce
ss
or
 u
til
iza

tio
n

mobile nodes = 25

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

mobile nodes = 50

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

mobile nodes = 75

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0
mobile nodes = 100

0 50 100 150 200 250 300 350
task execution start time(second)

0.0

0.1

0.2

0.3

0.4

ed
ge
 p
ro
ce
ss
or
 u
til
iza

tio
n

0 50 100 150 200 250 300 350
task execution start time(second)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350
task execution start time(second)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350
task execution start time(second)

0.0

0.2

0.4

0.6

0.8

1.0

DQL-edge (centered) DQL-edge DQL-local (centered) DQL-local Reinforce-edge (centered) Reinforce-edge greedy (centered) greedy local

Figure 4. Comparing the mobile and edge processor utilization of the DQL-edge, DQL-local, reinforce-
edge, greedy, and local task offloading models for the duration of the simulation with an extra 50 s
after the task arrival process is stopped. The simulation was run for both centered and uniform
positioning of mobile devices and when the number of mobile devices was 25, 50, 75, and 100.

Appl. Sci. 2022, 12, 10664 20 of 22

Table 2. Mean and standard deviation values of cost and the cost trend over time for different
task-offloading models, mobile device location model and counts, and task arrival. rates(λ).

λ = 0.50, count = 100 λ = 0.50, count = 75 λ = 0.50, count = 50 λ = 0.50, count = 25 λ = 0.25, count = 50 λ = 0.75, count = 50 λ = 1.00, count = 50

DQL-edge (uniform) µ = 6.26, σ = 3.26 µ = 2.99, σ = 1.93 µ = 2.54, σ = 1.84 µ = 2.39, σ = 1.80 µ = 1.99, σ = 1.56 µ = 3.52, σ = 2.31 µ = 7.27, σ = 2.87

DQL-edge (centered) µ = 6.05, σ = 2.30 µ = 4.15, σ = 2.53 µ = 2.87, σ = 1.85 µ = 2.69, σ = 1.82 µ = 2.19, σ = 1.51 µ = 4.75, σ = 2.52 µ = 9.61, σ = 5.47

DQL-local (uniform) µ = 6.04, σ = 4.29 µ = 4.47, σ = 4.38 µ = 3.78, σ = 4.08 µ = 4.36, σ = 6.27 µ = 3.15, σ = 2.57 µ = 6.04, σ = 8.85 µ = 15.87, σ = 17.41

DQL-local (centered) µ = 10.40, σ = 7.94 µ = 5.24, σ = 4.80 µ = 4.72, σ = 5.61 µ = 5.00, σ = 7.17 µ = 3.25, σ = 2.46 µ = 9.48, σ = 8.65 µ = 22.67, σ = 17.89

Reinforce-edge (uniform) µ = 5.21, σ = 3.46 µ = 4.96, σ = 3.63 µ = 4.96, σ = 3.76 µ = 4.58, σ = 3.29 µ = 3.99, σ = 2.57 µ = 8.00, σ = 7.70 µ = 32.80, σ = 38.25

Reinforce-edge (centered) µ = 14.10, σ = 13.17 µ = 4.95, σ = 3.05 µ = 4.63, σ = 3.19 µ = 4.78, σ = 3.54 µ = 3.96, σ = 2.47 µ = 6.28, σ = 4.90 µ = 32.64, σ = 22.59

Greedy (uniform) µ = 6.86, σ = 4.40 µ = 4.41, σ = 2.42 µ = 3.07, σ = 1.91 µ = 2.22, σ = 1.54 µ = 1.77, σ = 1.17 µ = 4.64, σ = 2.56 µ = 11.08, σ = 8.07

Greedy (centered) µ = 50.18, σ = 50.98 µ = 16.98, σ = 14.25 µ = 4.97, σ = 2.19 µ = 2.59, σ = 1.62 µ = 2.01, σ = 1.18 µ = 16.52, σ = 12.50 µ = 39.77, σ = 39.15

Random (uniform) µ = 11.27, σ = 14.64 µ = 4.43, σ = 2.97 µ = 4.20, σ = 3.06 µ = 4.33, σ = 3.24 µ = 3.78, σ = 2.57 µ = 6.18, σ = 5.88 µ = 20.90, σ = 19.25

Random (centered) µ = 81.79, σ = 113.06 µ = 48.79, σ = 63.71 µ = 14.59, σ = 13.69 µ = 4.31, σ = 3.10 µ = 3.82, σ = 2.45 µ = 53.20, σ = 66.03 µ = 99.83, σ = 116.38

Remote (uniform) µ = 115.45, σ = 132.65 µ = 60.48, σ = 78.97 µ = 18.44, σ = 21.47 µ = 2.45, σ = 2.05 µ = 1.80, σ = 1.23 µ = 72.36, σ = 90.23 µ = 123.69, σ = 140.89

Remote (centered) µ = 453.74, σ = 344.45 µ = 323.52, σ = 237.81 µ = 163.05, σ = 124.42 µ = 15.27, σ = 12.00 µ = 22.28, σ = 13.94 µ = 336.57, σ = 240.81 µ = 477.35, σ = 347.67

Local µ = 25.95, σ = 17.30 µ = 25.97, σ = 16.36 µ = 26.72, σ = 17.94 µ = 25.80, σ = 17.75 µ = 6.77, σ = 2.41 µ = 101.34, σ = 57.78 µ = 184.75, σ = 105.73

6. Conclusions and Future Work

Even though a deep Q-learning model has been previously used in the literature for
making the task-offloading decision, the computational burden of training an artificial
neural network has often been neglected. To solve this issue, an artificial neural network
was trained in edge devices and then was used for decision-making in all connected mobile
devices. Not only does this alleviate the computational burden on mobile devices, but it
also helps the neural network to converge significantly faster, as the experience of several
mobile devices are used for training. In addition to the neural network trained in each
edge device to be sent to connected mobile devices, a separate deep Q-learning model was
trained in each edge device to enable the edge device to further offload some tasks to other
edge devices. This mechanism helped edge devices to balance the load between each other
and keep the overall delay small, as was demonstrated with the experiments containing
centered mobile devices.

Finally, a routing solution was proposed to address the issue of moving mobile nodes,
as a mobile nodes can move too far from their connected edge device and consequently
become disconnected. This is a problem, as mobile devices can have offloaded tasks to the
disconnected edge device while still waiting for the task results. The proposed routing
solution addresses this problem by using broadcast packets to create a route from the
disconnected edge device to the mobile device.

However, one of the limiting factors in choosing different deep reinforcement learning
models for the issue of task offloading is that the experiences used to train a model are
generated for each arrived task and, hence, they are not necessarily sequential events. That
is, the environment can change drastically between the arrival of two tasks, this change is
not necessarily a function of the actions taken by the model. As a result, each experience
can be looked at as an experience independent to other experiences used for training,
instead as a series of sequential events. Consequently, using reinforcement learning models

Appl. Sci. 2022, 12, 10664 21 of 22

that take advantage of trajectories of states and actions is not possible without significant
modifications to the modeling of the environment. We consider this issue as a topic for
future works.

Author Contributions: Conceptualization, S.C. and A.Z.; methodology, A.Z.; software, A.Z.; valida-
tion, S.C. and A.Z.; formal analysis, A.Z.; investigation, S.C. and A.Z.; resources, S.C. and A.Z.; data
curation, A.Z.; writing—original draft preparation, A.Z.; writing—review and editing, S.C. and A.Z.;
visualization, A.Z.; supervision, S.C.; project administration, S.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the implementations of the simulation and the generated results can
be found at https://github.com/ahmadzendebudi/edge_simulation1 (accessed on 1 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Islam, A.; Debnath, A.; Ghose, M.; Chakraborty, S. A survey on task offloading in multi-access edge computing. J. Syst. Archit.

2021, 118, 102225. [CrossRef]
2. Ahmed, E.; Rehmani, M.H. Mobile edge computing: Opportunities, solutions, and challenges. Future Gener. Comput. Syst. 2017,

70, 59–63. [CrossRef]
3. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
4. Kumar, K.; Liu, J.; Lu, Y.H.; Bhargava, B. A survey of computation offloading for mobile systems. Mob. Networks Appl. 2013,

18, 129–140. [CrossRef]
5. Yan, P.; Choudhury, S. Deep Q-learning enabled joint optimization of mobile edge computing multi-level task offloading. Comput.

Commun. 2021, 180, 271–283. [CrossRef]
6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
7. Karimi, E.; Chen, Y.; Akbari, B. Task offloading in vehicular edge computing networks via deep reinforcement learning. Comput.

Commun. 2022, 189, 193–204. [CrossRef]
8. Wang, J.; Ke, H.; Liu, X.; Wang, H. Optimization for computational offloading in multi-access edge computing: A deep

reinforcement learning scheme. Comput. Netw. 2022, 204, 108690. [CrossRef]
9. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-

tion. In Advances in Neural Information Processing Systems 12; MIT Press: Cambridge, MA, USA, 1999.
10. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016;
pp. 1995–2003.

11. Zhang, K.; Gui, X.; Ren, D.; Li, D. Energy–Latency Tradeoff for Computation Offloading in UAV-Assisted Multiaccess Edge
Computing System. IEEE Internet Things J. 2020, 8, 6709–6719. [CrossRef]

12. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

13. Tang, M.; Wong, V.W. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput. 2020, 21, 1985–1997. [CrossRef]

14. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
15. Wang, T.; Luo, X.; Zhao, W. Improving the performance of tasks offloading for internet of vehicles via deep reinforcement

learning methods. IET Commun. 2022, 16, 1230–1240. https://doi.org/10.1049/cmu2.12334. [CrossRef]
16. Kazmi, S.A.; Otoum, S.; Hussain, R.; Mouftah, H.T. A Novel Deep Reinforcement Learning-based Approach for Task-offloading

in Vehicular Networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain,
7–11 December 2021; pp. 1–6.

17. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.C.; Niyato, D. Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-assisted
Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 6949–6960. [CrossRef]

18. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

19. Chen, X.; Liu, G. Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality
in mobile edge networks. IEEE Internet Things J. 2021, 8, 10843–10856. [CrossRef]

https://github.com/ahmadzendebudi/edge_simulation1
http://doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.1016/j.future.2016.09.015
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1016/j.comcom.2021.09.028
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.comcom.2022.04.006
http://dx.doi.org/10.1016/j.comnet.2021.108690
http://dx.doi.org/10.1109/JIOT.2020.2999063
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1049/cmu2.12334
http://dx.doi.org/10.1109/TWC.2022.3153316
http://dx.doi.org/10.1109/JIOT.2021.3050804

Appl. Sci. 2022, 12, 10664 22 of 22

20. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 6382–6393.

21. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
22. Bellman, R. A Markovian Decision Process. Indiana Univ. Math. J. 1957, 6, 679–684. [CrossRef]
23. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
24. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]

http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1007/BF00992696

	Introduction
	Related Work
	System Model
	Task Model
	Mobile Devices
	Task Offloading
	Local Execution
	Transmission

	Edge Nodes
	Edge Execution
	Transmission

	Problem Definition and Optimization Approaches
	Greedy Approach
	Deep Q-Learning Approach
	Q-Learning Algorithm
	Modeling the Markov Decision Process
	Deep Q-Learning Algorithm

	Routing Task Results after Disconnections

	Results
	Simulation Model
	Results

	Conclusions and Future Work
	References

