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Abstract: In the response surface methodology (RSM), the designed experiment helps create in-
terfactor orthogonality and interpretable response models for the purpose of process and design
optimization. However, along with the development of data-recording technology, observational
data have emerged as an alternative to experimental data, and they contain potential information on
design/process parameters (as factors) and product characteristics that are useful for RSM analysis.
Recent studies in various fields have proposed modifications to the standard RSM procedures to
adopt observational data and attain considerable results despite some limitations. This paper aims to
explore various methods to incorporate observational data in the RSM through a systematic literature
review. More than 400 papers were retrieved from the Scopus database, and 83 were selected and
carefully reviewed. To adopt observational data, modifications to the procedures of RSM analysis
include the design of the experiment (DoE), response modeling, and design/process optimization.
The proposed approaches were then mapped to capture the sequence of the modified RSM analysis.
The findings highlight the novelty of observational-data-based RSM (RSM-OD) for generating re-
producible results involving the discussion of the treatments for observational data as an alternative
to the DoE, the refinement of the RSM model to fit the data, and the adaptation of the optimization
technique. Future potential research, such as the improvement of factor orthogonality and RSM
model modifications, is also discussed.

Keywords: classic RSM; observational data; RSM-OD; RSM stages; systematic literature review

1. Introduction

Since first introduced by Box and Wilson in 1951 [1], response surface methodology
(RSM) has been widely used by scientists and engineers to find optimal parameter settings
to improve a process and equipment designs. The RSM adopts the design of experiment
(DoE) concept to collect data and identify significant factors and interactions that influence
the process response. Next, RSM is used to develop a mathematical model to capture
the causal relationships between factors and responses. Thus, the final result of RSM
is obtaining optimal factor settings by optimizing the causality model as the objective
function. As one of the common techniques for process optimization, this method works
in situations where engineers have complete control over the factor levels and treatments,
such as in laboratory experiments, scientific method applications, computer experiments,
and any other research environments that involve controllable factors. For certain industrial
processes or design optimization, RSM provides a means for engineers to find the best
parameter settings to optimize process/product characteristics. As long as engineers have
the chance to set the process/equipment parameter, then the RSM can ideally work based
on experimentation activities.

Nevertheless, conducting designed experiments for continuous process/production is
challenging. Changing the parameters during the running process can disturb production,
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and increase the number of nonconforming items, hence, resulting in high costs [2]. When
direct experimentation is not feasible, one of the alternative solutions is to use observational
data as the input to the RSM [3,4]. Some high-tech industries are often complemented with
intelligent data-acquiring systems that allow them to record real-time process/equipment
parameter changes. For prediction purposes, these real-time recorded data become the
input for a mathematical model to generate outputs, such as a forecasting system for
maintenance schedules or product quality [5]. Several pieces of research on chemical
engineering and food production [6,7] have demonstrated that observational-data-based
RSM (RSM-OD) provided a fitted mathematical model to find an optimal factor setting.
Other research used the observed data from a running process or equipment as the input
for RSM-OD, as shown in the work of [8] for steel production and [9] with pollutant
removal processes.

However, observational data and their similarities, including real-time recording data
and already conducted experiment data, limits a researcher’s control over their factor levels,
as the DoE ideally affords. There are presumptions that observational data contain a high
volume, high variability, unstructured, and serial-correlated situations [10]. Therefore,
some modifications to selecting the observations are required prior to the use of the data
in RSM analysis, including the adaptive RSM model and optimization techniques, while
still considering the ideal concept of the RSM. The authors of [3] have successfully adopted
observational data for the DoE by selecting a subset of observations and identifying stages
within the data, similarly, Refs. [2,11,12] also giving alternatives by matching the data with
certain DoE to ensure orthogonality. Moreover, the authors of [4,13] apply the RSM to
real-time data acquisition for optimization during continuous processes. It is also worth
noting that the recent development of big data has accelerated the use of observational
data. For instance, Ref. [14] demonstrated real-manufacturing-oriented big data, in which
recorded datasets provide information for process improvement and optimization. The
data-recording technology provides massive datasets in which huge datasets are recorded
along with operations [15–17]. Once the acquired dataset contains the process parameters
and product characteristics, then the RSM-OD should be considered as an optimization
methodology. However, existing pieces of literature on RSM-OD have a unique approach
to treating the observational data and modifying the RSM model or procedures; thus, the
opportunities to develop an established RSM-OD are still open.

Therefore, the paper aims to explore various approaches to develop RSM-OD through
a systematic literature review. The review was based on 82 pieces of literature which were
selected and analyzed using the PRISMA framework [18]. The paper focuses on how obser-
vational data can be considered as input for RSM for process/design optimization purposes.
According to the authors’ best knowledge, the present paper is the first comprehensive
review of the successful implementation of RSM-OD in various research fields. Other
review studies on RSM systematic literature review papers have discussed classic RSM and
DoE in advanced manufacturing optimization [19] and neural network, replacing the DoE
model [20]. Hence, the paper contributes by providing insights into the development of
new procedures in RSM-OD following three stages of analysis in standard classic RSM, i.e.,
the treatment of nondesigned experimental data, the modeling of the relationship between
factors and response, and optimization.

The rest of the paper is structured as follows. Section 2 briefly explains how the classic
and ideal RSM model works based on experimental data and the opportunity to adopt
observational data. Section 3 describes the systematic literature review (SLR) methodology.
Section 4 presents the results of descriptive and bibliometric analysis, which is followed by
synthesis and discussion in Section 5. Lastly, Section 6 concludes by highlighting the main
findings, limitations, and future research.

2. RSM Overview for Response Optimization

This section contains a theoretical perspective of the classic RSM and its applications
in various research fields. Considerable research on the classic RSM showed that this
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method has recently provided significant contributions. A designed experiment-based
RSM with fulfilled statistical assumptions will give strong theoretically-based analysis and
interpretation. Nevertheless, the consideration of using observational data in RSM should
not be ignored because some pieces of literature [4,13] have demonstrated the successful
implementation of observational data in the RSM. The section also presents some of these
papers as motivating examples of the rationale for writing this paper.

2.1. Classic RSM

As mentioned above, classical RSM works by integrating three tools in a sequential
analysis (Figure 1). In the first stage, classic RSM implements the DoE. In this step, the
DoE plays a role in experiment planning, data collection, analysis, and interpretation and
ensures that the experiment fulfills its purpose. Orthogonality fulfillment in the DoE matrix
ensures that the predetermined process parameters can be estimated independently among
others. Second, classic RSM applies a specific mathematical model to fit the data obtained
by the DoE. This model captures the relationship between factors or parameters as inputs
and responses as outputs. Classic RSM usually prefers to adopt a linear model because
of its simple interpretation and formal statistical inference of all its required assumptions
during the modeling stage. Third, the optimization stage works by finding the factor
(or parameter) setting to optimize the response. Standard optimization tools, such as
mathematical optimization and desirability functions [21], are preferred in classic RSM,
along with some theoretical approaches. As the required assumptions in RSM are fulfilled
for each stage, this methodology has become the best choice rather than any modification.
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Figure 1. Overview of RSM (adopted from [19]). Figure 1. Overview of RSM (adopted from [19]).

In addition, an essential prestage in RSM involves determining the factors involved in
the analysis. As the DoE is applied, researchers should subjectively select the factors in RSM.
They need to find the factors with more minor or significant effects on the response based
on previous research, considering the scope and knowledge domain of the researchers.
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As an established methodology for designed, experimentally-based optimization, the
classic RSM has been successfully applied for years in many research fields. Starting
with the concept proposed by [22], more than 48,000 Scopus-indexed papers applied
classic RSM. Figure 2 shows that the general engineering fields dominate the percentage of
RSM applications, followed by chemical engineering, chemistry, biological sciences, and
other applied sciences. It means that RSM plays an important role as an optimization
methodology in many research fields, and there are also considerable developments in
RSM to accommodate recent research issues.
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Many improvements to classic RSM have been performed, mainly when optimiza-
tion of the target by standard RSM procedures provides dissatisfactory results. Some
papers on RSM improved the linear model to increase its performance in capturing the
causality between factors and responses by replacing it with nonlinear versions. For ex-
ample, [23,24] applied neural networks and support vector regression for RSM modeling
to optimize surface roughness, respectively, in the milling and turning process. Other
researchers [25] provided a similar approach that uses the RSM neural network model to
optimize iron extraction from food. The complexity of these modified RSM models requires
advanced optimization techniques and adopt a meta-heuristics method; for example, the
authors of [26,27] successfully adopted a genetic algorithm for injection-molding and CNC
process optimization.

Classic RSM can be improved by some modifications in order to enhance the perfor-
mance of the process being investigated. However, all the methodological improvements
of classic RSM should consider the basic concept of RSM, its stages, and the final purpose
of the RSM, i.e., process optimization.

2.2. RSM-OD

The data-driven concept as a part of smart manufacturing has grown and has become
a recent issue in some research, as proposed in other literature reviews [28,29]. Moreover,
the rapid development of data acquisition systems supports the application of data-driven
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analysis. In the manufacturing process, a data acquisition system, especially those with au-
tomatic sensor-based data recording, will produce massive mounts of data that potentially
contain information about the characteristics of the process/equipment.

This system records data on the equipment parameters and product characteristics; as
examples of the data-acquiring process, as explained by [5,15], some smart sensor devices
can collect data from various types of equipment as a part of the data-driven technology.
Therefore, several researchers argued that data analysis should be applied to obtain useful
information. Other research successfully performed analyses based on these collected data
for industrial application purposes, such as product quality prediction [30], preventive
equipment maintenance [16], the process optimization purposes [4], similar to our topic.
For practical purposes within manufacturing or laboratory scale, with the provided dataset
or data acquiring system, the RSM-OD analysis is preferred because it does not need to
interrupt the ongoing production, nor does it require exceptional equipment parameter
adjustments for experimenting. Other papers argued that it reduces experimental costs [2].

Both sets of authors from [3,4] considered observational data as alternatives to de-
signing experiments and applied them for continuous semiconductor and tire production,
respectively. A large number of recorded data opened up opportunities to use them as a
part of the process optimization system based on the data-driven concept. Both research
papers showed how the RSM concept incorporates observational or historical data as
the basis for process optimization. Specific iterative procedures, such as the selection of
potential factors, the identification of stages in the dataset, and the search for a subset of
observations with similar characteristics to the designed experiment, were proposed to
treat the dataset to become suitable to adopt RSM.

In addition, some papers with laboratory-scope experimentation implemented RSM
based on observational or historical data with a specific approach called historical data
design (HDD), which is provided by Design Expert® v.11 software from Stat-Ease, Inc.,
1300 Godward St NE, Suite 6400, Minneapolis, MN, USA. Although it is more similar
to ordinary multiple regression analysis fitted to observational data, HDD is a type of
observational data-based DoE within the RSM analysis. For details on performing HDD,
refer to the software manual guide from [31] based on a case study by [32]. Both [6,8]
explicitly mentioned and applied HDD, where previous, un-designed, and experimental or
observational data were used as inputs for RSM analysis to optimize energy consumption
and plastic strength.

Another similar paper gave a different perspective; the authors of [33] worked on an
additive manufacturing process to predict surface roughness, and real-time data-driven
modeling techniques were applied to minimize the prediction error. A real-time approach
requires no assumptions for the data and does not need to evaluate the significance of the
factors; its main target is to obtain the minimum error in the predicted response with no
model interpretation required [34]. Meanwhile, the standard RSM proposed by [1] applies
the philosophy of three stages in its analysis (Figure 1), with several required assumptions
in the data, such as factor independence, treatment randomization, and factor significance,
to give a strong interpretation; the final target of this RSM is to obtain the optimum response
by finding the optimal factor setting/level.

The next section explains that this approach treats the dataset’s variables, features,
and responses as input and output. Some papers provided additional filtering procedures
for selecting available observations to be fitted in the RSM model by treating the dataset
so as to become similar to the designed experimental data [3,35]. Moreover, they applied
machine learning models, such as neural networks and support vector machines (SVM),
to replace ordinary linear models. However, this action will increase the risk of black-box
modeling rather than keep the concept of model interpretability.

A number of RSM modifications to accommodate observational data have been con-
ducted. Some modifications focused on data treatment before being used as input for the
RSM. Other modifications develop adaptive mathematical modeling to any data condition,
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including the use of machine learning approaches. The most recent modifications deal with
the ability of optimization techniques to solve complex RSM models.

3. Methodology

The systematic literature review conducted in the present study follows systematic
literature review guidance from [36] and conforms to the PRISMA statement in [18]. We
started by identifying studies and followed this with database searches, filtering processes,
and content analyses, as shown in Figure 3.
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A systematic literature review gives an objective synthesis as it involves a decent
number of references based on selected keywords. It follows the identification of studies,
and the stages involve paper searches, filtering, and synthesis. As shown in Figure 3,
identification steps define the problems in RSM, which are then formulated as research
questions. By applying certain criteria based on the research questions, the collected pieces
of literature were screened and analyzed with respect to descriptive, bibliometric, and
comparative analysis. The Scopus database was deployed because it provided better article
searching in terms of source titles, journal impact metrics, and the number of publishers
when compared to others, as shown by [37].

The systematic literature review methodology was used to achieve a reproducible
result in the development and application of RSM-OD. The analysis and discussion in this
paper focused on those approaches accommodating nondesigned experimental data in the
classic RSM. Moreover, as the context of this paper discusses the development of RSM-OD,
the literature research questions (LRQs) emphasize how the standard RSM is modified to
accept data.

• LRQ1: What are the rationales for using observational data as an alternative to con-
ducting a real RSM experiment?

• LRQ2: What condition within observational data can be adapted to RSM?
• LRQ3: How are observational data adopted to RSM?

The descriptive analysis and synthesis stages in this paper attempted to answer those
LRQs associated with the need for well-designed experimentally-based optimization in
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various fields of studies. The practical limitations of conducting the experiments were
raised and prompted the consideration of adopting observational data as an alternative. As
shown in Figure 3, the stages start with a bibliometric analysis to map the interrelationship
among research keywords as a reference for methodological mapping and answering the
LRQs. LRQ1 was answered by identifying the rationales for using observational data for
RSM analysis, considering the limitations of classic RSM in practice but still referring to its
standard procedures (Figure 1). As LRQ1 was answered, LRQ2 and LRQ3 can parallelly be
processed. The answers to LRQ2 review strict assumptions of the RSM and how observa-
tional data can still be adopted by RSM. As a result, observational data preprocessing and
evaluations to conform to the RSM analysis were identified. Meanwhile, LRQ3 dealt with
the procedures to adopt observational data into the RSM analysis, subject to the classic
statistical assumptions within, including DoE properties, modified mathematical models,
and the optimization method. Finally, the discussion was started based on the results of
LRQ1 to LRQ3, which focus on the opportunities and gaps for adopting observational
data as an alternative to DoE in RSM analysis and open the potential development of
further research.

Search strings for paper abstracts and titles by restricting the search references from the
Scopus database were predetermined to ensure that the papers still covered the proposed
topics (Figure 4). Similar terms related to nonexperimental data used in the reference
papers, such as observational, historical, or retrospective data, were found. Further, these
terms were combined with common keywords in the RSM analysis, such as “optimization”
and “DoE”. Some Boolean operators were applied, considering that RSM-OD analysis
should refer to the classic RSM stages.
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Figure 4 shows the search process. Based on the research questions, the key terms were
“RSM”, “non-experimental data”, and “optimization”. The search queries involved all of
these, along with the use of the Boolean operator “AND”. To enrich the search process,
we identified some synonyms within each of the key terms based on the mentioned terms
in reference papers. For example, several papers used different terms when mentioning
the nonexperimental data but gave similar meanings, i.e., observational, historical, or
retrospective data. One of these similar terms was then selected with the Boolean operator
“OR” to complete the search string.

The search result with the determined search strings and Boolean operators yielded
more than 400 papers from the SCOPUS database. However, not all of these papers
discussed RSM with regard to observational data. Some mentioned similar keywords, but
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the topics were outside of this paper’s scope. The filtering process was then applied with
the inclusion criteria in Table 1. The selected research in this paper was considered to follow
the RSM concepts, consisting of different stages (Figure 1). The final 82 selected papers
led to the synthesis stages, with additional references to the standard RSM, such as those
within [1,19].

Table 1. Inclusion criteria for filtering papers.

Paper Inclusion Criteria Paper Exclusion Criteria

Application of observational or historical
data as an alternative to the DoE in RSM

The RSM should not conduct a designed
experiment to obtain data (however, some papers
still referred to nondesigned
experiments/non-DoE with a rationale of
hard-to-control factors; the details are in Figure 8)

Involving previous experimental data for
RSM, some papers referred to combined
datasets from previous experiments

The RSM entirely refers to the dataset without
completing it, with new additional experiments.

Involvement of the three stages of standard
RSM analysis (DoE, modeling, and
optimization)

One of the stages of standard RSM analysis
is missing

RSM analysis involves searching for
influencing factors, similar to the original
RSM concept

A direct prediction system with real-time data
recording and modeling is not a part of this SLR
because no such analysis of significant influencing
factors exists.

4. Descriptive and Bibliometric Analysis

The descriptive analysis in this section explained the research trends associated with
the topics in this paper, and the bibliometric analysis focused on the methods involved in the
RSM-OD and research fields to which it has been applied. Since the early 2000s (Figure 5),
the increased number of indexed publications in the SCOPUS database with search strings
(Figure 4) shows that the application of the RSM-OD has occurred in various research fields.
Table 2 shows some of the research fields where the method has been applied.
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Figure 5. Paper trends for RSM-OD.

The pharmacy/chemistry/chemical engineering fields commonly deal with laboratory-
scope experiments. They can be improved with the use of standard RSM, but they use
already provided data as the input for RSM. Meanwhile, manufacturing, petroleum, and
similar engineering fields with modern equipment mostly have a data-acquiring system.
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Thus, using the provided dataset rather than experimental data is more reasonable. Fur-
thermore, using a treemap (Figure 6) to categorize the journal quartile shows that the
highly impacted journal (Q1/Q2) gives the highest percentage among other quartiles,
which means that the RSM-OD has supported high-quality research. For Q1 journals, the
research field of (pharmacy/chemistry/chemical) engineering (10.00%) and manufacturing
processes (11.25%) still dominated regarding the application of RSM-OD, followed by other
fields. A similar interpretation is also drawn for Q2 and the others. Thus, scholars have
opportunities to develop RSM-OD procedures required by various research fields involving
designed, experiment-based optimization processes at any level of the impacted journals.

Table 2. Distribution of papers based on research fields.

Field of Application of RSM-OD Percentage

pharmacy/chemistry/chemical engineering 22.50%
manufacturing process 18.75%
petroleum/coal/mining 11.25%
cleaner production/waste 10.00%
material & mechanical engineering 7.50%
energy 6.25%
food 5.00%
civil engineering 3.75%
medical science 3.75%
aerospace 2.50%
biology 2.50%
methodological development 2.50%
waste processing 2.50%
social science 1.25%
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VOSviewer® v.1.6.15 software provided by Centre for Science and Technology Studies
of Leiden University was used to obtain the graphical network in Figure 7. In the figure,
the author’s keywords represent various terms incorporated in the RSM-OD. The figure
also gives insights into the development of the integrated RSM tools/methods to handle
nonexperimental data, particularly for certain RSM-related methodological terms, although
specific research field-related keywords were still included. The bibliometric analysis
consisted of nodes and the links connecting them. Large nodes represent high keyword
occurrences, and the links indicate co-occurrences in the same papers. Table 3 shows
the results of the complete bibliometric analysis, including the total link strength, which
exhibited a high number of co-occurrences between the keywords.
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Table 3. Occurrences and link strength of graphical keyword networks in Figure 8.

Author’s Selected Methodological Keywords
(Excluding Specific Research Field Keywords) Occurrences Links Total

Link Strength
RSM 33 130 144
optimization 11 42 51
HDD only 7 27 29
historical data 6 26 32
neural networks 6 23 24
DoE 5 23 27
genetic algorithm 3 15 15
observational data 3 13 13
Analysis of variance (ANOVA) 2 15 16
quality by design 2 14 14
modeling 2 9 10
statistical analysis 2 9 10
Taguchi method 2 9 9
process optimization 2 8 9
experimental design 2 8 8
retrospective data 2 6 10
intelligent systems 1 7 7
machine learning 1 7 7
response-surface designs 1 7 7
six sigma 1 7 7
support vector machine 1 7 7
industrial-scale optimization 1 6 6
RSM historical data modeling 1 5 5
causality 1 5 5
data-driven modeling 1 5 5
meta-heuristic optimization 1 5 5

Note: The red highlighted portion represents common RSM terms, the yellow highlighted part denotes high
occurrences, and the blue highlighted section denotes low occurrences in Figure 7.

Keywords from research that applied the standard RSM mainly consisted of common
terms in the analysis stages, such as DoE and optimization (Table 3, with red, highlighted
rows). By ignoring specific terms related to research fields, only methodological terms
are shown in Table 3, including those with high (yellow highlighted) and low occurrences
(blue highlighted). The largest cluster with the highest occurrences had “RSM” as the
main keyword, followed by “optimization” and “DoE”; these three keywords represent the
common terms in classic RSM analysis. Therefore, their high occurrences were expected.
The analysis also focused on other clusters supporting them and denotes the development
of RSM-OD (the yellow highlighted portion in Table 3).
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The keyword “HDD” gives a high link strength with RSM because it is a term taken
from the Design-Expert® v.11 software by Stat-Ease Inc., and the word design is related to
a designed experiment based on historical or observational data. The historical word data
with similar link strengths were also located near RSM and were strengthened by word
observational data, although they showed a low occurrence. Thus, the RSM analysis per-
formed in the papers applied observational/historical data as the input. Subsequently, the
keyword “neural networks” formed a cluster near the “genetic algorithm”, and these key-
words were located alongside the RSM. These keywords corresponded with the RSM model
that was replaced by neural networks, and the optimization techniques adopted a genetic
algorithm. Furthermore, the blue-highlighted keywords completed the bibliometric analy-
sis, with specific methodological keywords from various research fields. These keywords
still showed a relationship with the RSM stages, i.e., DoE, modeling, and optimization, and
offered insights into the development of RSM-OD.

5. Synthesis and Discussion

The use of observational data in RSM is not without its critics. This practice contradicts
the golden standard in RSM and runs considerable risks of being used as an alternative
to experimental data. The authors of [38] wrote that using observational data as a replace-
ment for experimental data is risky because of the absence of controllable factors, spurious
correlation, and the rise of potential multicollinearity or nonorthogonality. This finding
was similar to the problem of semiconductor production in the work of [3] and the slurry
thickening process in [39], where observational data contained undetected and uninter-
pretable multicollinearity, given the application of typical observational-based regression
analysis and the need for careful handling ([40]). This opinion was also strengthened by
the authors of [19], who wrote a systematic literature review of classic RSM development
and showed that orthogonality between factors should be reached to perform individual
analyses of each factor. Moreover, the ideal experimentally-based RSM accommodates
the procedure of the steepest ascent for the shifting of factor levels in a specific direction
toward a stationary optimum response point [1,19]. The use of observational data presents
a challenge in conducting this procedure, given the limited range of factor levels. The
optimization region is also limited to these available level ranges, as observed in all of the
RSM-OD references.

The literature review questions in the previous section served as a guide for the
writing order, starting with descriptive and bibliometric analyses. Later, the synthesis stage
was performed in line with answering LRQ1 to LRQ3 and continued with the discussion
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section. Some treemaps used in this paper simplified the interpretation of the descriptive
and research questions answered. Treemaps are used to hierarchically graph structured
information, which uses 100% of the available graph space [41], and acted as an excellent
application for the supporting systematic literature review in [20].

LRQ1: What are the rationales for using observational data as an alternative to conducting
a real RSM experiment?

Approximately 70.51% of the papers employed observational data as the input for
RSM, 23.08% were based on previous experimental data, and the remaining 6.41% referred
to real experiment data (Figure 8). Observation-based data were obtained depending on the
kind of data-acquiring system in the process being studied, and previous-experiment-based
data were collected from associated research. The data contained the factor (or X variables)
and response (Y variables) with continuous scales, as required by the RSM analysis. The ra-
tionale with the highest percentage in Table 4 is potential information that may exist within
the observational data. The next highest percentage is the flexible factor level (or design
space), where an RSM analysis should be flexible enough to accommodate uncontrolled
factor levels within observational data. Moreover, the difficulties in fully controlling the
factor levels during a continuous process showed the limitations in conducting designed
experiments and provided data that were a better option. This rationale also revealed a
high percentage.

Table 4. Rationales for selecting RSM-OD.

Rationales from Papers Percentage

potential information from observational data 33.33%
flexible factor level or design space (using the data as provided) 30.77%
difficult to control process parameters 21.79%
historical data contain DoE 5.13%
conducting experiments can be highly expensive 3.85%
additional experiment points to standard DoE experiments 2.56%
avoid disruption to the production process 2.56%

Several papers acquired real experiment data but used RSM-OD because of difficulties
in controlling the factor levels. They assumed the real experimental data as being observa-
tional and argued that modifying the RSM approach based on a nondesigned experiment
was easier than conducting a formal standard RSM.

LRQ2: What condition within historical data can be adapted to RSM?

Conducting the DoE experiment ensures the orthogonality between the factors, and
the ANOVA can separate each variance for the independent interpretation of their effects
([42]). On the other hand, observational data violate common assumptions in designed
experiment data, such as treatment randomization and interfactor orthogonality, as the
researcher cannot fully control each factor’s level (see an editorial by [38]). Therefore,
this section evaluated each reference paper to capture how they explain the condition of
data before treating them as the input for RSM modeling based on different approaches in
adopting data, i.e., using all observations or obtaining their subsets (Figure 9).

Table 5 shows that more than 70% of papers did not mention specific raw-data condi-
tions. Therefore, they adopted observational data directly as the input for this RSM-OD.
The mathematical model and optimization technique were previously determined without
evaluating data conditions because they forced the data to fit the model, whether linear or
nonlinear, even ignoring the absence of randomization within data. Meanwhile, 5.19% of
the papers followed the data condition as it was, which means that the RSM-OD model
and optimization techniques were adjusted to adapt to the data condition, and a linear
or nonlinear model was selected to give the best fit to the data. A total of 23.38% of the
papers explicitly mentioned other conditions, such as factor independencies, ensuring
orthogonality, and outlier removal, and considered assumptions as if they were a DoE
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experiment. Some papers used orthogonality criteria for evaluating data conditions, such
as variance inflation factors (for example, a paper by [43] and a data matrix subsetting used
to achieve orthogonality in [3]).
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Table 5. Required data condition for RSM-OD.

Observational Data Condition Percentage

No specific data condition requirement (model and optimization stage
were determined without considering data condition) 71.43%

Assuming independence of factors 12.99%
Ensure orthogonality between factors 9.09%
Follow data condition as it is (specify RSM-OD model and
optimization-based data condition) 5.19%

No outliers 1.30%

LRQ3: How historical data are adopted to RSM?

As shown in Figure 1, the three stages of RSM form the integrated procedures for
DoE-based optimization. Ideally, the RSM-OD with similar optimization purposes should
also adopt these stages. The answers to LRQ2 explain how standard RSM stages with
modifications adapt to observational data. Especially at the designed-experiment stage,
several approaches show how the RSM-OD treats data as the input to the RSM analysis.

At the DoE stage (Figure 10), two approaches were used to adopt observational data:
the first type used all observations (80.52%), and the second type selected a subset (19.48%),
with some required conditions. Those that used all provided observations mostly did
not need to adopt a DoE. All observations were treated as an input for the RSM model,
and the optimum was found based on this input. A few of these papers filtered data
to remove unusual observations before RSM modeling. As for the other types, some
observations were selected as the subset data for RSM modeling based on specific criteria.
Mainly, the requirement of orthogonality between factors was one of the reasons for
selecting observations into a subset; these criteria are required in standard RSM analysis
and fulfilled by the DoE. Thus, a certain DoE-like adaptation is needed in the RSM-OD
analysis, including common assumptions, such as treatment randomization and interfactor
independence (orthogonality). Figure 10 shows that standard DoEs, such as factorial,
optimal, and Taguchi designs, were used as references in selecting the observation subset.
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In the modeling stage (Figure 11), almost all papers (90.54%) applied a linear model; the
others used a neural network (6.76%), and the rest used other models, such as the Taguchi
and support vector model (2.7%). As a common linear model in RSM, this approach works
as the standard RSM completed by typical statistical analyses, such as factor significance
and R-square. For the neural network approach, most of the papers implemented it for
modeling and optimization purposes. As the neural networks are close to a black-box
model without any statistical analysis, the authors still performed ANOVA and R-square
analysis to evaluate significant factors and show an interpretable result. Alternatively, the
Taguchi method approach, which was proposed in [2,11], was also applied based on the
typical signal-to-noise ratio in its analysis.
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For the optimization stage (Figure 12), as the highest percentage showed a linear model,
a standard local search optimization algorithm was preferred and commonly provided
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in some software. Moreover, several papers with linear models adopted metaheuristics
algorithms to find an optimum response. Notably, the graph in Figure 13 shows that some
papers excluded the optimization process, and they only considered the first two stages of
RSM-OD for prediction or factor investigation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

Figure 11. RSM modeling stage. 

For the optimization stage (Figure 12), as the highest percentage showed a linear 
model, a standard local search optimization algorithm was preferred and commonly pro-
vided in some software. Moreover, several papers with linear models adopted metaheu-

ristics algorithms to find an optimum response. Notably, the graph in Figure 13 shows 
that some papers excluded the optimization process, and they only considered the first 

two stages of RSM-OD for prediction or factor investigation. 

 

Figure 12. Optimization stage. Figure 12. Optimization stage.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 24 
 

Step 1: Observational data adoption to DoE

Data type
Code: A

Observational or 
historical data from  a 

process (A1)

Process equipment 
parameter setting (B1)

Recorded data
Code: B

Process material 
composition (B2)

Mixed of equipment 
parameter and meterial 

composition (B3)

Previous experiment 
data (A2)

Real experiment 
without following 
standard DoE (A3)

Subset of observation 
(C1)

All observations (C2)

Linear model (E1)

Step 2: RSM model

Neural networks (E2)

Other model (SVM, Evo-
NN, S/N ratio) (E3)

Local search (F1)

Step 3: Optimization

Metaheuristics (F2)

Taguchi S/N (F3)

Classic DoE 
(Factorial, Mixture, etc) 

(D1)

Adopted dataset
Code: C

DoE adopted
Code: D

Pre-processing

Optimal DoE (D2)

Taguchi (D3)

Other DoE (D4)

No DoE adopted (D5)

Code: E Code: F

Other method (NLP, 
montecarlo)

(F4)

Prediction purposes 
(F5)

Stages in classic RSM

Method/Tools combinations of RSM-OD  

Figure 13. Combination of the methods adopted in RSM-OD. 

5.1. Comparative Analysis 

Several approaches to handling observational data for RSM were proposed, and ra-
tionales were provided for each based on specific references. Figure 13 represents the com-

bination of tools or methods applied to RSM-OD, and the maps based on the stages in 
classic RSM analysis are shown in Figure 1. By reading from the left side, each box in the 

figure represents the tools or methods used in RSM-OD, and the lines denote the other 
tools/methods at each stage of the RSM analysis. Various modifications in RSM-OD in the 
reference papers still obeyed the basic principles of classical RSM, and any RSM improve-

ment should not be much different. 
The method combinations started with the identification of nondesigned-experi-

mental data (Code A). Several papers referred to observational data from this type of con-
tinuous process, and others referred to previous experimental data or conducted an actual 
nondesigned experiment. Code B categorizes the recorded variables that will be the fac-

tors in RSM. Primarily, the studied process records its equipment parameters, the compo-
sition of the materials, or both. Code C represents how the provided data will be treated 

by considering all observations or selecting its subset. Code D categorizes the standard 
DoE adopted while treating the provided data within the RSM analysis. Code E shows the 
RSM model adopted, and Code F represents the optimization technique. 

The combinations of Code A–F provided many options. However, the main concept 
of the three-stage RSM became the focus of grouping each paper. As is shown in Table 6, 

based on Codes C (stage 1: treating data), E (Stage 2: RSM model), and F (Stage 3: 
optimization), only seven types of approaches, which were represented by seven clusters, 

were obtained, and the references are shown in Table 6. 

  

Figure 13. Combination of the methods adopted in RSM-OD.

5.1. Comparative Analysis

Several approaches to handling observational data for RSM were proposed, and
rationales were provided for each based on specific references. Figure 13 represents the
combination of tools or methods applied to RSM-OD, and the maps based on the stages
in classic RSM analysis are shown in Figure 1. By reading from the left side, each box
in the figure represents the tools or methods used in RSM-OD, and the lines denote the
other tools/methods at each stage of the RSM analysis. Various modifications in RSM-OD
in the reference papers still obeyed the basic principles of classical RSM, and any RSM
improvement should not be much different.
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The method combinations started with the identification of nondesigned-experimental
data (Code A). Several papers referred to observational data from this type of continuous
process, and others referred to previous experimental data or conducted an actual nonde-
signed experiment. Code B categorizes the recorded variables that will be the factors in
RSM. Primarily, the studied process records its equipment parameters, the composition
of the materials, or both. Code C represents how the provided data will be treated by
considering all observations or selecting its subset. Code D categorizes the standard DoE
adopted while treating the provided data within the RSM analysis. Code E shows the RSM
model adopted, and Code F represents the optimization technique.

The combinations of Code A–F provided many options. However, the main concept of
the three-stage RSM became the focus of grouping each paper. As is shown in Table 6, based
on Codes C (stage 1: treating data), E (Stage 2: RSM model), and F (Stage 3: optimization),
only seven types of approaches, which were represented by seven clusters, were obtained,
and the references are shown in Table 6.

Table 6. References for Figure 13.

Clusters

Three Stages of RSM Additional Stage

ReferencesStage 1
(Code C)

Stage 2
(Code E)

Stage 3
(Code F) Code A Code B Code D

Cluster 1:
Subset—Linear model—local
search
(12.05%)

C1 E1

F1

A1

B1
D1 [44]

D3 [2]

F2
D2 [45]

B2 D2 [35]

F4
B1

D1 [46]

D3 [11]

D3 [47]

F5
D1 [3]

B2 D2 [13,48]

Cluster 2:
Subset—NN
model—metaheuristics.
(3.61%)

C1 E2
F2

A1

B2

D1

[49]

[50]

F5 B3 [12]

Cluster 3:
Subset—other models—other
purposes.
(1.20%)

C1 E3 F5 A1 B3 D3 [51]

Cluster 4:
All obs.—linear model—local
search
(55.42%)

C2 E1 F1

A1
B1

D5

[8,43,52–60]

B2 [7,61–65]

B3 [66,67]

A2

B1 [6,68–73]

B2 [74–77]

B3 [9,78–82]

A3
B1 [83,84]

B2 [85]

Cluster 5:
All obs—linear
model—metaheuristics
(10.84%)

C2 E1 F2 A1
B1

D4 [86]

D5 [4,87–91]

B2 D1 [92]

B3 D4 [93]
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Table 6. Cont.

Clusters

Three Stages of RSM Additional Stage

ReferencesStage 1
(Code C)

Stage 2
(Code E)

Stage 3
(Code F) Code A Code B Code D

Cluster 6:
All obs.—linear model—other
optimization technique
(8.43%)

C2 E1

F4 A3 B2 D4 [2,94]

F5 A1

B1

D5

[95–97]

B2 [98,99]

A3 B3 [100]

Cluster 7:
All obs.- NN
model—metaheuristics
(7.23%)

C2 E2

F2 A1

B1 D5

[101]

F5 A2 [102]

The most preferred was cluster 4, with 55.42% relativity to all the selected reference
papers; it used all observations as the input to the linear RSM model and applied the
ordinary local search optimization method. It is similar to standard RSM, but risks may arise
during the analysis by selecting all observations. Cluster 1, which was similar to Cluster 4,
had the second highest value: 12.05%; the difference is that this cluster selected a subset
of observations that fulfilled a particular DoE and guaranteed interfactor orthogonality.
Next, Cluster 5 (10.84%) was similar to Cluster 4 but replaced the local optimization
method with a metaheuristic technique. A more complex RSM model with all observations
as the input became the rationale for this replacement. Cluster 6 (8,43%) applied other
optimization techniques, such as Taguchi S/N ratio, linear programming, and the Monte
Carlo method [2,44,45]. In Clusters 2 and 7, the linear model was replaced with neural
networks to handle the nonlinearity of the observational data, all observations, or the
subset data. Moreover, such a complicated black-box neural-network model applied the
metaheuristics method to find the optimum. Concerning the three stages of the RSM, a
summary of the method combinations (Figure 13 and Table 6) is rewritten in Table 7.

Table 7. Summary of method combinations in consideration of the three stages of RSM.

Advantages Disadvantage

Stage 1
RSM

subset Selecting a subset based on specific criteria
increases inter-factor orthogonality

A number of of observations will be
excluded from the RSM analysis

all observation
As a potential source of information, all
observations will be included in the RSM
analysis

potential multicollinearity between factors
and the possibility of outlier observations

Stage 2
RSM

linear model strong foundation with clear inference and
interpretation strictly statistical assumptions

Neural-net model black-box model free of assumptions no model interpretation and potential
garbage-in-garbage-out

other models Similar to neural networks, the SVM model has no required assumptions, and the Taguchi
method works without a pre-specified mathematical model.

Stage 3
RSM

local search fast iterative algorithm potential local optimum

metaheuristics accommodate global optimum highly depends on initial conditions

other technique Some papers with prediction purposes exclude optimization techniques; the others involve
linear programming and Monte-Carlo.

5.2. Advantages and Disadvantages of RSM-OD

Based on the synthesis above, the discussion emphasized how the classic RSM concept
methodologically adopts nonexperimental data as an alternative to the DoE experiment.
The classic RSM has strong scientific references when integrating the three stages of its
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analysis (Figure 1), and each stage also gives a clear theoretical basis. Therefore, any
development in RSM, including the fulfillment of assumptions during the analysis, should
remain within these stages. Thus, the discussion will explore the methods and combinations
used in the reference paper (Figure 13).

According to Table 7, those options that combined the methods within the three stages
of RSM raised some advantages and limitations. In stage 1 of the RSM, contradictions
existed between the selection of all observations or their subsets. One problem relates
to interfactor orthogonality and the other deals with the justification of selecting only a
subset from several potentially informative observations. In stage 2, different types of RSM
models, i.e., linear (or polynomial) or machine-learning type models, provided different
modeling approaches with each of their consequences. The powerful and interpretable
linear model works with several strict assumptions, whereas the free-assumption machine-
learning-based model contains potential over-fitting and is noninterpretable. In stage 3,
the ordinary local search algorithm works best for a single-optimum point linear model,
whereas the metaheuristics algorithm provides a larger search area with local and global
optima.

By referring to the papers needing observational data, RSM can be developed with
alternatives to conduct a real experiment. Notably, observational data will not give pieces
of information that are as perfect as within the designed experiments because of the
assumptions of violations within. However, numerous references in this paper have
shown the success of RSM-OD, although some ignored the concept behind the classic RSM.
Therefore, a new procedure must be developed for this type of RSM to fulfill all the required
assumptions of the standard classic RSM.

5.3. Potential Gaps and Future Research

With all the explained descriptive and synthesis analyses, we identified opportunities
and gaps in the development of new RSMs in consideration of adopting observational
data (Table 8). Stage 1 deals with how the developed procedures work, according to the
concept of classic DoE, including the concept of orthogonality and randomization. Stage 2
developments can be improved when considering model interpretation, including factor
significance and goodness-of-fit. Stage 3 deals with the capability of finding the global
optimum based on the fitted model in Stage 2. All these opportunities are expected to give a
stronger theoretical basis for implementing RSM-OD to complete its practical applications,
assuring the users regarding its use.

Table 8. Opportunities and gaps for further development.

RSM Stages Development Opportunities
for Future Research Potential Gaps in References

Stage 1 Develop procedures to adopt observational
data considering the concept of classic DoE

Procedure development to:

1. fulfill factor orthogonality and its
evaluation/measurement

2. Improve orthogonality of observational data
3. handle non-randomized treatment within observational

data
4. pre-process observational data

(cleaning/filtering/subsetting)
5. Dividing variation for each factor, similar to ANOVA

Stage 2
Develop an adaptive RSM mathematical
model to adapt observational data
concerning required assumptions

Model development to:

1. accommodate un-designed/unpatterned observational
data

2. fulfill model-fitting assumptions, or ignore them
3. enhance of model interpretability
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Table 8. Cont.

RSM Stages Development Opportunities
for Future Research Potential Gaps in References

Stage 3 Develop an optimization algorithm referring
to a pre-defined RSM model

Optimization technique to:

1. provide a comprehensive optimum search area
2. avoid local optimum

6. Conclusions

Using observational data within RSM is promising, particularly when data-recording
technology (big data) exists. It was found that the main rationales for adopting observa-
tional data within RSM are the existence of historical data and avoiding interruptions in
continuous production. However, due to the unstructured, highly variable, and serial-
correlated nature of the observational data, data modifications prior to use in the RSM
is necessary. Therefore, the paper aims to explore the various methods/approaches for
incorporating observational data in RSM through a systematic literature review using the
PRISMA framework, from which 83 studies were analyzed. Based on the three stages of
classic RSM, modifications can be conducted at each stage, i.e., data treatment, modeling,
and optimization. With respect to the first stage (data treatment), the modification involves
selecting an observation subset or pretreating the data to increase acceptance in the RSM
based on specific criteria, such as orthogonality and treatment randomization. In the second
stage, adaptive RSM mathematical models are selected to handle nonideal observational
data. Complex nonlinear machine learning models are common approaches for adapting
RSM models, for example, the neural network and SVM models. In the last stage, an
alternative optimization method suitable for such a complex RSM model is also highlighted.
Metaheuristic optimization techniques perform well when finding the optimal factor levels
modeled using a nonlinear RSM model. The combinations of the proposed methods for the
RSM stages reveal insights into the fact that there is an open potential for developments in
RSM-OD as an alternative to classic RSM.

Despite the deviation from standard RSM techniques, the proposed RSM-OD methods
in the literature can still achieve their design/process optimization purpose with reasonable
results. However, the methods also raised some limitations, such as data orthogonality
issues, statistical assumptions, model specifications, model interpretability, and the need
for advanced optimization methods.

This paper contributes to the RSM literature by providing the advantages or dis-
advantages of using observational data for process/design optimization, demonstrating
opportunities to further improve the proposed methods in RSM-OD, and coping with their
theoretical limitations and unexpressed assumptions. Once those issues are well addressed,
RSM-OD may be a promising alternative to classic RSM.
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Abbreviations

Abbreviations Full Form
(Alphabetical Order)
DoE Design of experiment
HDD Historical data design
LRQ Literature review questions
NN Neural network model
PRISMA Preferred reporting items for systematic reviews and meta analyses
RSM Response surface methodology
RSM-OD Observational data-based RSM
SLR Systematic literature review
SVM Support vector machine model
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