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Abstract: Energy demand is rising sharply due to the technological development and progress of
modern times. Neverthless, traditional thermal power generation has several diadvantages including
its low energy usage and emitting a lot of polluting gases, resulting in the energy depletion crisis and
the increasingly serious greenhouse effect. In response to environmental issues and energy depletion,
the Combined Cooling, Heating and Power system (CCHP) combined with the power-generation
system of renewable energy, which this work studied, has the advantages of high energy usage
and low environmental pollution compared with traditional thermal power generation, and has
been gradually promoted in recent years. This system needs to cooperate with the instability of
renewable energy and the dispatch of the energy-saving system; the optimization of the system has
been researched recently for this purpose. This study took Xikou village, Lieyu township, Kinmen
county, Taiwan as the experimental region to solve the optimization problem of CCHP combined
with renewable energy and aimed to optimize the multi-objective system including minimizing the
operation cost, minimizing the carbon emissions, and maximizing the energy utilization rate. This
study converted the original multi-objective optimization problem into a single-objective optimization
problem by using the Technique for Order Preference by Similarity to and Ideal Solution (TOPSIS)
approach. In addition, a hybrid of the simplified swarm optimization (SSO) and differential evolution
(DE) algorithm, called SSO-DE, was proposed in this research to solve the studied problem. SSO-DE
is based on SSO as the core of the algorithm and is combined with DE as the local search strategy. The
contributions and innovations of the manuscript are clarified as follows: 1. a larger scale of CCHP
was studied; 2. the parallel connection of the mains, allowing the exchange of power with the main
grid, was considered; 3. the TOPSIS was adopted in this study to convert the original multi-objective
optimization problem into a single-objective optimization problem; and 4. the hybrid of the DE
algorithm with the improved SSO algorithm was adopted to improve the efficiency of the solution.
The proposed SSO-DE in this study has an excellent ability to solve the optimization problem of CCHP
combined with renewable energy according to the Friedman test of experimental results obtained by
the proposed SSO-DE compared with POS-DE, iSSO-DE, and ABC-DE. In addition, SSO-DE had the
lowest running time compared with POS-DE, iSSO-DE, and ABC-DE in all experiments.

Keywords: combined cooling; heating and power system (CCHP); renewable energy; multi-objective;
Technique for Order Preference by Similarity to and Ideal Solution (TOPSIS); simplified swarm
optimization (SSO)-differential evolution (DE)

1. Introduction

In modern times, determining how to save energy and reduce carbon while simultane-
ously pursuing technological progress and meeting human needs has become an important
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issue worldwide as fossil fuels are on the verge of exhaustion and the greenhouse effect has
intensified year by year. Renewable energy, which refers to energy types as solar energy,
wind power, and ocean energy, etc., is the key to solving the aforementioned problems [1–4].
After consumption of the renewable energy, it can be regenerated and recycled in nature,
resulting in less pollution and high environmental sustainability. The growth rate of re-
newable energy in 2017 was as high as 17% compared with 2016, amounting to the highest
growth rate in the past ten years according to statistics from BP Statistical Review of World
Energy June 2018 [5]. The use of renewable energy is not only an alternative, new form of
energy but also contributes to reducing environmental pollution.

The use of renewable energy depends entirely on climate conditions, e.g., solar power
cannot be used at night, and wind turbines cannot be started when the wind speed is
too low. Therefore, the power generation of renewable energy generators is intermittent.
If they are directly integrated into the power grid, they will cause voltage fluctuations
and frequency instability, resulting in poor-quality power supply and even damage to
the power grid [6]. The distributed energy system (DES) combined with the microgrid
is widely used in the power-generation systems of renewable energy [7,8] because it is a
regional small power grid that can coordinate with the intermittency of renewable energy
and coordinate all units in the system, which include the renewable energy generator sets,
small fuel generator sets, power storage equipment, and energy management systems, to
stabilize voltage and frequency.

The microgrid of DES is characterized by the fact that the generating units are dis-
tributed near users. Unlike traditional power generation, which requires multiple transfor-
mations and long-distance transportation, it can reduce the loss of power transmission as
well as the transmission load of the main grid and improve the peak and valley load of the
power grid [9,10]. In addition, the energy management system in the DES can coordinate
and manage all generator sets, which were originally distributed, to improve the reliability
and safety of users’ electricity and can also adjust the output power of each generator set to
provide a different strategy of power supply [6].

The microgrid of DES can effectively improve the efficiency of energy use, reduce
environmental pollution, and at the same time realize energy saving and carbon reduction;
however, the global electricity demand still mainly relies on traditional thermal power
generation such that its energy conversion rate is between 35% to 50% and its disadvantages
include long-distance transportation of electric energy through the main grid, resulting
in additional energy loss during the transportation process, a large amount of waste
heat, and the emission of greenhouse gases during the power-generation process, causing
environmental pollution and global warming, and about half of the energy is lost due
to waste-heat emissions [11]. Thus, the combined cooling, heating, and power system
(CCHP), which adds gas-turbine generators and absorption refrigeration equipment based
on the distributed energy system, has been widely promoted and researched in recent
years in order to improve the overall energy conversion rate [12]. The recovery of waste
heat generated during power generation by gas-turbine generators can not only use the
recovered waste heat to meet thermal needs, such as hot water and high-temperature steam,
but also convert heat energy into cold energy through absorption refrigeration equipment
to meet the users’ cold energy needs, such as air conditioning systems. Therefore, the
energy conversion rate of CCHP theoretically reaches up to about 90% [13]. Countries all
over the world are pursuing the concept of sustainable operation with the rising awareness
of environmental protection; hence, how to apply CCHP to generate electricity while
achieving energy saving and carbon reduction is an important research topic, which led to
this study.

Most of the research on CCHP is limited to construction, such as hotels and hospi-
tals [14,15], and there are few discussions on a larger scale of CCHP such as for the scope
of a community or for larger settlements such as villages and towns because the develop-
ment of CCHP must take into account factors such as energy prices, the subsidy policies
of the government, etc. Thus, CCHP largely faces the test of economic cost and many
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insurmountable cost issues that limit its development. However, the promotion of CCHP is
necessary to solve the problem of global energy depletion. Therefore, this work studied
CCHP based on Xikou village, Lieyu township, Kinmen county, Taiwan, where the Taiwan
government’s promotion of the development of outlying island microgrids and renewable
energy and the implementation of the Kinmen low-carbon island project coincide, as an
experimental case. It has the advantage of a government subsidy policy and is currently
the highest-potential area in Taiwan to realize the CCHP-combined-with-microgrid system
of renewable energy [16].

Except that mentioned in the previous paragraph, most of the relevant literature
studies the small-scale-building-type CCHP; most of the literature does not consider selling
electricity to the main grid, which reduces the flexibility of parallel exchange of electricity
between the mains and also weakens the advantages of the microgrid in peak saving and
valley filling. Considering these reasons, this work studied a large-scale CCHP combined
with renewable energy generators and considered the parallel connection of the mains,
allowing the exchange of power with the main grid. In this way, the advantages of CCHP
can be used to cut peaks and fill valleys, reduce operating costs, and make the entire system
more flexible in power-generation scheduling. Therefore, this research considered energy-
storage equipment in the model in addition to the basic equipment in CCHP including the
gas turbine (GT), gas boiler (GB), absorption chiller (AC), and electric chiller (EC) as well
as the electricity-storage device (ES) and heating-storage device (HT).

In addition, in order to more efficiently find the optimal solution to the CCHP problem,
ref. [17] proposed the following electric load (FEL) and following thermal load (FTL)
strategies. These two strategies are based on the electric energy load or thermal energy
load of the current period, respectively, to adjust the power generation of the gas-turbine
generator during the period so that the generated power just meets the electrical load or
thermal energy load. However, when most scholars adopted these two strategies in the
past, they did not consider energy-storage equipment [17–19], which does not meet the
requirements of the energy-storage equipment for dispatching energy supply in the CCHP
system proposed in this study, and assumed that the over-produced energy would be used
by other users. In this study, the experimental case in Taiwan is located in the subtropical
climate zone, where the demand for thermal energy load in winter is not as high as that of
temperate or frigid regions at higher latitudes, so the FTL is relatively unsuitable. Therefore,
this research only adopted the concept of FEL to make the gas-turbine generator meet
at least a certain proportion of the electric energy load during this period and cancel the
assumptions mentioned above to be closer to the real situation.

The CCHP optimization problem requires establishing a mathematical model under
the constraints of the energy balance and the operation mode of each unit to pursue the
maximum benefit of each objective. Most of early scholars studied the optimization of
CCHP on the single-objective problem of optimizing for achieving the lowest cost [15].
Since then, with the rise of environmental awareness, topics of CCHP research have begun
to focus on environmental-protection aspects such as lowering carbon emissions and
increasing the energy conversion rate and transformed the optimization problem into a
multi-objective issue [20]. In recent years, the combination of CCHP and renewable energy
is the developing trend because the development of renewable energy is becoming more and
more mature. Thus, several algorithms are proposed to solve the related problems [21–25].
Soheyli et al. considered the space constraints of CCHP units, wind power generation, and
solar power generation units, hoping to obtain the best unit combination in a limited space,
and adopted a multi-objective swarm algorithm based on particle-swarm optimization
(PSO) to solve the problem [23]. Wang et al. combined CCHP and solar power generation,
using solar collectors to store solar thermal energy and targeting life cycle assessment,
and optimized the problem by genetic algorithm (GA) [24]. Li et al. took the CCHP of
island operation as a model and considered the influence of the location of renewable
energy devices, such as the angle of solar panel installation and the height of wind turbines,



Appl. Sci. 2022, 12, 10595 4 of 35

which was solved by an evolutionary algorithm: the preference-inspired coevolutionary
algorithm [25].

As for the algorithm, the early literature used the mathematical programming method [26],
which requires many operations to obtain the Plato optimal solution set, leading to its
inefficiency; it is easy to fall into the local optimum in such larger problems, including for
the CCHP multi-objective optimization problem.

Due to the abovementioned limitations and the increasing maturity of evolutionary al-
gorithms, multi-objective optimal algorithms based on evolutionary algorithms have begun
to be widely applied to the CCHP multi-objective optimization problem, such as Multi-
objective Particle Swarm Optimization (MOPSO) [23], Multi-objective Genetic Algorithm
II (MOGA-II) [27], and Preference-Inspired Coevolutionary Algorithm-g (PICEA-g) [25].
Compared with the traditional mathematical programming method, the evolutionary algo-
rithm has high efficiency, good global search ability, and does not easily fall into the local
optimum.

Compared with those in the abovementioned literature, the problem model studied
in this work is more complicated because this study further considered the exchange of
electric energy with the main grid, the capacity of energy-storage equipment, and the
supply of cold energy. Therefore, this study intended to convert the original multi-objective
optimization problem into a single-objective optimization problem by using the Technique
for Order Preference by Similarity to and Ideal Solution (TOPSIS) to measure the balance
between the relationship of various objectives, thereby reducing the calculation steps and
increasing the efficiency of the solution, and by adopting the weights obtained in the
literature [28] to adjust the weight of the trade-off relationship between various objectives.
This helps enable decision-makers to adjust the weight of each goal flexibly according to
the situation and demand of the current conditions in order to achieve the ideal result. In
addition, this study adopted simplified swarm optimization (SSO), which is a relatively
novel method in the field of evolutionary algorithms with swarm intelligence as the core
and which was originally developed by Yeh in 2009 [29] to solve the studied problem. In
order to enhance the capability of the area search of SSO, this study applied the differential
evolution algorithm (DE) as the area search strategy so that SSO has a better chance to
escape the local best solution in the iterative process in order to achieve a higher-quality
final solution.

The contributions and innovations of the manuscript are clarified clearly as follows:

1. This work studied the CCHP based on Xikou village, Lieyu township, Kinmen county,
Taiwan to add to the currently limited discussions on a larger scale of CCHP, such as
in the scope of a community, village, or town.

2. This work studied a large-scale CCHP combined with renewable energy generators
and considered the parallel connection of the mains, allowing the exchange of power
with the main grid.

3. The Technique for Order Preference by Similarity to and Ideal Solution (TOPSIS) was
adopted in this study to convert the original multi-objective optimization problem
into a single-objective optimization problem to measure the balance between the
relationship of various objectives to reduce the calculation steps and increase the
efficiency of the solution.

4. The hybrid of the differential evolution (DE) algorithm with the improved SSO algo-
rithm was adopted to improve the efficiency of the solution.

The other sections of this study are organized as follows. The model of CCHP is
presented in Section 2. Section 3 shows the research methods of this study. Section 4
represents the experimental results and analysis. Finally, the conclusions are indicated in
Section 5.

2. Model of CCHP

The model studied is introduced in this section and its source is mainly from the
related formulas of electric energy, heat, and cooling load requirements compiled in the
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literature [30] including the decision variables, objective formulas, and constraints of the
CCHP optimization problem.

2.1. Decision Variables

The decision variables of the CCHP optimization problem in this study are the power
generated by each machine during each time period in the CCHP system, the power stored
or released by the energy-storage equipment, and the power exchanged with the main grid.
There are a total of seven decisions, which are expressed in the form of a decision vector
X(t) as follows.

X(t) = (CAC(t), CEC(t), PES(t), PGT(t), PGrid(t), QHS(t), QGB(t))

where

CAC(t): Cooling power generated by absorption chiller (AC) during time period t.

CEC(t): Cooling power generated by electric chiller (EC) during time period t.

PES(t): Power stored or released by the electricity-storage device (EC) during time period t.

PGT(t): Power generated by the gas turbine (GT) during time period t.

PGrid(t): Electric power exchanged with the main grid during time period t.

QHS(t):
Heating power stored or released by the heating-storage device (HT) during time

period t.

QGB(t): Heating power generated by the gas boiler (GB) during time period t.

2.2. Objective Formulas

The objective formulas are the operating cost, the carbon emissions, and the energy
utilization rate denoted as F1, F2, and F3 in order. The multi-objective optimization equation
is as follows, Equation (1):

f = min {F1, F2, −F3} (1)

1. The operating cost

F1 =
T

∑
t=1

(FNG(t) + FOM(t) + FGrid(t)) (2)

FNG(t)= FGT(t) + FGB(t) (3)

FOM(t) =
m

∑
i=1

KOM, i × Pi(t) (4)

FGrid(t)= JGrid(t)× PGrid(t) (5)

where
FNG: Fuel cost.

FOM: Operating cost.

FGT: Fuel cost of the gas-turbine generator.

FGB: Fuel cost of the gas boiler.

KOM,i:
Operating cost required for unit power generation of the type i machine.

Pi:
Output power generated by the type i machine.

PGrid: Electricity exchange between the microgrid and main grid.

JGrid: Price per unit of electricity.
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Equation (2) is the total operating cost, which is the sum of the fuel cost, the operating
cost, and the electricity price purchased or sold by the main grid for each time period.
Equation (3) shows that the fuel cost is equivalent to the combined fuel consumption of
gas-turbine generators and gas boilers. Equation (4) is the total operating cost required
for each machine to operate. The final Equation (5) represents the total price of electricity
exchanged with the main grid during the time period defined.

2. The carbon emissions

F2 =
T

∑
t=1

(PGridbuy(t)× uGrid +
FNG(t)× ue

PrNG × ηNG
) (6)

where

uGrid:
The amount of carbon dioxide emitted by per unit of electricity produced by

traditional thermal power generation.

uNG: The amount of carbon dioxide emitted by per unit of burning natural gas.

PrNG: Unit price of natural gas.

ηNG: Heat energy provided by per unit of burning natural gas.

Equation (6) is the total carbon dioxide emissions, that is, the amount of carbon dioxide
emitted by the main grid, which is estimated based on the amount of electricity purchased
from the main grid during each time period, plus the amount of carbon dioxide burned by
natural gas in the CCHP system during each time period.

3. The energy utilization rate

F3 = (
T

∑
t=1

Rout(t))/(
T

∑
t=1

Rin(t)) (7)

Rout(t)= Qload(t) + Pload(t) + Cload(t) + PGridsell(t) (8)

Rin(t)= PPV(t) + PWT(t) +
PGT(t)

ηGT
+

QGB(t)
ηGB

+
QGridbuy

ηGrid
(9)

where
Rout: Total output energy of the system.

Rin: Total input energy of the system.

Qload: Total heat input to the heat load.

Pload: Total electrical energy input to the electrical load.

Cload: Total cold energy input to the cold energy load.

PGridsell: Total electricity sold by the microgrid to the main grid.

PPV: Power generation of solar power.

PWT: Power generation of wind power.

PGT: Power generation of the gas-turbine generators.

QGB: Heat supply of the gas boiler.

PGridbuy: Electricity purchased from the main grid.

ηGT: Energy conversion rate of the gas-turbine generator.

ηGB: Energy conversion rate of the gas boiler.

ηGrid: Energy conversion rate of thermal power-generating units on the main grid.
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Equation (7) is the energy utilization rate, which is calculated by dividing the total
output energy by the total input energy during each time period. Equation (8) is the
output energy during time period t, which is the sum of the electricity, heat, and cooling
energy loads of that time period plus the electric energy sold to the main grid. Equation (9)
is the total input energy, which is equivalent to the sum of solar power generation and
wind power generation during time period t plus the total chemical energy of gas-turbine
generators, gas boilers, and fuel consumed by the main grid.

2.3. Constraints

1. Energy balance

PPV(t) + PWT(t) + PGT(t) + PGrid(t) + PES,d(t) = PES,c(t) + PEC(t) + Pload(t) (10)

Qrec(t) + QGB(t) + QHS,d(t) = QHS,c(t) + QAC(t) + Qload(t) (11)

CAC(t) + CEC(t) = Cload(t) (12)

Qrec= PGT ×
(1− ηGT)

ηGT
× ηrec (13)

CAC(t) = QAC(t) × COPAC (14)

CEC(t) = EEC(t) × COPEC (15)

where
CEC: Output cold energy of he compression refrigeration equipment.

PEC: Electricity input to the compression refrigeration equipment.

CAC: Output cold energy of the absorption refrigeration equipment.

QAC: Heat energy input to the absorption refrigeration equipment.

PES,d: Electric energy discharged from the storage equipment.

PES,c: Electric energy for the charging of the storage equipment.

Qrec: Waste heat recovered from the gas-turbine generators.

QHS,d: Heat energy released by the heat-storage equipment.

QHS,c: Heat energy stored in the heat-storage equipment.

ηrec: Waste heat recovery rate.

COPAC: Refrigeration coefficient of the absorption refrigeration equipment.

COPEC: Cooling coefficient of the electric refrigeration equipment.

Equation (10) is the balance of electric energy, i.e., the electric energy of the output
must be equal to that of the input during this time period. Equation (11) is the balance of
thermal energy, i.e., the thermal energy of the output is equal to those of the input during
this time period. Equation (12) the balance of cold energy, i.e., the total output power of the
refrigerator should be equal to the cold energy load during this time period. Equation (13)
expresses the waste heat that can be recycled by the gas-turbine generators. Equation (14) is
the formula for the absorption chiller to convert heat energy into cold energy. Equation (15)
is the formula for the conversion of electric energy into cold energy by a compression
refrigerator.

2. Constraints on energy-storage equipment

PES(t + 1) = PES(t) × (1 − σES)+ PES,c(t) × ηES,c − PES,d(t) × ηES,d (16)
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0 ≤ PES,c(t) ≤ VES × γES,c
0 ≤ PES,d(t) ≤ VES × γES,d
PES,c(t)× PES,d(t) = 0

(17)

where
PES: Electric energy stored by the energy-storage equipment.

σES: Energy loss rate of the energy-storage equipment per unit time.

ηES,c: Charging performance of the energy-storage equipment.

ηES,d: Discharge efficiency of the energy-storage equipment.

VES: Maximum capacity of the energy-storage equipment.

γES,c: Charging rate of the energy-storage equipment.

γES,d: Discharge rate of the energy-storage equipment.

Equation (16) is the calculation of the energy storage of the energy-storage equipment,
i.e., the power stored by the energy-storage equipment in the next time period, which is the
total savings of the current time period, deducting the energy loss of unit time, plus the
saved electric energy of the current time period, deducting the electric energy released in
the current period. Equation (17) shows the constraints of the energy-storage equipment,
the first being the constraint of the energy-storage rate, the second being the constraint of
the discharge rate, and the third being that the discharge and storage cannot be performed
at the same time.

3. Constraints on heat-storage equipment

QHS(t + 1) = QHS(t) × (1 − σHS)+ QHS,c(t) × ηHS,c − QHS,d(t) × ηHS,d (18)
0 ≤ QHS,c(t) ≤ VHS × γHS,c
0 ≤ QHS,d(t) ≤ VHS × γHS,d
QHS,c(t)×QHS,d(t) = 0

(19)

where
QHS: Heat energy stored by the heat-storage equipment.

σHS: Heat energy loss rate of the heat-storage equipment per unit time.

ηHS,c: Heat-storage efficiency of the heat-storage equipment.

ηHS,d: Heat supply efficiency of the heat-storage equipment.

VHS: Maximum capacity of the heat-storage equipment.

γHS,c: Heat-storage rate of the heat-storage equipment.

γHS,d: Heat supply rate of the heat-storage equipment.

Equation (18) is the calculation of the heat-energy storage of the heat-storage equip-
ment, i.e., the heat energy stored by the heat-storage equipment in the next time period,
which is the total savings in the current time period, deducting the energy loss of unit time,
plus the stored heat energy of the current time period, deducting the heat energy released
in the current period. Equation (19) shows the constraints of the heat-storage equipment,
the first being the constraint of the heat-storage rate, the second being the constraint of
the heat-release rate, and the third being that the heat cannot be stored and released at the
same time.

4. Constraints on the main grid

|PGrid(t)| ≤ PGT(t) (20)
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where

PGrid: The exchange power that may be sold or bought between the microgrid and the main grid.

PGT: Power generation of gas-turbine generators.

Equation (20) is the constraint for the exchange of electricity with the main grid, i.e.,
the electricity exchange whether it is bought or sold by the main grid during this time
period will not be higher than the output power of the gas-turbine generator at the time
period.

3. Research Methods

Section 3 shows the research methods of this study. The source of pre-set data and the
parameter values of some systems are introduced in Section 3.1. Next, the coding method
of the solution is described in Section 3.2. Section 3.3 represents how to use the weight
method to rewrite the fitness function. The improved simplified swarm optimization (SSO)
algorithm adopted in this study is shown in Section 3.4. Section 3.5 demonstrates how to
combine the differential evolution (DE) algorithm with the improved SSO algorithm to
improve the efficiency of the solution. Finally, the proposed method flowchart is provided
in Section 3.6.

3.1. Pre-Set Data Acquisition

The pre-set data required for this study are the load data of the electric energy, cold
energy, and thermal energy of the local residents in Xikou village, Lieyu township, Kinmen
county, Taiwan, the power generation of renewable energy, and the parameter values of the
system.

1. The Load Data

The load data of each energy were obtained based on the open data of the Taiwan
power company [31], which used the electricity load meter of the local residents in Xikou
village, Lieyu township, Kinmen county in 2017. The total annual heat energy refers to
the gas consumption amount of the low-carbon island plan in Kinmen [32] and the heat-
load data for each month were obtained according to the ratio of heat consumption in
each month of the Energy Bureau of the Ministry of Economic Affairs [33]. The monthly
air-conditioning power consumption obtained from the research results of the actual
measurement of residential power consumption in Taiwan [34] were converted into cold
energy load data in summer, spring, and autumn and converted into heat-energy load data
in winter. Finally, the energy consumption of 24 h in a day for each season was obtained
from the single-day energy load distribution curve of each season in ref. [19].

2. The Power Generation of Renewable Energy

The parameters such as wind speed, temperature, and sunshine intensity were ob-
tained from the historical data of climate observations from the Central Meteorological
Bureau of Taiwan [35]. The power data of wind power generation and solar power genera-
tion were obtained from Equations (21) and (22) as follows. The maximum unit capacity
of solar power generation was set to 75 kWH, and the wind power generation was set to
30 kWH.

The formula for wind power generation is shown in Equation (21) in accordance with
the literature [4].

PWT(v) =


Pγ × v−vc

vγ−vc
(vc ≤ v ≤ vγ)

Pγ (vγ ≤ v ≤ v f )

0 (v ≤ vcorv ≥ v f )

(21)

where
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PWT: Output power of the wind turbine (kW).

Pr: Rated power of the wind turbine (kW).

vc: The wind speed of cut into the wind force of the wind turbine (m/s).

vf: The wind speed of cut out of the wind force of the wind turbine (m/s).

vr: Rated wind speed of the wind turbine (m/s).

v: Current wind speed (m/s).

Wind power generation only can start when the wind speed is higher than vc. However,
in order to protect the generating turbine from damage when the wind speed is too high,
the generator should be turned off when the wind speed is higher than vf. The generation
of wind power can be maximized when the wind speed is higher than vr and smaller
than vf according to Equation (21). Therefore, it is very important to select the appropriate
generator capacity according to the local wind power-generating potential.

The formula for solar power generation is as follows, Equation (22), in accordance
with the literature [36].

PPV = PSTC × GAC ×
1+w× (Tc − TSTC)

GSTC
(22)

where
PPV: Output power of solar power (kW).

PSTC: Maximum output power of solar power generation under standard test conditions (kW).

GAC: Sunlight intensity (W/m2).

w: Power temperature coefficient (%/K).

Tc: Actual working temperature of the solar cell (K).

TSTC: Standard test condition temperature (K).

GSTC: Sunlight intensity under standard test conditions (W/m2).

3. The Parameter Values of the System

The parameter values of the system refer to refs. [25,30], that is, RMB (¥) was converted
into New Taiwan Dollar (NTD) and the exchange rate was RMA:NTD = 4.5:1 and rounded
to four decimal places; in addition, the electricity price of the time period refers to the
electricity price table of the Taiwan Power Company [31], as shown in Table 1.

3.2. Coding Method of the Solution

The solution in the algorithm is the energy supply of the gas-turbine generators,
heat-storage equipment, power-storage equipment, absorption refrigeration equipment,
compression refrigeration equipment, gas-boiler heating, and exchange power of the main
grid in time periods of T, in which the value in each field represents the amount of energy
supplied during period t (t = 1, 2, . . . , T). If the energy supplies of the heat-storage
equipment and power-storage equipment are negative, it means that energy storage is used
during t; if they are positive, it means the energy is discharged. Additionally, when the
power exchanged with the main grid is positive, it means that CCHP purchases electricity
from the main grid; if it is negative, the opposite is true. An example of a solution for
T = 2 is shown in Table 2, where its superscript is the Gth generation, the first subscript
is the ith group, the second subscript is the time period t, and the third subscript j is the
variable number of each energy supply unit that ranges from 1 to 7. Thus, xG

i,t,j is Pj(t) of
the ith group of the Gth generation, in which j is the absorption refrigeration equipment,
compression refrigeration equipment, power-storage equipment, gas-turbine generator,
main grid exchange power, heat-storage equipment, and gas boiler in order. The sequence
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is the same as the decision variable vector X(t) = (CAC(t), CEC(t), PES(t), PGT(t), PGrid(t),
QHS(t), and QGB(t)) mentioned in Section 3.1, for example, xG

i,1,1 is the CAC(1) of the ith
group of the Gth generation, xG

i,1,2 is the CEC(1) of the ith group of the Gth generation, and
xG

i,2,1 is the CAC(2) of the ith group of the Gth generation. When starting the update process,
the fields in the solution variables were modified to obtain a better performance of the
fitness function.

Table 1. The parameter values of the system and the electricity price of the time period.

Parameter Values

KOM,GT (NTD/kWh) 0.1805
KOM,GB (NTD/kWh) 0.0459
KOM,WT (NTD/kWh) 0.1332
KOM,PV (NTD/kWh) 0.0432

uGrid (kg/kWh) 0.637
uNG (kg/m3) 2.09

PrNG (NTD/m3) 12.2581
ηNG (kWh/m3) 9.87

ηGT 0.35
ηrecy 0.5
ηGB 0.89
ηES,c 0.95
ηES,d 0.95
ηHS,c 0.98
ηHS,d 0.98
σES 0.04
σHS 0.02

COPAC 1.38
COPEC 3

γES,c 0.2
γES,d 0.4
γHS,c 0.2
γHS,d 0.4

Time period Electricity price (NTD/kWh)

7:00~22:00 3.33
Others 1.39

Table 2. An example of a solution for T = 2.

Variables xG
i,1,1 xG

i,1,2 xG
i,1,3 xG

i,1,4 xG
i,1,5 xG

i,1,6 xG
i,1,7

Values 90.5612 43.3485 34.7811 50.4562 70.2384 89.1744 63.3219

Variables xG
i,2,1 xG

i,2,2 xG
i,2,3 xG

i,2,4 xG
i,2,5 xG

i,2,6 xG
i,2,7

Values 96.9822 55.4672 −20.5617 92.8631 71.7825 39.4568 58.9245

According to the constraint formula of energy balance, i.e., Equations (10)–(12), it can
be known that the energy output must be equal to the energy input in each time period.

Because the cooling energy loads converts absorption refrigeration CAC(t) into thermal
energy load QAC(t) according to Equation (14) and concerts compression refrigeration
CEC(t) into electric energy load PEC(t) according to Equation (15), the value of absorption
refrigeration CAC(t) and compression refrigeration CEC(t) must be determined first in the
updating process of the algorithm in order to confirm the total demand of the electric
energy load and thermal energy load. According to Equation (12), the sum of absorption
refrigeration CAC(t) and compression refrigeration CEC(t) should be equal to the cooling
energy load Cload(t), which determines one of them and the other is also determined
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accordingly. This study selected absorption refrigeration CAC(t) as the solution variable
that enters the update of the algorithm.

In terms of electric energy load, the electric energy load Pload(t) plus the electric power
required for compression refrigeration PEC(t) should be equal to the sum of gas-turbine
power generation PGT(t), power of the power-storage equipment PES(t), the exchange
power of the main grid PGrid(t), the solar power generation PPV(t), and the wind power
generation PWT(t) according to Equation (10).

The solar power and wind power, which were calculated based on Equations (21) and (22)
before the algorithm was carried out, are pre-input data and do not participate in the update
of the algorithm. The power required for compression refrigeration PEC(t) was determined
in the previous paragraph. Therefore, in the gas-turbine power generation PGT(t), the power
of power-storage equipment PES(t), and the exchange power of the main grid PGrid(t), the
remaining one can be determined as long as two of them are determined, which means
that we only needed to select two to participate in the update of the algorithm in this study.
This study selected gas-turbine power generation and power-storage equipment as the
solution variables in the algorithm in terms of power supply because the core of the CCHP
system is the regulation of gas-turbine power generation and power-storage equipment.

As mentioned in the previous paragraph, letting PPV(t) + PWT(t) = K and
PEC(t) + Pload(t) = M, Equation (23) can be obtained as follows.

In terms of the thermal energy load, the thermal energy load Qload(t) plus the heat
required for absorption refrigeration QAC(t) is equal to the sum of waste heat Qrec(t) recov-
ered from gas-turbine power generation, the power of the heat-storage equipment QHS(t),
and gas-boiler heating QGB(t) during this period according to Equation (11).

This study selected the power of the heat-storage equipment QHS(t) as the solution
variable that enters the update of the algorithm. According to Equation (13), another
variable is the waste heat Qrec(t) recovered from gas-turbine power generation that is
directly determined because the gas-turbine power generation PGT(t) was determined in
the previous paragraph.

In Equation (11), letting Qrec(t) = N and QAC(t) + Qload(t) = L, Equation (24) can be
obtained as follows.

In summary, this study selected four solution variables that enter the update of the
algorithm from the seven solution variables, namely, the absorption refrigeration CAC(t),
the gas-turbine power generation PGT(t), the charging/discharging of the power-storage
equipment PES(t), and the storage/heat supply of the heat-storage equipment QES(t).

In addition, although the seven solution variables of this study are not limited in
theory, the following constraints as shown in Equations (25)–(30) were set for each solution
variable in order to enable the algorithm to proceed smoothly and to satisfy the condition
that the gas-turbine power generation must produce at least a certain percentage of the
electric energy for each period of time.

Equation (25) shows that the cooling power of absorption chiller and compression
chiller during time period t should be less than or equal to the cooling energy load of the
period and greater than or equal to zero. Equation (26) shows that no matter whether
the power-storage equipment stores or discharges during time period t, they must not be
greater than 40% of the electrical energy load of the period t. Equation (27) shows that
the power generation of the gas turbine during time period t must meet at least 70% of
the electric energy load of the period, and the maximum can be up to 180% of the electric
energy load of the period in order to adjust the energy. Equation (28) shows that whether
the electric power is bought or sold with the main grid during time period t, it must not be
greater than the electric energy load of the time period. Equation (29) is the heating power
stored or released by the heating-storage device during time period t, which must not be
greater than the thermal energy load in that period. The final Equation (30) shows that the
heating power generated by the gas boiler during time period t must not be negative.

In addition, because there is no demand for cold energy load in the winter experimental
data of this study, the power generation of the gas turbine does not need to exceed the
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demand of electrical energy load too much for each time period. In addition, excessively
loose restrictions make the algorithm inefficient. Thus, the constraint of the decision
variable of power generation of gas turbine uses the following Equation (31) instead of
Equation (27).

K + PGT(t) + PGrid(t) + PES,d(t) = PES,c(t) + M,
PGT(t) + PGrid(t) + PES(t) = M − K

(23)

N + QGB(t) + QHS,d(t) = QHS,c(t) + L,
QGB(t) + QHS(t) = L − N

(24)

0 ≤ CAC(t), CEC(t) ≤ Cload(t) (25)

|PES(t)| < 0.4 × Pload(t) (26)

0.7 × Pload(t) < PGT(t) < 1.8 × Pload(t) (27)

|PGrid(t)| < Pload(t) (28)

QHS(t) < Qload(t) (29)

QGB(t) ≥ 0 (30)

0.7 × Pload(t) < PGT(t) < 1.2 × Pload(t) (31)

3.3. TOPSIS Method to Evaluate Fitness Function

This study used the TOPSIS method to convert the original multi-objective optimiza-
tion problem into a single-objective optimization problem. The TOPSIS method has been
widely used in multi-objective optimization problems in various fields to select the best
solution in multi-objective optimization problems, and it has also been proved to be very
effective [37]. In addition to reducing the calculation steps and increasing the efficiency
of the solution, this method is characterized by being able to adjust the weights flexibly
in line with the values of the decision-maker so as to produce a solution that meets the
decision-maker’s ideals.

In this study, the weights of each objective value were calculated using the weights
obtained in the literature [28], which uses the analytic hierarchy process (AHP) to calcu-
late the relative weight of operating costs, carbon emissions, and primary energy usage
rate. Therefore, in this study, the multi-objective optimization problem was transformed
into a single-objective optimization problem by combining the TOPSIS method with the
weights obtained in ref. [28], where wOP = 0.2725, wCE = 0.353, and wPE = 0.3745 are the
weighting parameters of operating costs, carbon emissions, and primary energy usage rate
respectively.

The concept of the TOPSIS method is to first define the positive ideal solution (positive
ideal solution) and negative ideal solution (negative ideal solution), and its purpose is to
find a set of solutions closest to the positive ideal solution and farthest from the negative
ideal solution. For the purposes of this research, the so-called positive ideal solution was
the best fitness values obtained in the form of a single-objective optimization, which are
Fmin

1 (lowest operating cost), Fmin
2 (lowest carbon emission), and Fmax

3 (the highest primary
energy usage rate). On the contrary, the negative ideal solution was its worst fitness values,
which are Fmax

1 , Fmax
2 , and Fmin

3 , respectively.
The following takes three-objective optimization and three solutions, i.e., Nsol = 3, as

an example to illustrate the steps to rewrite the fitness function using the TOPSIS method.

1. Establish a decision matrix, denoted as D:

D =

∣∣∣∣∣∣
F11 = 13000 F12 = 2400 F13 = 0.72
F21 = 12500 F22 = 2600 F23 = 0.73
F31 = 14800 F32 = 2300 F33 = 0.78

∣∣∣∣∣∣



Appl. Sci. 2022, 12, 10595 14 of 35

where the first subscript i of Fij is the ith group of fitness solution and the second subscript j
is the code of objective fitness, where j = 1 is the operating cost, j = 2 is the carbon emissions,
and j = 3 is the primary energy usage rate.

2. Because Fi3 is the energy-usage rate, the absolute value of which is small, the reciprocal
was used here and then normalized. The overall normalization decision matrix R is
as follows:

R =

∣∣∣∣∣∣
r11 = 0.5572 r12 = 0.5686 r13 = 0.5949
r21 = 0.5357 r22 = 0.6160 r23 = 0.5868
r31 = 0.6437 r32 = 0.5449 r33 = 0.5492

∣∣∣∣∣∣

where rij =



Fij√
Nsol
∑

i=1
F2

ij

f or j = 1, 2

1/Fij√
Nsol
∑

i=1
(1/Fij)

2

f or j = 3
.

3. Establish a weighted normalized decision matrix V :

V =

∣∣∣∣∣∣
v11 = ωOP × r11 = 0.1518 v12 = ωCE × r12 = 0.2007 v13 = ωPE × r13 = 0.2228
v21 = ωOP × r21 = 0.1459 v22 = ωCE × r22 = 0.2174 v23 = ωPE × r23 = 0.2197
v31 = ωOP × r31 = 0.1754 v32 = ωCE × r32 = 0.1923 v33 = ωPE × r33 = 0.2056

∣∣∣∣∣∣
4. Find the positive ideal solution and negative ideal solution:

Assuming that the best fitness values Fmin
1 , Fmin

2 , and Fmax
3 are 11,000, 2000, and 0.82,

respectively, and the worst fitness values Fmax
1 , Fmax

2 , and Fmin
3 are 16,000, 3000, and 0.6,

respectively, the positive ideal solution (A+) and negative ideal solution (A−) are obtained
as follows:

A+ = {v∗1 = 0.1284 v∗2 = 0.1672 v∗3 = 0.1956}

A− =
{

v−1 = 0.1868 v−2 = 0.2509 v−3 = 0.2674
}

5. Calculate the distance between the solutions of each group and the positive ideal so-
lution S+, and the distance between the solutions of each group and the negative ideal
solution S− according to the following Equation (32) and Equation (33), respectively.

S+
i =

√√√√ n

∑
j=1

(vij − v∗j )
2 (32)

S−i =

√√√√ n

∑
j=1

(vij − v−j )
2 (33)

S+
i =

{
S+

1 = 0.0491 S+
2 = 0.0583 S+

3 = 0.0542
}

S−i =
{

S−1 = 0.0757 S−2 = 0.0712 S−3 = 0.0859
}

6. Calculate the relative closeness of solutions of each group to the ideal solution accord-
ing to the following Equation (34):

Ci =
S−i

S+
i + S−i

(34)

C1 = 0.6065, C2 = 0.5498, and C3 = 0.6131 are calculated from Equation (34). In TOPSIS,
the value of Ci being closer to 1 means the objective is closer to the positive ideal solution
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(the best solution) and is the farthest away from the negative ideal solution (the worst
solution). Therefore, the solution of the third group C3 is the best when selecting the best
solution. The use of TOPSIS can help us find a relatively excellent solution among many
non-dominated solutions.

3.4. Simplified Swarm Optimization Algorithm (SSO)

This research developed an algorithm suitable for the CCHP optimization problem
based on the SSO algorithm. Its biggest feature is that the adjustment of parameters is
very simple, which has been shown as effective in solving many optimization problems in
various fields such as data mining in medicine [38], disassembly sequencing problems [39],
redundancy allocation problems (RAP) [40,41], reliability redundancy allocation prob-
lems (RRAP) [42–46], RAP in sensor systems [47], vehicle routing problems in the supply
chain [48,49], price problems in the supply chain [50], optimizing sensing coverage in
wireless sensor networks [51], data mining [52], airplane cockpits [53], energy and signal
optimization in wireless sensor networks [54], improving UM of SSO [55], task scheduling
optimization in fog computing [56], and various networks [57–59].

The update mechanism of SSO is presented as follows, Equation (35):

XG+1
i,j =


gj ifρ ∈ [0, Cg)

pi,j ifρ ∈ [Cg, Cp)

XG
i,j ifρ ∈ [Cp, Cw)

X ifρ ∈ [Cw, 1)

(35)

where

XG+1
i,j :

XG+1
i,j =

{
XG+1

i,1 , XG+1
i,2 , . . . , XG+1

i,Nvar

}
represents the solution of the jth variable in the

ith group of the G + 1th iteration.

XG
i,j:

XG
i,j =

{
XG

i,1, XG
i,2, . . . , XG

i,Nvar

}
represents the solution of the jth variable in the ith

group of the Gth iteration.

gj:
Represents the global best solution of the Gth iteration.

pi,j:
Represents the local best solution of the jth variable in the ith group of the Gth

iteration.

X:
Xmin

j ≤ X ≤ Xmax
j represents a new randomly generated solution, whose value is

between Xmin
j and Xmax

j .

ρ: The random number randomly generated between 0 and 1.

Cg, Cp,
Cw:

Pre-set parameter values, whose values are between 0 and 1.

The overall update process of SSO is as follows:

Step 1: Randomly generate the initial feasible solution X0
i , calculate the fitness function

F(X0
i ), and i = 1, 2, . . . , Nsol.

Step 2: Let the number of iterations G = 1, pi = X0
i , and find the best solution in F(X0

i ) as
the global best g, and i = 1, 2, . . . , Nsol.

Step 3: Let i = 1.
Step 4: According to Equation (35), XG+1

i is evolved, and the fitness function F(XG+1
i ) is

calculated.
Step 5: If F(XG+1

i ) is better than F(XG
i ), then let XG+1

i = XG+1
i ; if not, then XG+1

i = XG
i and

skip to Step 7.
Step 6: If F(XG+1

i ) is better than F(pi), then pi = XG+1
i ; if not, keep it unchanged. If

F(XG+1
i ) is better than F(g), then g = XG+1

i ; if not, g remains unchanged.
Step 7: If i = Nsol, go to Step 8; if i < Nsol, then I = i + 1 and return to Step 4.
Step 8: If G = Ngen, Stop; if G < Ngen, then G = G + 1 and return to Step 3.
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3.5. Differential Evolution Algorithm (DE)

This research used the differential evolution (DE) algorithm as the method of local
search in order to escape the current local solution and make the solution more diversified
in the update process of the SSO algorithm. The characteristics of the DE algorithm are fast
convergence, simple parameters, and a strong local search ability. Additionally, its update
mechanism can make the SSO algorithm escape, that is, it can only be replaced in its own
solution, the local best solution, or the global best solution. Although the SSO algorithm
also has the opportunity to completely randomize the value and escape the current local,
it can easily become an infeasible solution due to its characteristics. In addition, the DE
algorithm randomly selects the solutions in each set of solutions to update, which means
a certain percentage of the solutions will not be updated so that it can retain some of its
characteristics and strengthen the variability between the solution and the solution when a
well-performing solution enters the DE algorithm. The local search strategy of this study is
as follows and following Equations (36)–(38).

VG+1
i = pXG

r1
+ F× (pXG

r2
− pXG

r3
) r1 6= r2 6= r3, andi ∈ Nsol (36)

uG+1
i,t,j =

{
vG+1

i,t,j if rand(t, j) ≤ CR or j = rnb(i, t)

pxG
i,t,j otherwise

(37)

XG+1
i =

{
UG+1

i if F(UG+1
i ) ≤ F(UG

i )

XG
i otherwise

(38)

where

Nsol: The total number of solutions in the group, i = 1, 2, . . . , Nsol.

Nvar:
The number of variables, j = 1, 2, . . . , Nvar.

Ngen: Total number of iterations, G = 1, 2, . . . , Ngen.

Ntime:
Total number of time periods, t = 1, 2, . . . , Ntime.

F(X): Fitness function value.

VG+1
i :

VG+1
i =

{
vG+1

i,t,1 , vG+1
i,t,2 , . . . , vG+1

i,t,Nvar

}
represents the mutation solution in the ith group

of the G + 1th iteration.

pXG
i :

pXG
i =

{
pXG

i,t,1, pXG
i,t,2, . . . , pXG

i,t,Nvar

}
represents the local best solution in the ith group

of the Gth iteration.

F: Mutation factor, which users can adjust by themselves.

CR: Evolution parameter, which is between 0 and 1.

uG+1
i,t,j :

The solutions of the ith group for the jth variable in the time period t obtained after
mating of the G + 1th iteration.

UG+1
i :

UG+1
i =

{
uG+1

i,t,1 , uG+1
i,t,2 , . . . , uG+1

i,t,Nvar

}
represents the new solution of mating in the ith

group for the G + 1th iteration.

XG+1
i :

XG+1
i =

{
xG+1

i,t,1 , xG+1
i,t,2 , . . . , xG+1

i,t,Nvar

}
represents the solution in the ith group for the

G + 1th iteration.

This research applied some modifications to the original DE algorithm, that is, the
mutation solution did not use the solution XG

i left by this generation of SSO for the mutation
but instead used the local best solution pXG

i to perform mutation. The reason for selecting
the local best solution is that it is difficult for DE to find solutions that are better solutions
than those left by the original SSO in the process of local search because the of the fast
convergence nature of SSO when the original DE uses the solution XG

i obtained by SSO
after iteration to make mutations. It makes the local search inefficient and fails to show the
characteristics of DE that can enhance the diversity of solutions. Therefore, this research
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replaced XG
i with the local best solution pXG

i for mutation when updating with the DE
algorithm to facilitate local search and update, retained the updated solution of DE with a
higher probability, and enhanced the diversity of the solution space of the entire algorithm.

The following examples for Ngen = 10, Nvar = 2, Nsol = 8, and Ntime = 2 are used to
explain the update process when the DE algorithm is used for local search:

1. Before entering the stage of local search, it should first select the best solutions of the
top A percentage to enter the local search, and set the action of local search after every
B iterations. For this example, A = 50%, B = 1, and g = 1 as shown in Table 3.

2. The best solutions among the top 50 percent are X1
2 , X1

3 , X1
6 , X1

7 found from Table 3.
Because it is the first iteration, the local optimal solution is equivalent to the solution
itself, i.e., pXG

i = XG
i . Then, the mutation solution V1

i of this solution is calculated
according to Equation (36). Taking X1

7 as an example, assuming that the three ran-
dom integers r1, r2, r3 are 1, 3, and 8 respectively and mutation factor F = 0.5, then
v1

7,1,1 = 36.89+ 0.5× (29.92− 35.34) = 34.18 and the rest of the solutions for variables
j are analogous. The results are shown in Table 4.

3. After obtaining all the mutation solutions in Table 4, mate a new solution U1
i according

to Equation (37). Take U1
2 as an example. Let the evolution parameter CR = 0.75,

then generate random numbers rand(t, j) and rnb(i, t). Assuming rand(1, 1) = 0.85,
rnb(2, 1) = 1, although rand(1) = 0.85 > CR, the new solution variable u1

2,1,1 must
accept the mutation solution v1

2,1,1 in the first solution variable of time period 1
because rnb(2) = 1. When reaching the second solution variable of time period 1,
rand(1, 2) = 0.52 and rnb(2, 1) = 1, the new solution variable u1

2,1,2 = v1
2,1,2 at this

time because rand(1, 2) = 0.52 < CR. Additionally, for the first solution variable
of time period 2, rand(2, 1) = 0.83 and rnb(2, 2) = 2, the new solution variable is
its own solution, which means u1

2,2,1 = x1
2,2,1, because rand(2, 1) = 0.83 > CR and

rnb(2, 2) = 2 6= 1. If the last solution variable rand(2, 2) = 0.29 and rnb(2, 2) = 2,
then u1

2,2,2 = v1
2,2,2. After the solution variables of solutions of this set are all mated,

enter the solutions of the next set U1
3 , and randomly generate rand(t, j) and rnb(i, t).

The results are shown in Table 5.
4. Compare the pros and cons of F

(
U1

i
)

and F
(
X1

i
)

to determine the retained solution
X1

i of this generation according to Equation (38). If F
(
U1

i
)
< F

(
X1

i
)
, then the solution

of this generation is X1
i = U1

i ; if F
(
U1

i
)
> F

(
X1

i
)
, and the solution of this generation

remains unchanged X1
i = X1

i . Then, combine this result with the other 50% of the
solutions that did not enter the local search. The results are shown in Table 6. Finally,
compare it with the best solution in the global region as shown in Tables 7 and 8. Then,
enter the update of the next generation starting algorithm, i.e., the local search of the
DE algorithm is completed.

Table 3. Selecting the best solutions among the top 50 percent.

x1
i,1,1 x1

i,1,2 x1
i,2,1 x1

i,2,2 F(X1
i )

X1
1 = pX1

1 36.89 24.32 15.88 45.61 168.59

X1
2 = pX1

2 31.47 28.15 12.36 49.74 132.17

X1
3 = pX1

3 29.92 20.86 18.07 51.26 147.64

X1
4 = pX1

4 39.52 23.24 17.61 47.57 159.38

X1
5 = pX1

5 41.69 18.97 21.66 58.35 181.67

X1
6 = pX1

6 28.18 22.68 23.12 52.83 153.26

X1
7 = pX1

7 33.41 30.37 14.95 42.12 138.42

X1
8 = pX1

8 35.34 19.55 19.53 55.98 171.83

gX1 31.47 28.15 12.36 49.74 132.17
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Table 4. Calculating the mutation solution of V1
i .

v1
i,1,1 v1

i,1,2 v1
i,2,1 v1

i,2,2

V1
2 32.09 23.13 16.11 47.46

V1
3 30.39 30.29 10.34 44.35

V1
6 40.73 24.38 19.37 51.42

V1
7 34.18 24.98 15.15 43.34

Table 5. Generating mating solution U1
i .

u1
i,1,1 u1

i,1,2 u1
i,2,1 u1

i,2,2 F(U1
i )

U1
2 32.09 23.13 12.36 47.46 131.69

U1
3 30.39 30.29 10.34 51.26 145.01

U1
6 40.73 22.67 19.37 51.42 161.75

U1
7 33.41 24.98 14.95 43.34 142.24

Table 6. Updating the solutions of this generation X1
i .

x1
i,1,1 x1

i,1,2 x1
i,2,1 x1

i,2,2 F(X1
i )

X2
1 36.89 24.32 15.88 45.61 168.59

X2
2 32.09 23.13 12.36 47.46 131.69

X2
3 30.39 30.29 10.34 51.26 145.01

X2
4 39.52 23.24 17.61 47.57 159.38

X2
5 41.69 18.97 21.66 58.35 181.67

X2
6 28.18 22.68 23.12 52.83 153.26

X2
7 33.41 24.98 14.95 43.34 142.24

X2
8 35.34 19.55 19.53 55.98 171.83

Table 7. Updating the local best solution of this generation pX1
i .

px1
i,1,1 px1

i,1,2 px1
i,2,1 px1

i,2,2 F(pX1
i )

pX2
1 36.89 24.32 15.88 45.61 168.59

pX2
2 32.09 23.13 12.36 47.46 131.69

pX3
2 30.39 30.29 10.34 51.26 145.01

pX2
4 39.52 23.24 17.61 47.57 159.38

pX2
5 41.69 18.97 21.66 58.35 181.67

pX2
6 28.18 22.68 23.12 52.83 153.26

pX2
7 33.41 24.98 14.95 43.34 142.24

pX2
8 35.34 19.55 19.53 55.98 171.83

Table 8. Updating the global best solution of this generation gX1.

gx1
1,1 gx1

1,2 x1
2,1 x1

2,2 F(gX1
i )

gX1 32.09 23.13 12.36 47.46 131.69

The overall update process of the local search of the DE algorithm is as follows:

Step 1: First, select the good solutions for the top Y percentage.
Step 2: According to Equation (36), a mutation solution VG

i is generated.
Step 3: According to Equation (37), the mating solution UG

i is generated.
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Step 4: According to Equation (38), the best solution XG
i is selected among the self-solution

XG
i and the new solution UG

i produced by mating.
Step 5: According to the result of Step 4, if any new mate solution UG

i replaces the original
solution XG

i , it will be compared with the local best solution pXG
i ; if not, skip to

Step 7.
Step 6: According to the result of Step 5, if any local best solution pXG

i is replaced by the
new solution UG

i that is mated, it will be selected with the global best solution gXG,
and the better solution will be retained as the new global best solution gXG in this
generation; if not, skip to Step 7.

Step 7: If the overall termination condition of the algorithm is reached, the best solution
will be output; if not, the new solution produced will be merged with the solution
that has not entered the local search to enter the update solutions of SSO for the
next generation.

3.6. Proposed Method Flowchart

Combining the descriptions in Sections 3.1–3.5, the proposed method flowchart is
drawn in Figure 1.
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4. Experimental Results and Analysis

An experimental design for the proposed SSO-DE algorithm in this study is conducted
in Section 4.1 to find out the best parameters of this algorithm for the CCHP optimization
problem. The parameter setting and experimental situation of other algorithms are ex-
plained in Section 4.2. Finally, in Section 4.3, experimental results are detailed, represented,
and compared among the proposed SSO-DE and other algorithms.

4.1. Experimental Design

The proposed SSO-DE in this research has seven parameters (factors) that need to be
set, which are cg, cp, and cw in SSO as well as the mutation factor (CR), evolution parameter
(F), and Y percentage of the good solutions entered the local search for every Z iteration.
If all the parameters are explored for the experimental design, such a huge number of
experiments is really not feasible assuming that each factor has three levels in which one
must perform 37 = 2187 experiments. Therefore, the three parameters of SSO including
cg, cp, and cw were set as one factor and the other parameters of DE were set as another
factor so that the statistical analysis two-way ANOVA of two factors and three levels is
performed.

The three levels of SSO parameter setting as shown in following Table 9 are all param-
eters that performed relatively well in the experimental testing process of this research.

Table 9. Three levels of SSO parameter setting.

Level 1 Level 2 Level 3

cg = 0.45 cg = 0.5 cg = 0.55
cp = 0.4 cp = 0.4 cp = 0.35
cw = 0.1 cw = 0.05 cw = 0.05

In order to enable the DE to be updated quickly and effectively in the early stage
of the algorithm, we increased the diversity of the solution space in the middle and late
stages, and increased the probability of jumping out of the space of the current solution;
the parameter settings of DE in this research are as follows, Table 10.

Table 10. Three levels of DE parameter setting.

Level 1 Level 2 Level 3

Y = 0.3 Y = 0.6 Y = 0.9
F = 0.05 + 0.00005 × Ngen F = 0.1 + 0.00005 × Ngen F = 0.15 + 0.00005 × Ngen

CR = 0.85 + 0.00005 × Ngen CR = 0.85 + 0.00005 × Ngen CR = 0.85 + 0.00005 × Ngen

This research used two-way ANOVA to analyze the two-way variance of parameter
settings for the algorithm. However, three assumptions need to be satisfied, namely: the
normality assumption, the independence assumption, and the homogeneity assumption, to
use two-way ANOVA. It can ensure the independence of the data-collection process when
designing the experiment. Thus, what this research needs to test is whether to meet the
assumption of homogeneity and normality, and then use ANOVA analysis after confirming
those are satisfied to find the best parameter setting for the experiment, which are shown in
the following Sections 4.1.1–4.1.3 according to the three seasons including spring (autumn),
summer, and winter.

4.1.1. Results of Experimental Design for Spring (Autumn) Data

The experimental data of spring and autumn are analyzed together according to refer-
ences [25,60], in which most literature uses seasons as experimental data. The experimental
data in spring (autumn) met the assumption of normality and the assumption of homo-
geneity as shown in Figures 2 and 3. Therefore, two-way ANOVA can be used to analyze
the variance of the two factors, and the results are shown in the following Table 11.
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The factor of parameter of SSO and factor of parameter of DE have no significant
effect, and the interaction of the two factors has no significant effect according to the results
of experimental design shown in Table 11. Thus, this study intends to use principal factor
analysis, and the results are shown in the following, Figure 4, to determine the parameter
configuration of the experimental data for winter.
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Table 11. Two-way ANOVA—transition.

Source DF SS MS F P

SSO 2 0.0000312 0.0000156 0.56 0.573
DE 2 0.0001656 0.0000828 2.97 0.057

Interaction 4 0.0000184 0.0000046 0.79 0.955
Error 81 0.0022555 0.0000278
Total 89 0.0024708

S = 0.005277 R-Sq = 8.71% R-Sq(adj) = 0.00%
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The parameters of DE were set to level 3 that is Y = 0.9 and initial F = 0.15 and the
parameters of SSO were set to level 3, that is, cg = 0.55, cp = 0.35, and cw = 0.05 when it is in
progress for the experimental data of spring (autumn) according to Figure 4. The parameter
configuration is used in the subsequent experiment for spring (autumn) in Section 4.2.

4.1.2. Results of Experimental Design for Summer Data

The experimental data in summer do not meet the assumption of normality as shown
in Figure 5; thus, the ANOVA can be used to analyze the variance of two factors. This study
adopted Friedman’s test, which is a nonparametric method that does not need to satisfy the
assumption of normality, to find the best parameter settings for DE and SSO. The results
are shown in following Tables 12 and 13.
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Table 12. Friedman’s test, summer—DE blocked by SSO.

DE N Est Median Sum of Ranks

Level 1 30 0.89967 52.0
Level 2 30 0.89972 58.0
Level 3 30 0.89984 70.0

S = 5.60 DF = 2 p = 0.061

Table 13. Friedman’s test, summer—SSO blocked by DE.

SSO N Est Median Sum of Ranks

Level 1 30 0.89970 55.0
Level 2 30 0.89979 64.0
Level 3 30 0.89976 61.0

S = 1.40 DF = 2 p = 0.497

The parameters of DE were set to level 3, that is, Y = 0.9 and initial F = 0.15 and the
parameters of SSO were set to level 2, that is, cg = 0.5, cp = 0.4, and cw = 0.05 when it is in
progress for the experimental data of summer according to the analysis results obtained
from Tables 12 and 13. The parameter configuration is used in the subsequent experiment
for summer in Section 4.2.
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4.1.3. Results of Experimental Design for Winter Data

The experimental data in winter do not meet the assumption of normality as shown
in Figure 6; w thus, the ANOVA can be used to analyze the variance of two factors. This
study adopted Friedman’s test, which is a nonparametric method that does not need to
satisfy the assumption of normality, to find the best parameter settings for DE and SSO.
The results are shown in the following Tables 14 and 15.
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Table 14. Friedman’s test, winter—DE blocked by SSO.

DE N Est Median Sum of Ranks

Level 1 30 0.84606 39.0
Level 2 30 0.85036 65.0
Level 3 30 0.85045 76.0

S = 24.07 DF = 2 p = 0.000

Table 15. Friedman’s test, winter—SSO blocked by DE.

SSO N Est Median Sum of Ranks

Level 1 30 0.84969 65.0
Level 2 30 0.84884 58.0
Level 3 30 0.84896 57.0

S = 1.27 DF = 2 p = 0.531

The parameters of DE were set to level 3, that is, Y = 0.9 and initial F = 0.15 and the
parameters of SSO were set to level 1, that is, cg = 0.45, cp = 0.4, and cw = 0.1 when it is in
progress for the experimental data of winter according to the analysis results obtained from
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Tables 14 and 15. The parameter configuration is used in the subsequent experiment for
winter in Section 4.2.

4.2. Experimental Situation

The experimental scenarios of this study are the energy load data of local residents in
spring (autumn), summer, and winter; hence, there are three sets of experimental modules
in this research. The experimental results obtained by the proposed SSO-DE were compared
with those found by other algorithms including hybrid of PSO-DE, hybrid of ABC-DE,
and hybrid of iSSO-DE. The four abovementioned algorithms all execute 200 iterations
in different seasonal data as the stopping conditions of the algorithm and repeat the test
10 times to obtain the average, best, worst, standard deviation, and running time of the
fitness value. The experiment used python3.7.1 to write the program, equipped with AMD
Ryzen5 1600 CPU, 16 GB RAM, and a GTX1060 graphics card; the parameter settings of
all algorithms are based on the computer environment test used in this research and the
parameter settings with better experimental results in the process of the experiment are
shown in the following Table 16.

Before the experiment, this study first used SSO alone to compare with SSO-DE
by various CR values set in order to verify the effectiveness of using DE in SSO-DE
for local search. In three different seasons of data, each setting was set to 150 particles,
200 iterations, and 10 repeated experiments. The parameter configuration of SSO adopted
the best parameter setting of each season in the experimental design of the previous
section and the difference lies in the parameter settings of DE, which were uniformly set to
Y = 100% and F = 0.1 + 0.0005 × Ngen. The settings are as shown in Table 17.

The comparison results of SSO and SSO-DE in each season and the box and whisker
diagrams are shown in Tables 18–20, where each method represents different algorithms, CR
is the evolution parameter for DE, best is the best fitness value obtained by the algorithm in
ten repeated experiments, worst is the worst fitness value, mean is the average fitness value
of ten repeated experiments, and, finally, std represents its standard deviation, Figures 7–9,
respectively.

In spring (autumn) and winter, the difference in performance between SSO and SSO-
DE was very obvious, that is, the calculation efficiency of SSO-DE was far superior to SSO
regardless of the setting of the CR value of DE. In the summer experiment, the performance
of SSO-DE was also slightly better than SSO although the gap of difference in performance
was not as huge as those in spring (autumn) and winter. In addition, the setting of the CR
value of DE in SSO-DE between 0.7 and 1 had the most eye-catching performance. These
are the reasons that the initial CR value in the previous section of the experimental design
was set to 0.85 and gradually increased to 0.95 with the number of iterations.

4.3. Experimental Results

The experimental results are shown in following Tables 21–25, where method repre-
sents different algorithms, aver.t is the average running time for each algorithm to perform
10 repeated experiments and its unit is seconds, best is the best fitness value obtained by
the algorithm in 10 repeated experiments, worst is the worst fitness value, mean is the
average fitness value of ten repeated experiments, and, finally, std represents its standard
deviation.

For the spring (autumn) experimental data, the experimental results of each algorithm
are shown in Table 21 and Figure 10. The results showed that SSO-DE had the best
performance in terms of average running time. SSO-DE also outperformed other algorithms
in terms of best fitness value and average fitness value, although the performance of SSO-
DE in the worst fitness value was slightly lower than that of ABC-DE. Overall, SSO-DE
performed the best in the spring (autumn) experimental data set.
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Table 16. Parameter configuration of each algorithm.

Algorithm Parameter Spring (Autumn) Summer Winter

SSO-DE

Number of particles 150 150 150

Initial solution Randomly generated Randomly generated Randomly generated

cg 0.55 0.5 0.45

cp 0.35 0.4 0.4

cw 0.05 0.05 0.1

Y 0.9 0.9 0.9

F 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen

PSO-DE

Number of particles 150 150 150

Initial solution Randomly generated Randomly generated Randomly generated

C1 2 2 2

C2 2 2 2

w Random number from
0.1 to 0.25

Random number from
0.1 to 0.25

Random number from
0.1 to 0.25

VmaxAC(t) Cload(t) Cload(t) Cload(t)

VmaxES(t) Pload(t) Pload(t) Pload(t)

VmaxGT(t) Pload(t) Pload(t) Pload(t)

VmaxHS(t) 0.5 × Qload(t) 0.5 × Qload(t) 0.5 × Qload(t)

Y 0.9 0.9 0.9

F 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen

iSSO-DE

Number of particles 150 150 150

Initial solution Randomly generated Randomly generated Randomly generated

cr 0.4 0.4 0.4

cg 0.3 0.3 0.3

Y 0.9 0.9 0.9

F 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen

ABC-DE

SN 150 150 150

Initial solution Randomly generated Randomly generated Randomly generated

limit 20 20 20

Y 0.9 0.9 0.9

F 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen 0.15 + 0.0005 × Ngen

Table 17. Parameter settings for SSO-DE.

Spring (Autumn) Summer Winter

SSO
cg = 0.55 cg = 0.5 cg = 0.45
cp = 0.35 cp = 0.4 cp = 0.4
cw = 0.05 cw = 0.05 cw = 0.1

DE
Y = 100%

F = 0.1 + 0.0005 × Ngen
CR = 0, 0.1, 0.4, 0.7, 1
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Table 18. Comparison of SSO and SSO-DE for spring (autumn).

Method CR Best Worst Mean Std

SSO none 0.87451 0.86403 0.86945 0.00373
SSO-DE 0 0.88352 0.87259 0.87667 0.00425
SSO-DE 0.1 0.88604 0.86774 0.87964 0.00573
SSO-DE 0.4 0.89101 0.87381 0.88531 0.00570
SSO-DE 0.7 0.89255 0.88666 0.89020 0.00175
SSO-DE 1 0.89203 0.88411 0.88900 0.00292

Table 19. Comparison of SSO and SSO-DE for summer.

Method CR Best Worst Mean Std

SSO none 0.89785 0.89631 0.89712 0.00051
SSO-DE 0 0.90194 0.88057 0.89284 0.00605
SSO-DE 0.1 0.89924 0.89571 0.89760 0.00119
SSO-DE 0.4 0.90467 0.89419 0.89879 0.00279
SSO-DE 0.7 0.90822 0.89746 0.90090 0.00306
SSO-DE 1 0.90375 0.89794 0.89968 0.00189

Table 20. Comparison of SSO and SSO-DE for winter.

Method CR Best Worst Mean Std

SSO none 0.82123 0.76553 0.79320 0.02068
SSO-DE 0 0.84873 0.83996 0.84624 0.00270
SSO-DE 0.1 0.85024 0.84423 0.84729 0.00217
SSO-DE 0.4 0.85207 0.84736 0.84962 0.00132
SSO-DE 0.7 0.85219 0.84945 0.85060 0.00092
SSO-DE 1 0.85415 0.85031 0.85231 0.00148
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Table 21. Experiment results for spring (autumn).

Method aver.t Best Worst Mean Std

SSO-DE 361.00 0.89162 0.88692 0.89057 0.00159
PSO-DE 413.88 0.89095 0.88601 0.88872 0.00169
iSSO-DE 383.33 0.89098 0.88386 0.88867 0.00315
ABC-DE 480.32 0.89151 0.88779 0.88985 0.00136

Table 22. Experiment results for summer.

Method aver.t Best Worst Mean Std

SSO-DE 290.13 0.91229 0.89694 0.90068 0.00453
PSO-DE 346.52 0.89669 0.89596 0.89630 0.00024
iSSO-DE 316.00 0.89909 0.89527 0.89741 0.00120
ABC-DE 392.90 0.91937 0.90098 0.90870 0.00640

Table 23. Experiment results for winter.

Method aver.t Best Worst Mean Std

SSO-DE 325.67 0.86408 0.84870 0.85326 0.00487
PSO-DE 352.56 0.84974 0.83769 0.84481 0.00423
iSSO-DE 335.36 0.85175 0.83321 0.84618 0.00772
ABC-DE 392.40 0.84614 0.80664 0.82205 0.01213

Table 24. Experiment results of Friedman’s test.

Method N Est Median Sum of Ranks

ABC-DE 30 0.89043 81.0
iSSO-DE 30 0.88961 69.0
PSO-DE 30 0.88851 51.0
SSO-DE 30 0.89117 99.0

S = 30.16 DF = 3 p = 0.000

Table 25. Experimental results of Dunnett’s test.

Method PSO-DE iSSO-DE ABC-DE

SSO-DE p-value 0.090575 0.285129 0.405780

For the summer experimental data, the experimental results of each algorithm are
shown in Table 22 and Figure 11. The results showed that SSO-DE had the best performance
in terms of average running time. ABC-DE had the best performance and SSO-DE has the
second-best performance in terms of best fitness value, worst fitness value, and average
fitness value and PSO-DE had the best performance in terms of std. ABC-DE took the
longest running time. Thus, SSO-DE also performed quite well in the summer experimental
data set.

For the winter experimental data, the experimental results of each algorithm are shown
in Table 23 and Figure 12. The results showed that SSO-DE had the best performance in
terms of average running time. In addition, SSO-DE had the best performance in terms of
best fitness value, worst fitness value, and average fitness value. Thus, SSO-DE had the
most eye-catching performance in the winter experimental data set.



Appl. Sci. 2022, 12, 10595 30 of 35Appl. Sci. 2022, 12, x FOR PEER REVIEW 31 of 36 
 

A BC-D EiSSO -D EPSO -D ESSO -D E

0.892

0.891

0.890

0.889

0.888

0.887

0.886

0.885

0.884

0.883

D
at
a

B oxplot of SSO -D E , PSO -D E , iSSO -D E , A B C -D E

 
Figure 10. Box and whisker diagram for spring (autumn). 

For the summer experimental data, the experimental results of each algorithm are 
shown in Table 22 and Figure 11. The results showed that SSO-DE had the best perfor-
mance in terms of average running time. ABC-DE had the best performance and SSO-DE 
has the second-best performance in terms of best fitness value, worst fitness value, and 
average fitness value and PSO-DE had the best performance in terms of std. ABC-DE took 
the longest running time. Thus, SSO-DE also performed quite well in the summer experi-
mental data set. 

A BC-D EiSSO -D EPSO -D ESSO -D E

0.920

0.915

0.910

0.905

0.900

0.895

D
at
a

B oxplot of SSO -D E , PSO -D E , iSSO -D E , A B C -D E

 
Figure 11. Box and whisker diagram for summer. *: Outliers. 

For the winter experimental data, the experimental results of each algorithm are 
shown in Table 23 and Figure 12. The results showed that SSO-DE had the best perfor-
mance in terms of average running time. In addition, SSO-DE had the best performance 
in terms of best fitness value, worst fitness value, and average fitness value. Thus, SSO-
DE had the most eye-catching performance in the winter experimental data set. 

Figure 10. Box and whisker diagram for spring (autumn).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 31 of 36 
 

A BC-D EiSSO -D EPSO -D ESSO -D E

0.892

0.891

0.890

0.889

0.888

0.887

0.886

0.885

0.884

0.883

D
at
a

B oxplot of SSO -D E , PSO -D E , iSSO -D E , A B C -D E

 
Figure 10. Box and whisker diagram for spring (autumn). 

For the summer experimental data, the experimental results of each algorithm are 
shown in Table 22 and Figure 11. The results showed that SSO-DE had the best perfor-
mance in terms of average running time. ABC-DE had the best performance and SSO-DE 
has the second-best performance in terms of best fitness value, worst fitness value, and 
average fitness value and PSO-DE had the best performance in terms of std. ABC-DE took 
the longest running time. Thus, SSO-DE also performed quite well in the summer experi-
mental data set. 

A BC-D EiSSO -D EPSO -D ESSO -D E

0.920

0.915

0.910

0.905

0.900

0.895

D
at
a

B oxplot of SSO -D E , PSO -D E , iSSO -D E , A B C -D E

 
Figure 11. Box and whisker diagram for summer. *: Outliers. 

For the winter experimental data, the experimental results of each algorithm are 
shown in Table 23 and Figure 12. The results showed that SSO-DE had the best perfor-
mance in terms of average running time. In addition, SSO-DE had the best performance 
in terms of best fitness value, worst fitness value, and average fitness value. Thus, SSO-
DE had the most eye-catching performance in the winter experimental data set. 

Figure 11. Box and whisker diagram for summer. *: Outliers.

The Freidman test results of the four algorithms for the abovementioned experiments
of three seasons are shown in following Table 24. The p-value was 0.000, which represents a
significant difference in fitness values between different algorithms. Additionally, in terms
of sum of ranks, it could be found that the sum of ranks value of SSO-DE was the largest,
which shows the fitness performance of SSO-DE was the best among all algorithms in the
experiments of the three seasons.
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Furthermore, the Dunnett’s test (post-hoc test) experimental results of the four al-
gorithms including ABC-DE, iSSO-DE, PSO-DE, and the proposed SSO-DE in the three
seasonal data experiments are shown in Table 25. The results showed that there was no
significant difference between the other three algorithms with SSO-DE but the p-value
compared with PSO-DE was very close to 0.05. The reason for this result should be that
the fitness value performance of SSO-DE in the summer experiment is slightly inferior to
that of ABC-DE and the standard deviation performance of SSO-DE is not as stable as that
of PSO-DE. Although the experimental data in the three seasons obtained by SSO-DE per-
formed better than those found by PSO-DE and iSSO-DE, the difference is not particularly
significant as shown by Dunnett’s test. However, in the three data sets, the running time
of SSO-DE was much shorter than other compared algorithms, and Friedman’s test in the
previous paragraph also confirmed that the comprehensive performance of SSO-DE was
the best.

5. Conclusions

This study proposed a new algorithm called SSO-DE, which combined a differential
evolution (DE) algorithm as the local search strategy with simplified swarm optimiza-
tion (SSO) to solve the optimization problem of CCHP combined with renewable energy.
In addition, this study used the TOPSIS method to convert the original multi-objective
optimization problem, including minimizing the operation cost, minimizing the carbon
emissions, and maximizing the energy utilization rate, into a single-objective optimization
problem to reduce the calculation steps and increase the efficiency of the solution. More-
over, this work studied the CCHP based on Xikou village, Lieyu township, Kinmen county,
Taiwan as an experimental case to realize the CCHP-combined-with-microgrid system of
renewable energy and help to solve the problem that most of the research on CCHP is
limited to construction such as hotels and hospitals. The experimental results obtained
by the proposed SSO-DE were compared with POS-DE, iSSO-DE, and ABC-DE, and the
numerical results are as follows:

1. For the spring (autumn) experimental data set, SSO-DE performed the best in terms
of best fitness value, average fitness value, and average running time.

2. For the summer experimental data, SSO-DE performed the best in terms of average
running time. ABC-DE had the best performance and SSO-DE had the second-best
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performance in terms of best fitness value, worst fitness value, and average fitness
value.

3. For the winter experimental data, SSO-DE performed the best in terms of best fitness
value, worst fitness value, average fitness value, and average running time.

4. The results of the Friedman test showed that the proposed SSO-DE had the best
comprehensive performance among all experimental modules including spring (au-
tumn), summer, and winter. In addition, SSO-DE had the lowest running time in all
experiments.

5. The results of Dunnett’s test (post-hoc test) showed that there was no significant
difference between the other three algorithms with SSO-DE. The reason for this result
should be that the fitness value performance of SSO-DE in the summer experiment is
slightly inferior to that of ABC-DE and the standard deviation performance of SSO-DE
is not as stable as that of PSO-DE.

However, in the three data sets, the running time of SSO-DE was much shorter than
other compared algorithms, and Friedman’s test in the previous paragraph also confirmed
that the comprehensive performance of SSO-DE is the best.
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Abbreviations, Symbols, and Indicators

Abbreviations Definition
AC Absorption Chiller
CCHP Combined Cooling, Heating and Power system
ES Electricity-Storage Device
EC Electric Chiller
FTL Following Thermal Loading
FEL Following Electric Loading
GT Gas Turbine
GB Gas Boiler
Grid Main grid
HS Heating-Storage Device
NG Natural Gas
OM Operation Cost
PV Photovoltaic
recy Recycled thermal
WT Wind Turbine
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Symbols Definition
C Cold energy (Kwh)
COP Coefficient of refrigeration
E Stored electric energy (Kwh)
f Objective function for multi-objective optimization
F1 Economic cost (NTD)
F2 Pollution cost (KG)
F3 Energy utilization rate (%)
FNG Fuel cost (NTD/KG)
H Stored heat (Kwh)
J Electricity price (NTD/Kwh)
K Operating cost of unit power generation (NTD/Kwh)
P Electricity (Kwh)
Pr Price (NTD/m3)
Q Thermal energy (Kwh)
R Total energy (Kwh)
u Power generation efficiency (kg/kWh)
V Capacity (Kwh)
η Energy conversion rate
σ Energy-storage loss rate of energy-storage equipment
γ Loss rate when energy-storage device releases or stores energy
Indicators Definition
c charge
d discharge
j Machine type, such as PV, WT, GB, etc.
t hour
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