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Abstract: Depth ambiguity is one of the main challenges of three-dimensional (3D) human pose
estimation (HPE). The recent strategies of disambiguating have brought significant progress and re-
markable breakthroughs in the field of 3D human pose estimation (3D HPE). This survey extensively
reviews the causes and solutions of the depth ambiguity. The solutions are systematically classified
into four categories: camera parameter constraints, temporal consistency constraints, kinematic con-
straints, and image cues constraints. This paper summarizes the performance comparison, challenges,
main frameworks, and evaluation metrics, and discusses some promising future research directions.

Keywords: human pose estimation; depth ambiguity; deep learning; human key points positioning;
human object detection

1. Introduction

HPE is one of the most fundamental tasks in computer vision, which describe hu-
man pose by locating the key joint points in the input image or video [1]. In years
of continuous development, it has aroused long-standing research attention. Today it
plays a significant role in numerous applications such as behavior analysis, virtual reality,
and human–computer interactions. Base on the dimension of estimation, it can be split into
two-dimensional (2D) and 3D pose estimations [2]. Different from 2D methods locating
the X and Y axis coordinates, 3D methods estimate joint position in 3D space by adding an
extra axis [3]. Compared with 2D representation, 3D representation provides additional
depth information. Therefore, 3D HPE contains higher research value and can be put into
wider applications [4].

Recently, driven by advanced deep learning technology and large-scale datasets,
3D HPE has continually made great progress. However, the inherently existing depth
ambiguity problem still seriously restricts the accuracy of 3D HPE. Due to the unknown
relative depth between body joints, several 3D poses may correspond to the same 2D
pose, as shown in Figure 1, which leads to depth ambiguities in the 2D to 3D projection,
also known as ill-posedness. When predicting 3D human poses from static images, we
are inverting an inherently lossy nonlinear transformation that combines the perspective
projection and kinematics [5]. This ambiguity makes it difficult, in the absence of priors
other than the joint angle limits or the body’s non-self-intersection constraints, to recover
the original 3D pose from its projection. The existence of monocular 3D ambiguities is
well known, but it is interesting to study to what extent these are present among the poses
of a large, ecological dataset. We can assess the occurrence of ambiguities by looking
at 3D and 2D ground truth pose information. In contrast, since the human perception
mechanism (HPM) [6], human observers could distinguish the swing of the limbs and the
rotation of the joints according to information such as changes in illumination, shadows,
and shapes and easily infer a reasonable 3D pose. Although there are some existing reviews
for HPE, there still lacks a survey to review the cause and solutions of the depth ambiguity.
The survey [7] reviewed the recent deep learning-based 2D and 3D human pose estimation
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methods. This paper summarizes the performance comparison of various strategies based
on the dataset Human3.6M.

Figure 1. Illustration of depth ambiguity of 3D HPE.

The main objective of this paper is to provide a summary of disambiguating methods
that address the under-constrained nature of 3D HPE from single RGB inputs. We classify
the mentioned methods based on the main constrain information into four categories. Then,
we analyze the performances of the mentioned methods according to their categories and
discuss the advantages and the limitations of the followed strategies. In the end, we discuss
the existing problems of current research and evaluate future development trends.

2. Status of Research

Human observers use two kinds of information when recognizing poses from im-
ages: appearance and constraint information. The former is the basis for locating key-
points, whereas the latter has crucial guiding significance when locating difficult keypoints.
Constraint information includes the inherent mutual relationship between the keypoints,
the constraint relationship formed by the interaction between the human body and the
environment, etc. [8]. Currently, 3D HPE methods tend to regularize the learning process
with diverse constraints to relieve ambiguity.

We evaluate various methods’ performance on the motion capture dataset, Hu-
man3.6M [9]. It contains 3.6 million 3D human poses including discussion, smoking,
taking photos, talking on the phone, etc., and corresponding images from four different
views. For evaluation, there are three protocols with different training and testing data
splits (protocol #1, protocol #2, and protocol #3) [10]. In this paper, we consider protocol
#1. Protocol #1 is the mean per joint position error (MPJPE) in millimeters which is the
mean Euclidean distance between predicted joint positions and ground-truth joint positions
and follows.

2.1. Camera Parameter Constraints

Based on the camera imaging model, camera calibration establishes the correspon-
dence between a point in a 3D scene and its 2D pixel position in the image [11]. Based
on the basic principles of camera calibration, some researchers make good use of camera
parameter constraints to alleviate ambiguity and find the coordinates in the 3D space.

2.1.1. Method Content

Habibie et al. [12] learn weak-perspective camera (WPC) parameters from a given
monocular image and project the predicted 3D pose into 2D space. Such projection loss
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can be used to update the position of the 3D joints. Li et al. [13] introduce the mixture
density network (MDN) to generate multiple alternative 3D poses that mimic the depth
ambiguity problem. Based on the WPC model, they compared the 2D re-projection of
multiple 3D pose hypotheses to select the 3D pose with the highest similarity. The WPC
model-based approach mentioned above may greatly simplify the imaging model, which
can easily lead to the failure of some pose estimations. To address this issue, as shown in
Figure 2, Moon et al. [14] designed a camera distance-aware model to obtain the absolute
depth from the camera to the target, allowing the RootNet to adapt to various camera
parameters flexibly. The existing unsupervised framework, generative adversarial network
(GAN) [15], has excellent generalization capabilities. Wandt et al. [16] exploit a GAN-based
architecture to predict camera parameters from the input image and regard the predicted
camera parameters as a weak-perspective projection matrix. The model performs weakly
supervised learning by globally scaling the estimated 3D pose and re-projecting it into 2D
space to determine the deviation of the predicted pose from the original 2D input.

Figure 2. Illustration of Moon’s camera distance-aware top-down approach.

2.1.2. Performance Analysis

As shown in Table 1, because most poses of the Human3.6 dataset are standing
poses and motions, e.g., sit or sit down, contain more ambiguities and occlusions, it
provides sufficient proof of the disambiguating effectiveness in Moon et al. [14]. Although it
does not use any ground truth information in the estimation process, it still achieves low
errors, especially for ambiguous motions such as photo and walk together. In contrast,
the disambiguating effects are limited in Habibie et al. [12] and Li et al. [13], which use the
weak-perspective model. For a reasonable comparison with other supervised methods,
the unsupervised method of Wandt et al. [16] is compared with 2D groud-truth annotations
and even outperforms some supervised methods.

Table 1. Summary of performance on Human3.6 Protocol #1 (MPJPE: mm).

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Habibie et al. [12] 54 65.1 58.5 62.9 67.9 75 54 60.6 82.7 98.2 63.3 61.2 66.9 50 56.5 65.7
Li et al. [13] 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62 73.4 54.8 50.6 56 43.4 45.5 52.7
Moon et al. [14] 31 30.6 39.9 35.5 34.8 37.6 30.2 32.1 35 43.8 35.7 30.1 35.7 24.6 29.3 34
Wandt et al. [16] 33.6 38.8 32.6 37.5 36 44.1 37.8 34.9 39.2 52 37.5 39.8 40.3 34.1 34.9 38.2

2.2. Temporal Consistency Constraints

Because the depth information contained in a single image is limited, there must
be multiple results when the human body is projected from 2D to 3D by using a neural
network composed of almost entirely convolutional layers. The network can obtain richer
depth information from the sequence. Therefore, some researchers use the video frame
sequence, which is data with time information, as a dimensional supplement. The context
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information provided by the adjacent frame sequence can assist in predicting the pose of
the current frame.

2.2.1. Method Content

Hossain et al. [17] address the interframe incoherence and independence by propagat-
ing joint position information between frames. The model introduces temporal smoothness
loss to constrain the temporal consistency, preventing excessive changes between two
frames. Their skip connection learns the difference between 3D poses in different moments,
making it easier to disambiguate. Due to the advantages of processing multiple sequences
in parallel, lower computational complexity, and fewer model parameters, the temporal
convolutional network (TCN) is often used to process coherent sports information in im-
age sequences. Pavllo et al. [10] employ TCN to conduct dilated temporal convolutions
capturing long-term information, as shown in Figure 3. Cai et al. [18] solve ambiguity by
proposing a spatiotemporal graph convolutional networks (ST-GCN) to combine spatial
configurations and temporal consistencies. Zhang et al. [19] introduce dynamic spatial
graph (DSG) and dynamic temporal graph (DTG) convolution to calculate the spatiotempo-
ral relationship between human joints. Their dynamical graph network can identify the key
points with motion consistency to reduce the ambiguity when lifting a 2D pose to a 3D pose.
Due to the fact that human bone lengths remain consistent across video, Chen et al. [20]
predict the bone lengths in a specific frame of a video to alleviate the ambiguity of 3D pose
estimation. In addition, the visibility scores of 2D key points are utilized in this method as
additional knowledge.

Figure 3. Illustration of Pavllo’s fully convolutional architecture.

2.2.2. Performance Analysis

As shown in Table 2, thanks to temporal information, Pavllo’s [10] model reduces the
error by about 5 mm on average compared to its single-frame baseline model (where the
width of all convolution kernels was set to W = 1). The gap between them is more significant
on some more dynamic motions, such as walk (−6.7 mm) and walk together (−8.8 mm).
By using the same 2D detector with Pavllo et al. [10], Chen et al. [20] obtain a more smooth
prediction with lower MPJPE and achieve better performance on some difficult poses, such
as sit (−3.4 mm) and sit down (−5.6 mm), which can be attributed to accurate prediction of
bone length for these poses. In Chen et al. [20], the joint displacement loss can effectively
guide the model to predict high-quality bone orientation according to the predicted bone
length even if the body is bent. The approach designed by Zhang et al. [19] achieves
lower errors on complex motions involving high ambiguities and motion uncertainty, such
as sit down and photo, which shows that their method adaptively learns joint spatio-
temporal relationships to capture human poses in different motions and has a good effect
on disambiguation.
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Table 2. Summary of performance on Human3.6 Protocol #1 (MPJPE: mm).

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Hossain et al. [17] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Pavllo et al. [10],
single-frame 47.1 50.6 49 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8

Pavllo et al. [10],
243-frames 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44 49 32.8 33.9 46.8

Cai et al. [18] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Zhang et al. [19] 28.5 33.5 28.1 28.9 32.6 35.5 33.3 30 37.4 39.9 31.4 30.2 29.5 23.9 25.5 31.2
Chen et al. [20] 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46 31.5 32.7 44.1

2.3. Kinematic Constraints

Kinematic constraints refer to the restrictions that the human body should obey when
moving, such as body structural connectivity constraints, distance constraints between
joints, the range constraints of joint angles, and the constraints that each part of the body
cannot penetrate each other. These constraints can be used as hard constraints to divide the
state space into legal and illegal parts to reduce the search range [21] and can also be used
as soft constraints, namely penalty factors [22].

2.3.1. Method Content

Since the Euclidean distances matrix (EDM) is coordinate-free and invariant to in-plane
image rotations and translations, Moreno et al. [23] use EDM to represent pairwise distances
of body joints. Combining body structural information and capturing joint correlations, they
formulate the 3D estimation task as a regression between matrices encoding 2D and 3D joint
distances to reduce ambiguity. As shown in Figure 4, Lee et al. [24] employ propagating
LSTM networks (p-LSTMs) connected in series to elaborate the 3D pose progressively. They
effectively overcome ambiguity by learning joint interdependency based on actual human
behavior. Wang et al. [25] propose to distinguish joints with different degrees of freedom
(DOF) based on prior knowledge about physiological structure. In detail, the bi-directional
dependencies among body parts with different DOFs make them supervise each other,
yielding physically constrained and plausible pose-estimation results. Wang et al. [26]
propose an attention mechanism-based [27] model to combine the end-to-end training
scheme in GNN and the limb length constraints in PSM. In addition, Angjoo et al. [28]
parameterize the human body by shape, and joint angles based on the SMPL model [29] to
reduce the probability of generating an unreasonable body caused by ambiguity. As shown
in Figure 5, Xu et al. [30] split the 3D coordinate regression problem into length and
direction estimation, which alleviates ambiguity and self-focusing contained in images by
a large margin within a more compact space.

Figure 4. Illustration of Lee’s approach with pose depth cues.
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Figure 5. Illustration of Xu’s approach based on kinematics analysis.

2.3.2. Performance Analysis

Explicitly incorporating kinematic analysis into models and maintaining reason-
able spatiotemporal structure and compact output space, as shown in Table 3, methods
(Lee et al. [24]; Wang et al. [25]; Wang et al. [26]; Xu et al. [30]) show good performance and
finally improve the estimation accuracy. In particular, the methods of Wang et al. [26] and
Xu et al. [30] both obtain stable performance on several motions with relatively large ambi-
guity problems (such as sit, sit down, and photo). However, the model of Wang et al. [26]
is still challenging on the task of estimating overall attention when multiple joints are
occluded. There are several defects in Angjoo et al. [28]. (1) It is difficult for the model
to directly regress the internal parameters; (2) In the case of a small amount of data, it is
difficult for the model to use GAN for supervision to obtain robust results, and it may even
be possible worse. (3) The model does not supervise the human mesh part, which may
waste resources.

Table 3. Summary of performance on Human3.6 Protocol #1 (MPJPE: mm).

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Moreno et al.
[23] 69.5 80.2 78.2 87.0 100.8 102.7 76.0 69.7 104.7 113.9 89.7 98.5 82.4 79.2 77.2 87.3

Lee et al. [24] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 68.4 47.5 45.6 55.8
Wang et al. [25] 44.7 48.9 47 49 56.4 67.7 48.7 47 63 78.1 51.1 50.1 54.5 40.1 43 52.6
Wang et al. [26] 36.3 42.8 39.5 40 43.9 48.8 36.7 44 51 63.1 44.3 40.6 44.4 34.9 36.7 43.4
Xu et al. [30] 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6

2.4. Image Cues Constraints

Existing two-stage methods usually lose image information because they assume that
image cues are unavailable at the second stage. If no additional image cues are utilized,
methods are generally prone to ambiguities in the 2D to 3D regression. Some researchers
have proposed that taking full advantage of image cues constraints is also an effective way
to mitigate depth ambiguity.

2.4.1. Method Content

Xing et al. [31] train a deep convolutional neural network (CNN) to establishe the
mapping relationship between the image cues and 3D human pose codes. Their coding
method is finally combined with a linear matching mechanism to construct an effective
disambiguating solution. The ordinal depth refers to the relative depth between joint
points rather than the absolute physical depth and is extracted from images as a clue by
researchers for depth learning. Pavlakos et al. [32] employ ordinal depth annotation as
weak supervision to replace 3D annotation. Their end-to-end model is not affected by the
reconstruction ambiguity of the 2D detector. Sharma et al. [33] proposed a similar approach
to reduce the lifting ambiguity by using the obtained ordinal depth to rank candidate 3D
pose samples generated by conditional variational autoencoder (CAVE). Wang et al. [34]
also use the ordinal depth information to constrain the depth between adjacent joints.
As shown in Figure 6, they design a pairwise ranking CNN (PRCNN) to generate pairwise
depth relationships between joints, leveraging its rich geometric features and 2D joint
locations to determine an unambiguous 3D pose. Wu et al. [35] propose the limb depth
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maps representation, associated depth values with image cues, to break the previous nested
learning process’s limit that simultaneously estimates (X, Y, Z).

Figure 6. Illustration of Wang’s two-stage approach based on depth ranking.

2.4.2. Performance Analysis

Through quantitative and qualitative experiments, Xing et al. [31] demonstrated that
their method, benefiting from relieving ambiguity in 3D poses, significantly improves
reconstruction accuracy, which can smoothly adapt to changes in perspective. From the
data in Table 4, it can be observed that models (Pavlakos et al. [32]; Sharma et al. [33];
Wang et al. [34]) all obtain low MPJPE, showing that ordinal depth, with a special ability of
geometric knowledge in resolving reconstruction ambiguity, provides weak supervision
signals that can effectively enhance 3D HPE. At the same time, it prevents the network
from overadapting to a specific camera perspective, alleviating the problem of definition
ambiguity in the second stage of previous methods. The model of Wu et al. [35] overcomes
the uncertainty of the conventional nesting method and locates the key points accurately
by the depth value given explicitly. Its MPJPE value even reaches 43.2 mm, which obtains
the best performance in this type of method.

Table 4. Summary of performance on Human3.6 Protocol #1 (MPJPE: mm).

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Xing et al. [31] 60.6 54.1 60.0 59.6 60.7 78.8 56.2 52.6 58.0 82.9 66.7 62.0 51.5 60.9 42.8 60.1
Pavlakos et al.
[32] 48.5 54.4 54.4 52 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Sharma et al.
[33] 48.6 54.5 54.2 55.7 62.6 72 50.5 54.3 70 78.3 58.1 55.4 61.4 45.2 49.7 58

Wang et al. [34] 49.2 55.5 53.6 53.4 63.8 67.7 50.2 51.9 70.3 81.5 57.7 51.5 58.6 44.6 47.2 57.8
Wu et al. [35] 34.9 40.8 37.5 47.2 41.5 46.6 35.9 39.5 52.6 72.5 42.3 45.8 42 31.6 33.8 43.2

3. Challenges

Despite the great development of disambiguating with various methods, there re-
main some unresolved challenges and gaps between research and practical applications.
The challenges of eliminating depth ambiguity mainly have six aspects.

• Existing methods based on camera parameter constraints generally simplify the imag-
ing model and directly treat the estimation task as a coordinate regression without
adequate consideration of the inherent kinematic structure of the human body, which
may lead to invalid results.

• Due to the lack of the original input image, the two-stage methods place overreliance
on the 2D detector and discard the rich spatial information in the image when esti-
mating the 3D pose. The error of the first stage will be amplified in the 3D estimation.
The algorithm is ultimately limited if the 2D pose estimation is not updated with
the 3D.

• The one-stage methods usually fix the scale of the 3D pose. The 3D pose is constructed
from the 2D pose and depth, which may make estimation fail when the height of the
subject is far from the height in the training set.
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• The interframe continuity and stability constraints used by methods based on tempo-
ral consistency constraints lead to smoothness effects, which may cause inaccurate
estimation of each frame. The estimated results will have floating, jitter, and slid-
ing problems.

• Some kinematic constraints belong to simple structural constraints and are commonly
treated as auxiliary losses in research, such as symmetry loss, joint angles limit,
e.g., could only make marginal improvements to the estimation results, and limited
disambiguating effect.

• The monocular image belongs to a two-dimensional representation and carries no
depth information, which is challenging for image cue methods to learn depth infor-
mation. In addition, as the depth is highly sensitive to camera parameters, translation
and rotation will make joint depth prediction more difficult.

4. Future Potential Development

According to the current works and shortcomings, we propose several next future
directions worthy of attention for disambiguating research as follows.

• Weakly supervised and unsupervised methods. The traditional deep convolutional
neural network requires adequate manual annotations.The weakly supervised method
does not need a large number of 3D annotations but 2D annotated data does, which
reduces algorithm costs. Unsupervised methods follow this trend even more so.

• Interaction and reconstruction between scene object and human. The contact between
human and object is the essential visual cue for inferring 3D movement. The current
works based on a single RGB image generally first identify a human target using a
bounding box and then estimate the cropped body, rarely paying attention to the
scenes and objects that contain rich clues. The 3D HPE can utilize interpenetration
constraints to limit the intersection between the body and the surrounding 3D scene.

• The 3D HPE from multi-view images. Multi-view images can significantly mitigate am-
biguity, and their typical methods include fusing multi-view 2D heatmaps, enforcing
consistency constraints between multiple views, and triangulation measurement, etc.

• Sensor technology. Some works use sensors, such as RGB-D depth cameras, inertial
measurements units (IMUs) and radio frequency (RF) to add the collected depth, joint
direction and other information [36–38]. Compared with depth images, using sensors
to capture point clouds can provide more information.

5. Conclusions

Human pose estimation is a hot research area in computer vision that evolved recently
along with the blooming of deep learning. Although commercial products such as Kinect
with depth sensor, and TheCaptury with multiple cameras have been employed for 3D
body pose estimation, all these systems work in very constrained environments or need
special markers on the human body. A monocular camera, as the most widely used sensor,
is very important for 3D human pose estimation. Deep neural networks have the capability
to estimate the dense depth and sparse depth points (joints) as well from monocular images.
Due to limitations in depth ambiguity problem, early networks were inaccurate on 3D
HPE. This review summarizes recent progress in disambiguation schemes from monocular
RGB images or videos. However, the overreliance on the 2D detector remains extremely
challenging. As for the case of camera parameter constraints, camera perspective models
are less developed. We point out that kinematic and image cue constraints that clearly work
are still far from being established. Most recently, weak supervision and unsupervision
have drawn significant attention. Furthermore, multi-view images effectively solve this
problem, so we can expect many innovations in the next few years, especially when sensor
technologies are applied to this field. In addition, we conjecture that research on interaction
and reconstruction between scene objects and the human body will also be a promising
direction in the future.
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