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Abstract: Structured-light vision methods are widely employed for three-dimensional reconstruc-
tion. As a typical structured light pattern, grid pattern is extensively applied in single-shot three-
dimensional reconstruction. The uniqueness of the grid feature retrieval is critical to the reconstruc-
tion. Most methods using grid pattern utilize the epipolar constraint to retrieve the correspondence.
However, the low calibration accuracy of the camera–projector stereo system may impact the cor-
respondence retrieval. An approach using grid pattern-based structured-light vision method is
proposed. The grid pattern-based structured-light model was combined with the camera model
and the multiple light plane equations. An effective extraction method of the grid stripe features
was investigated. The system calibration strategy, based on coplanar constraint, is presented. The
experimental setup consisted of a camera and an LED projector. Experiments were carried out to
verify the accuracy of the proposed method.

Keywords: structured light; grid pattern; calibration; coplanar constraint; 3D reconstruction

1. Introduction

Three-dimensional reconstruction technologies are widely applied in many fields, such
as reverse engineering, robot vision, medical surgery, intelligent manufacturing, and in the
entertainment industry [1–5]. The technologies could be classified into three categories:
time-of-flight (TOF), stereo vision, and structured light (SL) [6]. SL techniques have many
advantages over the other methods in terms of high accuracy, robustness, simplicity and
low cost [7,8]. The available projection patterns for SL techniques could be the single-
line [3,9], multi-line [10,11] or surface pattern [12,13]. By projecting surface pattern onto
the object and capturing the corresponding deformed patterns modulated by the object
profile, 3D information could be reconstructed more effectively than with the other two
patterns [6,12].

According to the codification strategies, the surface patterns can be roughly categorized
into two classes: temporal-based and spatial-based schemes [14]. The temporal-based
approaches have advantages in terms of high accuracy and robustness. These approaches
adopt the binary code method [7,15] or the phase shifting method [16–18]. However, the
approaches have to conduct multi-shots to capture the patterns in a time series. So, the
temporal-based techniques are not suitable for dynamic scenes. In contrast, the spatial-
based approaches only implement a single-shot, which is favorable for 3D reconstruction
of dynamic scenes [19]. Among spatial-based methods, the encoding scheme, such as the
De Bruijn sequence [20], M-arrays [21] and pseudo-random codes [22], is a commonly used
strategy [7] These methods encode the features by different heights, widths, orientations,
or compactness for a unique identity. However, the uniqueness of the local code-word
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retrieval is hard to guarantee, due to perspective distortion [23]. Differing from spatial-
coded patterns, coding-free patterns are always simple and periodic. The methods using
coding-free patterns are more robust, insensitive to distortion, and low-cost [24].

Grid pattern is a typical surface pattern. Some researchers have studied methods
with a grid pattern in recent decades [6,24–30]. Salvi et al. [25] employed a chromatic
grid pattern with six different colors to identify lines, where three colors are assigned
for horizontal lines, and the other three for vertical lines. The De Bruijn sequence with
order determines the three colors of three adjacent lines. Sagawa et al. [26] used a periodic
color-encoded grid pattern to achieve more accurate retrieval correspondence. Furukawa
et al. [31] proposed a grid pattern with two colors to distinguish the vertical and hori-
zontal lines. Then coplanarity constraint and epipolar constraint are utilized to retrieve
the correspondence. All of these methods require projecting a chromatic pattern for cor-
respondence retrieval. Shi et al. [24] investigated the depth sensing method by using a
coding-free binary grid pattern based on a camera and a DLP projector stereo platform. A
coarse-to-fine line detection strategy was applied for extracting the grid. A graph-based
topological labeling algorithm was proposed to determine the topological coordinates of
the intersections of the grid. By using the topology of the grid and the epipolar constraint,
the corresponding pixels between the projected and captured pattern were matched. Then
the 3D reconstruction was implemented, based on the triangular stereo model. However,
low calibration accuracy of the camera–projector stereo system may occur and influence
the correspondence determination with epipolar constraint. The sub-grid pixel matching
is realized by solving an over-determined system of equation. The least square solution
should be calculated in every sensing process.

This paper aimed to provide a simple and effective single-shot 3D reconstruction
approach using the grid pattern-based structured-light vision method. Without the use of
the epipolar constraint, the system model was directly combined with the camera model
and multiple light plane equations, which avoids the error propagation due to the low
calibration accuracy of the stereo vision model. Thus, the uniqueness of the grid feature
retrieval is the only critical task in the calibration and reconstruction. We investigated
the extraction method of grid stripe features. The calibration method, based on coplanar
constraint, is proposed. The experimental setup consisted of a camera and an LED projector.
Experiments were carried out to verify the accuracy of the proposed method.

The remainder of this paper is organized as follows. In Section 2, we introduce
the system model. And the extraction method of the grid stripe features is explained.
Furthermore, the system calibration procedure is also elaborated in Section 2. Experimental
results are presented in Section 3. We make a conclusion in Section 4.

2. Methods

In this section, the system model is first elaborated, and the model coefficients intro-
duced. Then, the extraction method of the grid stripe features is investigated. Finally, the
calibration procedures are proposed.

The extraction method of the grid stripe features guaranteed unique retrieval during
measurement and calibration. The disturbance to the grid stripe extraction during calibra-
tion was addressed. The calibration procedures could be accomplished by collecting only
one set of images.

2.1. System Model

Generally, an SL system, using grid pattern only, has two components: a camera and a
projector (Figure 1). The binary grid pattern is shown in Figure 2. The value Ow-XwYwZw is
the world coordinate system, wherein the measured object is located. The value Oc-XcYcZc
is the camera coordinate system, OI-XIYI is the physical image coordinate system, and
o-UV is the pixel coordinate system corresponding to OI-XIYI. The projector casts the
grid pattern onto the object. The camera captures the grid feature image indicating the
object topography. Point M is one intersection of the grid pattern and the object surface.
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According to the pinhole model, the point m is the ideal (distortion-free) pixel point of the
object point M. The measuring coordinate system is usually consistent with Oc-XcYcZc.
Thus, the conversion function between m(u, v) and M(xc, yc, zc) can be expressed as [32]:

zc

u
v
1

 =

 fx 0 u0
0 fy v0
0 0 1

[Rw
c Tw

c
]

xw
yw
zw
1

 =

 fx 0 u0
0 fy v0
0 0 1

xc
yc
zc

 (1)

where (xw, yw, zw) represents the coordinates of point M in Ow-XwYwZw; fx and fy are the
camera pixel focal lengths in the horizontal ordinate direction, respectively; (u0, v0) are the
coordinates of the principal point in o-UV; Rw

c and Tw
c represent the rotation matrix and the

translational vector from Ow-XwYwZw to Oc-XcYcZc.
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The projected grid pattern could be defined as multiple orthogonal light planes in
Oc-XcYcZc. The equations of the planes are as follows [33]:{

ΠHi : aHixc + bHiyc + cHizc + dHi = 0, (i = 1, 2, . . . , n)
ΠVj : aVjxc + bVjyc + cVjzc + dVj = 0, (j = 1, 2, . . . , n)

(2)
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where ΠHi is the horizontal light plane; ΠVj is the vertical light plane; [aHi, bHi, cHi, dHi]
and [aVj, bVj, cVj, dVj] represent the four coefficients of each ΠHi and ΠVj, respectively; n is
the number of the planes.

The pinhole model and the multiple light plane constraint, (xc, yc, zc) combined can be
calculated using the following formula:

xc =
(u−u0)·zc

fx

yc =
(v−v0)·zc

fy

zc =
−di

ai ·
(u−u0)

fx
+bi ·

(v−v0)
fy

+ci

(3)

where [ai, bi, ci, di] is [aHi, bHi, cHi, dHi] or [aVj, bVj, cVj, dVj].
In addition, the distortion caused by the lens is inevitable. Considering the tangen-

tial distortion and radial distortion, the relationship between the actual (distorted) pixel
coordinates (ud, vd) and ideal pixel coordinates (u, v) of point m can be expressed as [34]:[

ud
vd

]
=
(

1 + k1r2 + k2r4
)[u

v

]
+

[
2p1uv + p2

(
r2 + 2u2)

2p2uv + p1
(
r2 + 2v2)] (4)

where r is the distance between (u, v) and (u0, v0); (k1, k2) are the radial distortion coefficients;
(p1, p2) are the tangential distortion coefficients.

2.2. Extraction of the Grid Stripe Features

The grid pattern consists of a number of intersecting light stripes. The common
algorithms for stripe center extraction are inaccurate [35,36]. The intersections of the grid
lines could be precisely extracted based on our previous work [37]. Thus, an effective
extraction method of the grid stripe features is proposed. The procedures of the method
are as follows:

(1) The corner points of the grid lines are detected by using the Shi-Tomasi algorithm [38].
The green points in Figure 3b indicate the corner of the intersecting lines.

(2) Then the corner points are clustered into m groups by using the DBSCAN algo-
rithm [39]. The points in the same group wrap one of the intersecting regions Ri (i = 1,
2, . . . m) as shown in Figure 3c.

(3) After that, the center points of the regions can be easily obtained and sorted to be the
markers (Figure 3d).

(4) The gray centroid method is used to extract the strip centers between adjacent markers
(Figure 3e). Finally, the horizontal stripes, LHi, and vertical stripes, LVj, are obtained
and topologically labeled (Figure 3f).

During the calibration, the grid pattern should be projected on the calibration board
(Figure 4). The white circles on the board can disturb the corner extraction (Figure 5b).
To solve the problem, the gray value of the ellipse region on the input image is properly
attenuated. The ellipses are extracted during the calibration. The maximum gray value
in each ellipse is used as the threshold of gray filtering to remove the interference of the
white circles. After the image gray attenuation, the corner detection of the output image
(Figure 5d) can achieve the correct result (Figure 5e). Hence, the extraction of grid stripe
features in a captured image is guaranteed by using the proposed algorithm. In Figure 6,
the red lines tag the extracted horizontal stripes, while the yellow lines tag the vertical ones.
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2.3. Calibration Procedures

According to the measuring principle of the SL system using a grid pattern, there are
three categories of parameters which need to be calibrated: intrinsic parameters (fx, fy, u0,
v0), distortion coefficients (k1, k2, p1, p2) and multiple light planes (ΠHi, ΠVj). By obtaining
different pose views of a 2D coplanar point calibration board under several angles, all the
parameters can be calibrated with a simple operation (Figure 7).
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The procedures of the system calibration are shown in Figure 8. The calibration board
as a target are placed in different poses (Figure 7). The grid pattern is projected on the
board at each position. A set of target images and corresponding grid pattern images are
acquired first.
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The elliptic centers on each target image are extracted to provide the data for the cam-
era calibration. By adopting Zhang’s method [40], the intrinsic parameters and distortion
coefficients can be obtained. In addition, the rotation matrix Ri and translation vector Ti of
each target pose can be calculated. The equations of the target planes in Oc-XcYcZc can be
formed as:

atixc + btiyc + ctizc + dti = 0 (5)

where
→
n = [ati, bti, cti] is the third column of Ri, dtn = -

→
n ·Ti. n = 1, 2, . . . , N. N is the total

number of the positions.
Meanwhile, the stripe centers extraction is performed on the grid pattern images. The

actual (distorted) pixel coordinates of the centers are labelled according to the topological
relationship of the grids. The values m′nVij and m′nHij are the actual pixel points on the vertical
and horizontal stripes, respectively. Subsequently, the ideal (distortion-free) pixel points
mn

Vij and mn
Hij are calculated by substituting the actual pixel coordinates and calibrated

distortion coefficients into Equation (4). By combining Equations (1) and (5), the 3D
coordinates of the ideal pixel points in Oc-XcYcZc can be obtained. The values Mn

Vij and
Mn

Hij are the 3D grid feature points on the target planes and also the points on the grid light
planes. Finally, the equations of the vertical and horizontal light planes can be fitted with
the corresponding Mn

Vij and Mn
Hij.

3. Experiments and Discussion

The experimental platform was constructed as shown in Figure 9. The camera was a
Hikvision MV-CA013-21UM, with a 1280 × 1024 resolution. The focal length of the lens
was 16 mm. Instead of utilizing a DLP projector, a low-cost LED projector was employed,
which minimized the cost, reducing it by about 60%. The projector was the OPT structured
light source OPT-SL03-R, with 16 × 16 grid stripes. The camera and the projector were
aligned with an angle. The system parameters were calibrated in advance. An electric
sliding table (Zolix TSA200) and a grating ruler with 1 µm accuracy were used to verify the
precision of measurements. The algorithms and software were developed using Visual C#
2019 and opencv.
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Figure 9. The experimental setup.

It should be noted that the grid pattern-based structured-light vision method suffers
from a monotonicity constraint, even though it has many advantages in terms of higher
accuracy and lower cost, compared with time-of-flight (ToF) and stereo vision [24]. The
method is not capable of measuring large depth changes due to the monotonicity constraint.
There is an upper bound of depth change. When all the local depth changes in a scene
were less than the upper bound, the monotonicity constraint was satisfied, and, thus, all
the light stripes could be obtained in the image (Figure 10a). The monotonicity constraint
was violated when measuring depth changes over the upper bound, resulting in loss of
light stripes (Figure 10b).
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Figure 10. The acquired images with depth variations in a target scene. (a) The image with all light
stripes when the monotonicity constraint was satisfied; (b) The image with light strip loss during
measuring depth changes over the upper bound.

The upper bound of depth change, by employing the method is given by the following
formula [24]:

∆z =
z2

0∆d
fpB + z0∆d

(6)

where fp denotes the focal length of the projector, B denotes the length of the baseline, z0
denotes the reference depth, and ∆d denotes the line interval in the projected grid. In our
system, z0 = 450 mm, ∆d = 0.45 mm, B = 250 mm, fp = 35 mm. Thus, the ∆z = 10.179 mm.

3.1. System Calibration

The 2D coplanar calibration board for the calibration had plenty of circular features
(Figure 11). The specification of the target is shown in Table 1.
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Table 1. The specification of the target.

Specifications Values

Boundary dimensions (mm) 180 × 150
Circle diameter (mm) 7 (L), 3.5 (S)
Center distance (mm) 15

Array number 11 × 9
Precision (mm) ±0.01

The target was placed at six different positions in the viewing field of the camera. The
contour points of the white circles were extracted and fitted to the ellipses, as shown in
Figure 12a. The ellipse centers were regarded as the feature points for calibration. The
ellipse centers were sorted and marked according to topological ordering, as shown in
Figure 12b.
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(b) Extracted feature centers and topological ordering results of the different views.
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By utilizing Zhang’s method [40], the intrinsic parameters, distortion coefficients and
relative poses Ri, Ti were obtained. The intrinsic parameters and distortion coefficients
are listed in Table 2. The rotation matrix Ri was transformed into a vector formation rveci,
consisting of Euler angles. The extrinsic parameters of the six pose views are listed in
Table 3. The reprojection errors were the distances from the measured 2D points and
their respective projections obtained by applying the calibrated camera model to the 3D
points [41]. The mean reprojection errors of the six images were below 0.103 pixel, as shown
in Figure 13.

Table 2. The intrinsic parameters and distortion coefficients.

Parameters Results

fx, fy (pixel) 3354.0982, 3354.8173
u0, v0 (pixel) 697.163, 478.755

k1, k2 −0.041, −1.344
p1, p2 −0.00039, −0.00041

Table 3. The extrinsic parameters of the six pose views.

Pose Views rveci Ti

1 [−3.020, 0.046, −0.760] [1.616, 5.987, 514.204]
2 [−3.124, 0.083, −0.186] [−8.074, 5.674, 511.550]
3 [−3.048, 0.017, −0.677] [−18.359, 5.856, 500.676]
4 [−3.073, −0.015, −0.548] [−25.7326, 0.505, 549.236]
5 [−3.021, 0.031, −0.023] [−7.029, 5.590, 469.236]
6 [−2.990, 0.909, −0.355] [−9.006, 2.654, 464.551]
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Figure 13. The mean reprojection errors.

There were sixteen horizontal and sixteen vertical planes on the grid pattern. The
parameters of the light planes are listed in Table 4. The values [Aver, Bver, Cver, Dver]
represent the coefficients of the vertical planes, while the values [AHor, BHor, CHor, DHor]
represent the coefficients of the horizontal planes. The planes in the camera coordinate
system are shown in Figure 14.
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Table 4. The parameters of the light planes.

ID [Aver, Bver, Cver, Dver] [AHor, BHor, CHor, DHor]

1 [0.807, 0.009, 0.59, −224.019] [−0.041, 0.996, 0.807, 6.870]
2 [0.814, 0.009, 0.579, −224.667] [−0.035, 0.997, 0.071, 6.137]
3 [0.821, 0.008, 0.569, −225.443] [0.029, −0.998, −0.061, −5.225]
4 [0.829, 0.008, 0.558, −225.711] [−0.023, 0.999, 0.05, 4.704]
5 [0.836, 0.007, 0.548, −226.566] [−0.016, 0.999, 0.039, 4.195]
6 [0.843, 0.007, 0.537, −226.901] [−0.01, 0.999, 0.028, 3.694]
7 [0.849, 0.007, 0.527, −227.53] [−0.003, 0.999, 0.017, 3.244]
8 [0.856, 0.006, 0.516, −227.949] [0.004, 1.000, 0.006, 2.82]
9 [0.863, 0.005, 0.505, −228.439] [−0.01, −0.999, 0.005, −2.447]
10 [0.869, 0.006, 0.493, −228.702] [−0.017, −0.999, −0.015, 1.838]
11 [0.875, 0.004, 0.483, −229.223] [0.023, −0.999, −0.028, 1.98]
12 [0.881, 0.004, 0.471, −229.522] [0.029, 0.998, −0.037, 1.143]
13 [0.897, 0.004, 0.46, −229.653] [−0.036, −0.998, 0.049, −1.109]
14 [0.893, 0.004, 0.449, −230.287] [0.043, 0.997, −0.059, 0.085]
15 [0.898, 0.003, 0.438, −230.369] [0.048, 0.996, −0.069, −0.395]
16 [0.903, 0.003, 0.428, −231.273] [−0.054, −0.995, 0.078, 1.719]
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Figure 14. The multiple light planes in the camera coordinate system. (a) Vertical light planes.
(b) Horizontal light planes. (c) Space enclosed by the light planes.

3.2. Measurement Verification

Displacement measurement experiments were conducted to evaluate the performance
of the grid pattern-based structured-light vision method. A plane board was placed on the
electrical sliding table and carried to several positions in front of the system. The electrical
sliding table was equipped with a grating ruler (1 µm accuracy). The moving distances
measured by the grating ruler were regarded as the ground truth. Three-dimensional
coordinates of the grid pattern points on the board were obtained by the proposed method
and fitted to planes at each location. The plane at the first position was regarded as the
base plane. The distances from the 3D points on the other planes to the base plane were
calculated sequentially. The measurement results and the corresponding ground truth
values are listed in Table 5. The maximum relative error was 0.840%.
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Table 5. Accuracy verification experiment.

Ground Truth (mm) Measurement Results (mm) Errors (mm) Relative Errors

3.862 3.869 0.007 0.181%
6.838 6.824 −0.014 −0.205%
9.045 8.969 −0.076 −0.840%

12.524 12.475 −0.049 −0.391%
15.601 15.514 −0.087 −0.558%
50.190 20.039 −0.151 −0.748%
24.573 24.558 −0.015 −0.061%
28.892 28.879 −0.013 −0.045%
32.511 32.550 0.039 0.120%
61.571 61.748 0.177 0.287%
113.541 113.880 0.339 0.299%

The 3D reconstruction of a gypsum sphere object was implemented in single-shot by
using the grid pattern-based structured-light vision system. The Intel Realsense D455 is
a popular RGB-D camera, using the speckle-based structured-light stereo vision method.
As shown in Figure 15, a D455 camera was employed to reconstruct the same gypsum
sphere. The approximate distance from the sphere to our system and the RGB-D camera
was 450 mm.
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Figure 15. 3D reconstruction experiment using Intel Realsense D455.

The experimental result using our approach is shown in Figure 16, while the result
using the D455 camera is shown in Figure 17.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 

 

28.892 28.879 −0.013 −0.045%  

32.511 32.550 0.039 0.120%  

61.571 61.748 0.177 0.287%  

113.541 113.880 0.339 0.299%  

The 3D reconstruction of a gypsum sphere object was implemented in single-shot by 

using the grid pattern-based structured-light vision system. The Intel Realsense D455 is 

a popular RGB-D camera, using the speckle-based structured-light stereo vision method. 

As shown in Figure 15, a D455 camera was employed to reconstruct the same gypsum 

sphere. The approximate distance from the sphere to our system and the RGB-D camera 

was 450 mm. 

 

Figure 15. 3D reconstruction experiment using Intel Realsense D455. 

The experimental result using our approach is shown in Figure 16, while the result 

using the D455 camera is shown in Figure 17. 

  

Figure 16. The 3D reconstruction of a sphere object using our approach. (a) Grid pattern image on 

the sphere; (b) Three-dimensional reconstruction result. 
Figure 16. The 3D reconstruction of a sphere object using our approach. (a) Grid pattern image on
the sphere; (b) Three-dimensional reconstruction result.



Appl. Sci. 2022, 12, 10602 13 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15 

 

  

Figure 17. The 3D reconstruction of the sphere object using D455. (a) Depth map; (b) Three-

dimensional reconstruction result. 

The nominal radius of the gypsum sphere was 85 mm. The 3D reconstruction data 

from our system and from the D455 camera were fitted to the sphere equation to calculate 

the measured radius. The measured radius of our approach and of that using D455 are 

listed in Table 6. 

Table 6. The measured radius of our approach and D455. 

Nominal Radius (mm) Our Approach (mm) D455 (mm) 

85.000 84.652 88.937 

4. Conclusions 

In this paper, a simple and effective single-shot 3D reconstruction approach, using 

the grid pattern-based structured-light vision method, was proposed. The system 

consisted of a camera and a low-cost LED projector.  

The grid pattern-based structured-light model was combined with the camera 

pinhole model and the multiple light plane constraint. The tangential distortion and radial 

distortion were compensated for. Without the use of the epipolar constraint, the error 

propagation of the low calibration accuracy of the stereo vision model was avoided. The 

grid pattern consisted of a number of intersecting light stripes. The common algorithms 

for stripe center extraction are inaccurate. However, the intersections of the grid lines 

could be precisely extracted. Following the topological distribution of the intersections, 

an effective extraction method was investigated to gather the sub-pixel centers on the grid 

strips. The white circles on the calibration board could disturb the extraction. To solve the 

problem, the gray value of the ellipse region on the input image was properly and 

automatically attenuated. A calibration method, based on the coplanar constraint, was 

presented, which could be implemented in one step.  

Displacement measurement experiments were conducted to evaluate the 

performance of the proposed method. The displacements measured by the grating ruler 

with 1 µm accuracy were regarded as the ground truth. The maximum relative error 

between the measurement results and the corresponding ground truth values was 0.840%. 

The 3D reconstruction of a sphere object was implemented in single-shot by using the grid 

pattern-based structured-light vision system. By comparing this with the reconstruction 

of the sphere from the commercial RGB-D camera, the proposed method was verified. 

Following the development of deep learning techniques, the detection and 

correspondence retrieval techniques of the grid pattern could achieve several innovations 

in the future. 

Author Contributions: Conceptualization, G.W. and B.L.; methodology, G.W. and B.L.; software, 

F.Y. and Y.H.; validation, G.W., B.L. and F.Y.; formal analysis, B.L. and Y.Z.; investigation, B.L. and 

Y.Z.; resources, B.L. and Y.Z.; data curation, B.L., Y.H. and F.Y.; writing—original draft preparation, 

B.L. and F.Y.; writing—review and editing, G.W. and B.L.; visualization, F.Y. and Y.H.; supervision, 

Figure 17. The 3D reconstruction of the sphere object using D455. (a) Depth map; (b) Three-
dimensional reconstruction result.

The nominal radius of the gypsum sphere was 85 mm. The 3D reconstruction data
from our system and from the D455 camera were fitted to the sphere equation to calculate
the measured radius. The measured radius of our approach and of that using D455 are
listed in Table 6.

Table 6. The measured radius of our approach and D455.

Nominal Radius (mm) Our Approach (mm) D455 (mm)

85.000 84.652 88.937

4. Conclusions

In this paper, a simple and effective single-shot 3D reconstruction approach, using the
grid pattern-based structured-light vision method, was proposed. The system consisted of
a camera and a low-cost LED projector.

The grid pattern-based structured-light model was combined with the camera pin-
hole model and the multiple light plane constraint. The tangential distortion and radial
distortion were compensated for. Without the use of the epipolar constraint, the error
propagation of the low calibration accuracy of the stereo vision model was avoided. The
grid pattern consisted of a number of intersecting light stripes. The common algorithms for
stripe center extraction are inaccurate. However, the intersections of the grid lines could be
precisely extracted. Following the topological distribution of the intersections, an effective
extraction method was investigated to gather the sub-pixel centers on the grid strips. The
white circles on the calibration board could disturb the extraction. To solve the problem,
the gray value of the ellipse region on the input image was properly and automatically
attenuated. A calibration method, based on the coplanar constraint, was presented, which
could be implemented in one step.

Displacement measurement experiments were conducted to evaluate the performance
of the proposed method. The displacements measured by the grating ruler with 1 µm
accuracy were regarded as the ground truth. The maximum relative error between the
measurement results and the corresponding ground truth values was 0.840%. The 3D
reconstruction of a sphere object was implemented in single-shot by using the grid pattern-
based structured-light vision system. By comparing this with the reconstruction of the
sphere from the commercial RGB-D camera, the proposed method was verified. Following
the development of deep learning techniques, the detection and correspondence retrieval
techniques of the grid pattern could achieve several innovations in the future.

Author Contributions: Conceptualization, G.W. and B.L.; methodology, G.W. and B.L.; software,
F.Y. and Y.H.; validation, G.W., B.L. and F.Y.; formal analysis, B.L. and Y.Z.; investigation, B.L. and
Y.Z.; resources, B.L. and Y.Z.; data curation, B.L., Y.H. and F.Y.; writing—original draft preparation,
B.L. and F.Y.; writing—review and editing, G.W. and B.L.; visualization, F.Y. and Y.H.; supervision,



Appl. Sci. 2022, 12, 10602 14 of 15

G.W.; project administration, G.W.; funding acquisition, G.W., B.L. and F.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51835007),
Natural Science Foundation of Tianjin (21JCZDJC00760), “Project + Team” Key Training Fund of
Tianjin (XC202054), Tianjin Graduate Scientific Research Innovation Project (2020YJSS013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this research are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cao, J.; Li, C.; Li, C.; Zhang, X.; Tu, D. High-reflectivity surface measurement in structured-light technique by using a transparent

screen. Measurement 2022, 196, 111273. [CrossRef]
2. Wang, H.; Ma, J.; Yang, H.; Sun, F.; Wei, Y.; Wang, L. Development of three-dimensional pavement texture measurement technique

using surface structured light projection. Measurement 2021, 185, 110003. [CrossRef]
3. Yang, G.; Wang, Y. Three-dimensional measurement of precise shaft parts based on line structured light and deep learning.

Measurement 2022, 191, 110837. [CrossRef]
4. Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131.

[CrossRef]
5. Stempin, J.; Tausendfreund, A.; Stöbener, D.; Fischer, A. Roughness measurements with polychromatic speckles on tilted surfaces.

Nanomanufacturing Metrol. 2021, 4, 237–246. [CrossRef]
6. Wang, Z. Review of real-time three-dimensional shape measurement techniques. Measurement 2020, 156, 107624. [CrossRef]
7. Li, R.; Li, F.; Niu, Y.; Shi, G.; Yang, L.; Xie, X. Maximum a posteriori-based depth sensing with a single-shot maze pattern. Opt.

Express 2017, 25, 25332–25352. [CrossRef]
8. Li, F.; Shang, X.; Tao, Q.; Zhang, T.; Shi, G.; Niu, Y. Single-shot depth sensing with pseudo two-dimensional sequence coded

discrete binary pattern. IEEE Sens. J. 2021, 21, 11075–11083. [CrossRef]
9. Pan, X.; Liu, Z. High-accuracy calibration of line-structured light vision sensor by correction of image deviation. Opt. Express

2019, 27, 4364–4385. [CrossRef]
10. Li, W.; Hou, D.; Luo, Z.; Mao, X. 3D measurement system based on divergent multi-line structured light projection, its accuracy

analysis. Optik 2021, 231, 166396. [CrossRef]
11. Lu, X.; Wu, Q.; Huang, H. Calibration based on ray-tracing for multi-line structured light projection system. Opt. Express 2019, 27,

35884–35894. [CrossRef] [PubMed]
12. Salvi, J.; Fernandez, S.; Pribanic, T.; Llado, X. A state of the art in structured light patterns for surface profilometry. Pattern

Recognit. 2010, 43, 2666–2680. [CrossRef]
13. Yin, W.; Feng, S.; Tao, T.; Huang, L.; Trusiak, M.; Chen, Q.; Zuo, C. High-speed 3D shape measurement using the optimized

composite fringe patterns and stereo-assisted structured light system. Opt. Express 2019, 27, 2411–2431. [CrossRef] [PubMed]
14. Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt.

Lasers Eng. 2018, 109, 23–59. [CrossRef]
15. Vuylsteke, P.; Oosterlinck, A. Range image acquisition with a single binary-encoded light pattern. IEEE Trans. Pattern Anal. Mach.

Intell. 1990, 12, 148–164. [CrossRef]
16. Shi, G.; Yang, L.; Li, F.; Niu, Y.; Li, R.; Gao, Z.; Xie, X. Square wave encoded fringe patterns for high accuracy depth sensing. Appl.

Opt. 2015, 54, 3796–3804. [CrossRef]
17. Wang, L.; Chen, Y.; Han, X.; Fu, Y.; Zhong, K.; Jiang, G. A 3D shape measurement method based on novel segmented quantization

phase coding. Opt. Lasers Eng. 2018, 113, 62–70. [CrossRef]
18. Shoji, E.; Komiya, A.; Okajima, J.; Kubo, M.; Tsukada, T. Three-step phase-shifting imaging ellipsometry to measure nanofilm

thickness profiles. Opt. Lasers Eng. 2019, 112, 145–150. [CrossRef]
19. Fu, B.; Li, F.; Zhang, T.; Jiang, J.; Li, Q.; Tao, Q.; Niu, Y. Single-shot colored speckle pattern for high accuracy depth sensing. IEEE

Sens. J. 2019, 19, 7591–7597. [CrossRef]
20. Pagès, J.; Salvi, J.; Collewet, C.; Forest, J. Optimised de bruijn patterns for one-shot shape acquisition. Image Vis. Comput. 2005, 23,

707–720. [CrossRef]
21. Albitar, C.; Graebling, P.; Doignon, C. Robust structured light coding for 3D reconstruction. In Proceedings of the 2007 IEEE 11th

International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–6.
22. Li, Q.; Li, F.; Shi, G.; Gao, S.; Li, R.; Yang, L.; Xie, X. One-shot depth acquisition with a random binary pattern. Appl. Opt. 2014, 53,

7095–7102. [CrossRef] [PubMed]

http://doi.org/10.1016/j.measurement.2022.111273
http://doi.org/10.1016/j.measurement.2021.110003
http://doi.org/10.1016/j.measurement.2022.110837
http://doi.org/10.1016/j.optlaseng.2018.02.017
http://doi.org/10.1007/s41871-020-00093-0
http://doi.org/10.1016/j.measurement.2020.107624
http://doi.org/10.1364/OE.25.025332
http://doi.org/10.1109/JSEN.2021.3061146
http://doi.org/10.1364/OE.27.004364
http://doi.org/10.1016/j.ijleo.2021.166396
http://doi.org/10.1364/OE.27.035884
http://www.ncbi.nlm.nih.gov/pubmed/31878753
http://doi.org/10.1016/j.patcog.2010.03.004
http://doi.org/10.1364/OE.27.002411
http://www.ncbi.nlm.nih.gov/pubmed/30732279
http://doi.org/10.1016/j.optlaseng.2018.04.019
http://doi.org/10.1109/34.44402
http://doi.org/10.1364/AO.54.003796
http://doi.org/10.1016/j.optlaseng.2018.10.004
http://doi.org/10.1016/j.optlaseng.2018.09.005
http://doi.org/10.1109/JSEN.2019.2916479
http://doi.org/10.1016/j.imavis.2005.05.007
http://doi.org/10.1364/AO.53.007095
http://www.ncbi.nlm.nih.gov/pubmed/25402799


Appl. Sci. 2022, 12, 10602 15 of 15

23. Lavoie, P.; Ionescu, D.; Petriu, E. 3D object model recovery from 2D images using structured light. IEEE Trans. Instrum. Meas.
2004, 53, 437–443. [CrossRef]

24. Shi, G.; Li, R.; Li, F.; Niu, Y.; Yang, L. Depth sensing with coding-free pattern based on topological constraint. J. Vis. Commun.
Image Represent. 2018, 55, 229–242. [CrossRef]

25. Salvi, J.; Batlle, J.; Mouaddib, E. A robust-coded pattern projection for dynamic 3D scene measurement. Pattern Recognit. Lett.
1998, 19, 1055–1065. [CrossRef]

26. Sagawa, R.; Furukawa, R.; Kawasaki, H. Dense 3D reconstruction from high frame-rate video using a static grid pattern. IEEE
Trans. Pattern Anal. Mach. Intell. 2014, 36, 1733–1747. [CrossRef]

27. Je, C.; Lee, S.W.; Park, R.-H. High-contrast color-stripe pattern for rapid structured-light range imaging. In Proceedings of the
Computer Vision—ECCV 2004, Prague, Czech Republic, 11–14 May 2004; Springer: Berlin/Heidelberg, Germany; pp. 95–107.
[CrossRef]

28. Jason, G.Z. Rainbow three-dimensional camera: New concept of high-speed three-dimensional vision systems. Opt. Eng. 1996, 35,
376–383.

29. Ulusoy, A.O.; Calakli, F.; Taubin, G. Robust one-shot 3D scanning using loopy belief propagation. In Proceedings of the 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, San Francisco, CA, USA, 13–18 June
2010; pp. 15–22.

30. Ulusoy, A.O.; Calakli, F.; Taubin, G. One-shot scanning using De Bruijn spaced grids. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009;
pp. 1786–1792.

31. Furukawa, R.; Kawasaki, H.; Sagawa, R.; Yagi, Y. Shape from grid pattern based on coplanarity constraints for one-shot scanning.
IPSJ Trans. Comput. Vis. Appl. 2009, 1, 139–157. [CrossRef]

32. Cui, Y.; Zhou, F.; Wang, Y.; Liu, L.; Gao, H. Precise calibration of binocular vision system used for vision measurement. Opt.
Express 2014, 22, 9134–9149. [CrossRef]

33. Wang, X.; Zhu, Z.; Zhou, F.; Zhang, F. Complete calibration of a structured light stripe vision sensor through a single cylindrical
target. Opt. Lasers Eng. 2020, 131, 106096. [CrossRef]

34. Liu, X.; Liu, Z.; Duan, G.; Cheng, J.; Jiang, X.; Tan, J. Precise and robust binocular camera calibration based on multiple constraints.
Appl. Opt. 2018, 57, 5130–5140. [CrossRef]

35. Qi, L.; Zhang, Y.; Zhang, X.; Wang, S.; Xie, F. Statistical behavior analysis and precision optimization for the laser stripe center
detector based on Steger’s algorithm. Opt. Express 2013, 21, 13442–13449. [CrossRef] [PubMed]

36. He, L.; Wu, S.; Wu, C. Robust laser stripe extraction for three-dimensional reconstruction based on a cross-structured light sensor.
Appl. Opt. 2017, 56, 823–832. [CrossRef] [PubMed]

37. Yang, F. Binocular measurement method using grid structured light. Chin. J. Lasers 2021, 48, 64–76.
38. Shi, J. Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition, Seattle,

WA, USA, 21–23 June 1994; pp. 593–600.
39. Hou, J.; Gao, H.; Li, X. Dsets-DBSCAN: A parameter-free clustering algorithm. IEEE Trans. Image Process. 2016, 25, 3182–3193.

[CrossRef] [PubMed]
40. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
41. Albarelli, A.; Rodolà, E.; Torsello, A. Robust camera calibration using inaccurate targets. In Proceedings of the British Machine

Vision Conference, Aberystwyth, UK, 31 August–3 September 2010.

http://doi.org/10.1109/TIM.2004.823320
http://doi.org/10.1016/j.jvcir.2018.06.009
http://doi.org/10.1016/S0167-8655(98)00085-3
http://doi.org/10.1109/TPAMI.2014.2300490
http://doi.org/10.1007/978-3-540-24670-1_8
http://doi.org/10.2197/ipsjtcva.1.139
http://doi.org/10.1364/OE.22.009134
http://doi.org/10.1016/j.optlaseng.2020.106096
http://doi.org/10.1364/AO.57.005130
http://doi.org/10.1364/OE.21.013442
http://www.ncbi.nlm.nih.gov/pubmed/23736597
http://doi.org/10.1364/AO.56.000823
http://www.ncbi.nlm.nih.gov/pubmed/28158082
http://doi.org/10.1109/TIP.2016.2559803
http://www.ncbi.nlm.nih.gov/pubmed/28113183
http://doi.org/10.1109/34.888718

	Introduction 
	Methods 
	System Model 
	Extraction of the Grid Stripe Features 
	Calibration Procedures 

	Experiments and Discussion 
	System Calibration 
	Measurement Verification 

	Conclusions 
	References

