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Abstract: Time-delay chaotic systems with multiple positive Lyapunov exponents have been ex-
tensively studied in the field of information security. This paper proposes a new four-dimensional
time-delay Lorenz system and its chaotic synchronization through the Lyapunov–Krasovskii theory.
The sufficient conditions for the stability of the new chaotic system are obtained by the Routh–
Hurwitz criterion, and the control parameters are found to have a significant impact on the speed of
synchronous convergence. Furthermore, oscillation circuit simulation is essential for contributing the
chaotic system to practical applications. Accordingly, the circuits of the chaotic time-delay system
and its coupled synchronous control circuit are innovatively designed by Multisim. Experiment
results illustrate the behaviors of various attractors in the new time-delay Lorenz system and the
effectiveness of the proposed asymptotic synchronous method.
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1. Introduction

Chaos is an emerging interdisciplinary field developed with the rapid development
of modern science and technology, especially with the emergence and widespread use
of computer technology. The dynamic behavior of a chaotic system drastically depends
on its initial conditions [1]. A new system is derived in this condition, even if there is a
small change in the initial values. The chaotic system appears to be a random behavior, but
in reality, this behavior of chaos follows a natural order. Chaotic systems are difficult to
control due to their random dynamic behavior, heavy dependence on initial conditions, and
pseudo-randomness [2]. Many researchers have extended their fascinating exploration of
mathematics and found a variety of new simple systems that can exhibit chaotic states [3–7].
For example, logistic [8], Hénon’s [9], Chen [10], and Lü [11] systems. In these maps, initial
conditions and unstable fixed points of the chaotic attractors are located nearby. Moreover,
J. Sprott found in his book some new systems, simpler models of chaotic systems that are
more concise in terms of the values of some system parameters, special symmetries, and
dynamics [7]. Chaotic phenomena exist in the scientific fields of geology, biology, and
social science. The phenomenon has ergodicity, and is nonperiodic, such as noise-like
characteristics [12], making the issue of chaotic synchronous control issue become a study
in the field of nonlinear science.

Since the synchronization of chaos was first discovered by Pechora and Carroll in
1990 [13], there has been considerable interest in this research for its potential usage in
secure communications, radars, chemical processes, and engineering applications. These
depend on the designing of a strategic approach that enables the dynamic behavior of the
master system to control the dynamic behavior of the slave system [14–16]. Various control
methods have been proposed for synchronization of chaos, such as sliding synchronous
mode control [17], the sliding-mode control approach [18], adaptive control methods [19],
adaptive observer-based synchronous strategies [20], linear feedback controllers with
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unknown parameters [21], predictive methods of a hyperchaotic system [22], backstepping
synchronization based on the equivalent transfer function method [23], and a time-delay
control [24]. In [15,25], the authors analyzed the exponential synchronization for time-
delay perturbation chaotic systems with multiple positive Lyapunov exponents and the
applications to secure communications.

In practical engineering applications, such as communications, automation, biology,
and chemistry, uncertainties due to time delays cannot be avoided, leading to multiple
variations in the dynamic behavior of the actual system and increasing the uncertainty and
complexity of the system model. In such time-delayed systems, the dynamic behavior of
the system is more difficult to control and apply in practice. Hence the problem of stability
analysis and control of systems with time delays has become a considerable and topical
area for researchers in this field. Therefore, researchers have conducted various experi-
ments on uncertainty [26,27] and systems with time delay [28–32]. In [27], the nonlinear
control hyperchaotic Rossler system with uncertain parameters is proposed. In [26], an
adaptive synchronous strategy is introduced to control uncertain dynamical system time
delays based on parameter identification. Ref. [11] presents a new state feedback control
method to generate a hyperchaotic lv attractor. A delayed model with a third-degree expo-
nential polynomial is proposed and used to control testosterone secretion [32]. Different
synchronous mechanisms in nonidentical time-delay maps are studied [31]. By a fuzzy
fractional-order neural network, an adaptive synchronization for a class of fractional-order
time-delay uncertain chaotic systems is yielded [30]. In [29], analytical estimation is applied
to synchronization in coupled time-delay systems. An iterative learning control strategy
has been proposed to synchronize two chaotic systems with a free couple and free time
delay [28]. On the other hand, this has given rise to a variety of chaotic signal synchronous
control mechanisms and programs, with only one positive Lyapunov exponent of low-
dimensional chaotic system complexity, resulting in a less secure confidential system [33].
However, the chaotic time-delay system possesses an infinite-dimensional state space and
abundant dynamic behaviors in nonlinear fields. For example, Lyapunov exponents for
complex systems with delayed feedback are studied [34]. Wang et al. proposed a novel
control method for heterogeneous uncertain chaotic systems with time delay, in which a
robust framework for synchronous error estimation is presented [35]. Moreover, it has
been used for secure communications through multiple heterogeneous chaotic systems in
engineering applications.

Using synchronized chaotic systems for real-world applications largely relies on circuit
implementations. Thus, the chaotic system of circuit simulation has widespread concern
from researchers in this field [36,37]. Ref. [37] proposed a new four-dimensional chaotic
system of a circuit simulation program to map out the trajectory of the high-dimensional
chaotic attractor. In [38], the author presented numerical simulations that assume a crucial
role in their investigation due to chaotic systems being so challenging to understand
analytically. Numerous researchers are confident in the relevance of system modeling and
circuit simulation, developing new models with components that can present unpredictable,
chaotic behavior [39–41]. Models of systems and circuits are applicable in different fields
and initiated the exploration of other chaotic oscillation circuits [42–44]. Sprott designed a
simple chaotic jerk circuit in 2011 [40], which includes only a few electronic components,
such as one inductor, two capacitors, one adaptive resistor, and a nonlinear resistor. His
works illustrated similar chaotic behavior to the trajectories around the equilibriums
of the system. Lorenz was the first to propose continuous-time chaotic systems [45].
After that, various discrete-time chaotic hyperchaotic systems have been proposed in
the literature [46–50], while typical ordinary differential equations are used to represent
most types. Chaotic behavior involves exploiting the time-delay paths in autonomous
Boolean networks [51,52]. Furthermore, chaos was initially implemented with electronic
logic circuits (logic gates and field-programmable gate arrays FPGAs) [53,54]. In [55],
dynamical behaviors are analyzed using two new asymmetric chaos circuit oscillators with
no dependence on incommensurate time delays.
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One of the items that can be studied for uncertain time-delay systems is the broadband,
nonperiodic and unpredictable time-delay system. On the other hand, time-delay chaos
systems can exhibit more complex hyper-chaotic behaviors. Many positive Lyapunov
exponents could be generated even if a low-dimensional time-delay system is used. Those
properties offered by chaotic time-delay signals are suitable for signals used in electronic
engineering and information processing in particular secure communication systems. Fur-
thermore, compared to the typical low-dimensional chaotic system well studied, the chaotic
time-delay system, which has more complex hyper-chaotic behaviors, is rarely reported.
Significantly, the chaotic time-delay circuit hinders the practical application of the ran-
domness time-delay systems in secure communication. Accordingly, this research aims to
develop a novel chaotic time-delay system and asymptotical synchronous conditions based
on the Lyapunov–Krasovskii functional theory.

Moreover, the realization of a high-dimensional delay chaotic synchronization system
was introduced, which is not limited to the dimension of the system while generating
more than one positive Lyapunov exponent, both high reliability and preventing the cost
of the improvement and synchronous difficulty. Specifically, a four-dimensional time-
delay Lorenz system oscillation circuit was investigated to ensure the performance of
the attractor. In addition, the time delay in the chaotic attractor has abundant dynamic
characteristics, which laid the foundation for enhancing data security levels in the secure
telecommunications field. The experiment results show that the design is practical, feasible
and can be applied in many time-delay dynamic-related scopes.

This paper is organized as follows: In Section 2, the basic chaotic systems used in
this paper are presented. In addition, the time-delay disturbance term was introduced in
the mathematical model of classical four-dimensional systems to construct a new effective
chaotic system. The novelty synchronous controller between the master system and slave
system with a self-time-delay disturbance is analyzed and simulated in Section 3. Section 4
innovatively presents a straightforward methodology to design an integrated circuit, partic-
ularly, the lag time oscillator module. Time series, phase space reconstruction, and Poincare
maps validate the chaotic behaviors of the designed circuit. In Section 5, the nonlinear
coupled global asymptotic synchronization of the time-delay Lorenz system and its circuit
simulation is the novelty proposed. Finally, conclusions are presented in Section 6.

2. Numerical Simulation

The famous American meteorologist, Professor Lorenz E.N, first described Lorenz
systems in the 1963 [45]. This paper adopts a three-dimensional Lorenz chaotic system as
the following set of third-order differential equations.

.
x(t) = a(y(t)− x(t))
.
y(t) = −x(t)z(t) + cy(t)
.
z(t) = x(t)y(t)− bz(t)

(1)

where x(t), y(t) and z(t) are the state variables of the system, a, b and c are the control
parameters of the system.

When the system parameters a = 36, b = 3, and c = 20, the system is in a chaotic
state, and the trajectory of the system’s solution in phase space is obtained. Figure 1a
shows the three-dimensional phase diagram on the x-y-z, and Figure 1b–d shows the
phase diagram on two planes. Figure 1b–d show the trajectory of chaotic attractors on a
two-dimensional plane.
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Figure 1. Phase diagram of a three-dimensional chaotic attractor. (a) x-y plane phase diagram; (b) x-z
plane phase diagram; (c) x-z plane phase diagram; (d) three-dimensional diagram.

Chaotic motion is locally unstable, while the whole is stable. The initial value of a
chaotic system is affected by minor disturbances. The distance between the points on the
orbit and the corresponding points in the original orbit increases exponentially over a
period of time. Under the influence of the boundedness of the chaotic motion, the distance
between the two points oscillates randomly again.

Further, the initial sensitivity experiment was carried out with the initial values chosen
as (−3, −4, 14) and the step size chosen as h = 0.01. The calculated curve of x with time
t is shown in Figure 2a, Figure 2b shows the waveform x1(t) after adding a perturbation
10−8 to the initial function x(t), and Figure 2c shows the difference between them.
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Figure 2. Time course diagram. (a) Original x; (b) after adding perturbation x1; (c) difference plot x1-x.

Let
.
x =

.
y =

.
z = 0 gives 

a(y(t)− x(t)) = 0
−x(t)z(t) + cy(t) = 0
x(t)y(t)− bz(t) = 0

(2)

calculate the equilibrium points of system (1) and get the result that if bc ≤ 0, system (1)
has only one equilibrium point S0(0, 0, 0), and if bc > 0, system (1) has three equilibrium
points S−(−

√
bc,−

√
bc, c), S0(0, 0, 0), S+(

√
bc,
√

bc, c).
Linearizing the system (1) on the equilibrium point S0 to obtain three eigenvalues:

λ1 = −a, λ2 = c, λ3 = −b. If c > 0, the origin is a saddle point in three-dimensional space;
if c < 0, the origin is the only equilibrium point.

The following is an analysis of the non-zero balance points of the system (1) so that
the two non-zero balance points S−, S+ are S(xs, ys, zs). Linearize the system (1) on two
non-zero equilibrium points, and calculate the Jacobian matrix∣∣∣∣∣∣

−a− λ a 0
−zs c− λ −xs
ys xs −b− λ

∣∣∣∣∣∣ = 0 (3)

The characteristic polynomial is obtained

λ3 + (a + b− c)λ2 + (ab− ac− bc + x2
s + azs)λ+(ax2

s + abzs + axsys − abc) = 0 (4)

substitute the values S−(−
√

bc,−
√

bc, c), S+(
√

bc,
√

bc, c) of the non-zero equilibrium point

λ3 + (a + b− c)λ2 + abλ + 2abc = 0 (5)

Assume the coefficients in the characteristic polynomial are a0 = 1, a1 = a+ b− c, a2 =
ab, a3 = 2abc. Since the sign of the real part of the eigenvalues of the derived linear system
can be determined by using the Routh Hurwitz criterion. It can be inferred whether the
corresponding nonlinear system is stable.

According to the Routh–Hurwitz criterion, there are

∆0 = a0 = 1 > 0
∆1 = a1 = a + b− c

∆2 =

∣∣∣∣a1 a0
a3 a2

∣∣∣∣ = ∣∣∣∣a + b− c 1
2abc ab

∣∣∣∣ = a2b + ab2 − c− 2abc

∆3 = a3 = 2abc

(6)
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The equilibrium point S of the system (1) is stable only if it meets ∆1 = a + b− c > 0,
∆2 = a2b + ab2 − c − 2abc > 0, ∆3 = 2abc > 0, and Equation (4) has three negative
real roots.

The equilibrium point S of the system (1) is unstable when ∆1 = a + b− c < 0 or
∆2 = a2b + ab2 − c− 2abc < 0 or ∆3 = 2abc < 0, and Equation (4) has a negative real part
root and a pair of imaginary conjugate roots of the positive real part. Both equilibrium
points are saddle focus points in three-dimensional space.

System (1) is a dissipative system with a dispersion of

∇V = ∂
.
x

∂x + ∂
.
y

∂y + ∂
.
z

∂z +
∂

.
w

∂w = −(a− c + b) = −19
V(t) = V(0)e−19

(7)

Since (a − c + b) > 0, the system (1) is always dissipative and converges in the
exponential form of

.
V = e−(a−c+b). Further, an initial volume V(0) converges to a volume

element V(0)e−19 at time t. Therefore, when t→ ∞ , each volume element containing the
system’s trajectory shrinks to zero at an exponential rate−(a− c + b). Therefore, all system
trajectories will eventually be limited to a set of points with zero volume, and its asymptotic
behavior will be fixed on an attractor.

On the other hand, the linear feedback method extends the systemic dimension. The
mathematical model of a four-dimensional structured chaotic system based on the Lorenz
system is as follows 

.
x(t) = a(y(t)− x(t))
.
y(t) = bx(t) + cy(t)− x(t)z(t) + w(t)
.
z(t) = x(t)y(t)− dz(t)
.

w(t) = −hx(t)

(8)

there are only two nonlinear terms in system (8), a, b, c, d, and h are the control parameters,
while the values a = 35, b = 7, c = 12, d = 3 and h = 5, and the system enters a chaotic state,
the trajectories of chaotic attractors are shown in Figure 3.

In reality, there is often a time lag between the state variables of a dynamical system.
The evolutionary trend of a system is related to the current state of the system and the state
at a certain time in the past, thus evolving a time-delay dynamical system. We introduce
delay time in the mathematical model of the four-dimensional Lorenz disturbance term
px(t− τ) to form a new chaotic time-delay system.

.
x(t) = a(y(t)− x(t)) + px(t− τ)
.
y(t) = bx(t) + cy(t)− x(t)z(t) + w(t)
.
z(t) = x(t)y(t)− dz(t)
.

w(t) = −hx(t)

(9)

The variables p and τ in Equation (9) represent the hysteresis control parameter and
the hysteresis time of the time-delay system, respectively, which can be appropriately
assigned to drive the newly constructed system into a chaotic state. The power spectrum of
the trajectory x(t) and sequence of chaotic attractors for this system are shown in Figure 4,
which are obtained by picking p = 3, τ = 1.4 ms and initial values [−20; 0; 0; 0].
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The sensitivity of the initial values is one of the most important properties of chaos,
which makes long-term prediction of the system impossible. Figure 5 shows the time
domain waveform of the initial function x(t) of the chaotic time-delay model combined
with the difference between the 10−8 disturbance and the original series as a function of
time t.
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Figure 5. x1-x difference trajectory diagram.

The results show that the differences curve into a random vibration after some time.
Its maximum difference can reach 31.7147, indicating that the trajectory of chaotic vibration
is extremely sensitive to the initial value. The nonperiodic nature of the time domain
waveform makes the system hard to predict. That is a consequence of positive Lyapunov
exponents acting on the time-lag system (9). Figure 6 describes the Lyapunov exponential
graph as it varies with the steps when the initial values are [−20; 0; 0; 0], control parameters
a = 35, b = 7, c = 12, d = 3, h = 5, p = 3, and delay-time τ = 1.4 ms. There are two positive
Lyapunov exponents when the evolution of the Lyapunov exponent is stable, respectively
λ1 = 0.6607, λ2 = 0.0524.
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The maximum Lyapunov exponent of the chaotic attractor is measured to be 0.6607.
Thus, the time-delay chaotic attractor constructed by introducing a perturbation term is
more complex than the classical three-dimensional Lorenz attractor in dynamic behavior.
This property is particularly valuable in secure communication.
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Analyze the stability of its system equilibrium point
a(y(t)− x(t)) + px(t− τ) = 0
bx(t) + cy(t)− x(t)z(t) + w(t) = 0
x(t)y(t)− dz(t) = 0
−hx(t) = 0

(10)

At the equilibrium point, the solution of Equation (10) is a constant independent of
time t. It is a constant state solution x = x0, y = y0, z = z0, w = w0. It cannot give a track
line that changes with time, and there can be only a one-track line through each point on
the phase plane except the equilibrium point, implying that the tracks cannot intersect. The
solution gives the system only one equilibrium point S0 = (0, 0, 0, 0).

Stability analysis of this equilibrium point is performed by giving the system a small
perturbation δx, δy, δz, δw to move out of equilibrium. Assuming that the solution of the
system (9) is x = x0 + δx, y = y0 + δy, z = z0 + δz, w = w0 + δw, and substituting them
into the original system (9) and expanding the right-hand side of the equation to the linear
term in Taylor’s series form, we obtain at the equilibrium point

δ
.
x = f1(x0, y0, z0, w0) +

∂ f1
∂x δx + ∂ f1

∂y δy + ∂ f1
∂z δz + ∂ f1

∂w δw

δ
.
y = f2(x0, y0, z0, w0) +

∂ f2
∂x δx + ∂ f2

∂y δy + ∂ f2
∂z δz + ∂ f2

∂w δw

δ
.
z = f3(x0, y0, z0, w0) +

∂ f3
∂x δx + ∂ f3

∂y δy + ∂ f3
∂z δz + ∂ f3

∂w δw

δ
.

w = f4(x0, y0, z0, w0) +
∂ f4
∂x δx + ∂ f4

∂y δy + ∂ f4
∂z δz + ∂ f4

∂w δw

(11)

Equation (11) is a linear equation with a perturbation of δxδyδzδw. Jacobin matrix can
be obtained at the right end, recorded as J

J =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f1
∂w

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f2
∂w

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

∂ f3
∂w

∂ f4
∂x

∂ f4
∂y

∂ f4
∂z

∂ f4
∂w

 =


−a a 0 0

b− z c −x 1
y x −d 0
−h 0 0 0

 =


−a a 0 0
b c 0 1
0 0 −d 0
−h 0 0 0

 (12)

Linearizing the system (12) at the equilibrium point S0 and constructing the character-
istic equation as

|Js − λI| =

∣∣∣∣∣∣∣∣

−a a 0 0
b c 0 1
0 0 −d 0
−h 0 0 0

−


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−a− λ a 0 0

b c− λ 0 1
0 0 −d− λ 0
−h 0 0 −λ

∣∣∣∣∣∣∣∣ = 0 (13)

from the determinant, we get

λ4 + (a− c + d)λ3 + (ad− ac− ab− cd)λ2 + (abd + ah− acd)λ + adh = 0
λ4 + 26λ3 + (−596)λ2 + (−350)λ + 525 = 0

(14)

The sufficient conditions for the stability of a linear system are obtained by the Routh–
Hurwitz criterion, which is an algebraic criterion for determining the stability of a system
proposed by Routh in 1877, using the coefficients of the characteristic equation of a linear
system as the criterion. Based on the coefficients of the characteristic Equation (14) and
Routh–Hurwitz criterion Equation (6), the Routh table is presented in Table 1.
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Table 1. System stability analysis.

Eienvalue ∆1 ∆2 ∆3

λ4 1 −596 525
λ3 26 −350 0
λ2 26×(−596)−1×(−350)

26 ≈ −582.5 26×525−1×0
26 = 525 0

λ1 −582.5×(−350)−26×525
−582.5 ≈ 373.4 0 0

λ0 525 0 0

The linear system (14) is stable only if the values in the first column ∆1 of the Routh
table are positive. Since the first column ∆1 of Table 1 has two variable signs, the system
(14) is unstable. It has two positive real roots, proving that the system (9) is unstable at the
equilibrium point S0, which creates the possibility of a chaotic state.

System (9) is a dissipative system, and the dispersion is

∇V = ∂
.
x

∂x + ∂
.
y

∂y + ∂
.
z

∂z +
∂

.
w

∂w = −(a− c + d + h− p) = −28
V(t) = V(0)e−28

(15)

When (a− c + d + h− p) > 0, t→ ∞ , each volume element containing the system
orbit contracts at an exponential rate of −28. The initial volume element V(0) contracts at
time t to the volume element V(0)e−28 on an attractor.

3. Time-Delay Chaotic Synchronization Structure

In recent years, chaos has been used extensively in secure communication. Chaos syn-
chronization has long been studied in the context of low-dimensional chaotic systems with
only one positive Lyapunov exponent, and synchronized communication schemes using
such low-dimensional chaos are easily deciphered by prediction and reconstruction meth-
ods. In contrast, high-dimensional hyperchaotic communication systems based on multiple
positive Lyapunov exponents have better secrecy than low-dimensional chaotic systems.
However, the structure is more complex, making chaos synchronization more difficult.

Time-delay chaotic systems are infinite-dimensional systems with more complex dy-
namical behavior, capable of generating positive Lyapunov exponents in more dimensions.
The study of their synchronous systems is of great value in practical applications, making
them a key focus in the study of synchronization of hyperchaotic systems [14].

The Lyapunov first and second methods are tools for studying the stability of gen-
eral continuous dynamical systems described by ordinary differential equations. The
first method determines the stability of a system based on the eigenvalues of differential
equations. In contrast, the second method uses Lyapunov functions to analyze the global
stability of the system. For time-delay chaos, the Lyapunov exponent of the system is
related to a function on the initial period. Time-delay chaos is an infinite-dimensional
system. It is more difficult to analyze the accuracy of the Lyapunov exponent if it is solved
using local linearization. Using the Lyapunov first method in analyzing time-delay chaos
is not advisable. Therefore, the extension of the Lyapunov second method to continu-
ous dynamical systems with time lags in simultaneous method determination is called
Lyapunov generalization.

Set C[−r, 0] to be the space of all continuous functions from [−r, 0] to Rn, and r > 0,
for any φ ∈ C[−r, 0], whose parameterization is ‖φ‖ = sup

−r≤θ≤0
‖φ‖, where ‖ · ‖ is the

parameterization in Rn. When x(t) is a continuous function on [−r, T](0 ≤ T ≤ +∞),
define xt(θ) = x(t + θ), for any t ∈ [0, T], θ takes all values on [−r, 0].

A general system of continuous differential dynamics with time delays is as follows

.
x = F(t, xt) (16)
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where F : R× C → Rn is continuous, and F(t, 0) = 0, ensuring the existence and unique-
ness of solution x(t, t0, φ) for all initial value (t0, φ), Equation (16), denoted x(t) = x(t, t0, φ).

Let V : R× C → R be a continuous function and define

.
V =

.
V(t, ϕ) = lim

h→0+

1
h
(V(t + h, xt+h)−V(t, φ)) (17)

The Lyapunov functional method for stability of time-delay systems is given. Set
u(s), v(s), w(s) : R+ → R+ to be continuous and non-decreasing functions. When s > 0,
u(s) > 0, v(s) > 0, u(0) = v(0) = w(0) = 0, then

1. A zero solution x = 0 of Equation (16) is consistently stable if the function V : R× C → R

exists, such as, u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖),
.

V(t, φ) ≤ −w(‖φ(0)‖).
2. The zero solution of Equation (16) is uniformly bounded if the condition lim

s→+∞
u(s) =

+∞ is added to (1).
3. If the condition s > 0, w(s) > 0 is added to (1), then the zero solution of Equation (16)

is consistently asymptotically stable.

Previously, the time-lag phenomenon was often treated with a suppression approach
in the design of chaotic synchronous systems, leading the system to an unstable periodic
orbit. However, chaotic time-delay synchronous research has gradually developed to
achieve complete reconfiguration of the chaotic states of two chaotic time-delay systems,
which reduces the complexity and increases the reliability of the synchronized system [11].

Therefore, a multi-dimensional self-time-lagged chaotic synchronization method is
found based on Lyapunov’s general function theory, and the error system is verified
through numerical simulations. Finally, the relevant factors affecting the convergence
speed of the self-time-lagged chaotic synchronization are studied. The four-dimensional
Lorenz system is taken as the driving source for the self-time-lag synchronous system, and
the time-lag response system is as follows

.
x̃(t) = a(ỹ(t)− x̃(t)) + px̃(t− τ) + u1(t).
ỹ(t) = bx̃(t) + cỹ(t) + w̃(t)− x̃(t)z̃(t) + u2(t).
z̃(t) = x̃(t)ỹ(t)− dz̃(t) + u3(t).
w̃(t) = −hx̃(t) + u4(t)

(18)

It is crucial to design a suitable synchronous controller for the chaotic synchroniza-
tion of the two systems. Based on the theory of active control, the choice of controllers
u1(t), u2(t), u3(t), u4(t) can achieve the global stability of the synchronized system.

u1(t) = −l1ex(t)− px(t− τ)
u2(t) = −l2ey(t)− x(t)z(t) + x̃(t)z̃(t)
u3(t) = x(t)z(t)− x̃(t)z̃(t)− l3ez(t)
u4(t) = −l4ew(t)

(19)

where ex = x̃− x, ey = ỹ− y, ez = z̃− z, ew = w̃−w, the response system (18) is differenced
from the four-dimensional Lorenz system to obtain the corresponding error system

.
ex(t) = a(ey(t)− ex(t)) + px̃(t− τ) + u1(t).
ey(t) = bex(t) + cey(t) + ew(t)− x̃(t)z̃(t) + x(t)z(t) + u2(t).
ez(t) = x̃(t)z̃(t)− x(t)z(t)− dez(t) + u3(t).
ew(t) = −hex(t) + u4(t)

(20)

ei(i = x, y, z, w) is called a chaotic synchronous error. According to the Lyapunov stability
theorem, the synchronous error system (20) is asymptotically stable at the origin, which
means the drive system (8) and the response system (18) are completely synchronized when
the synchronous error tends to zero. The Lyapunov function is constructed
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V(t) =
1
2
(e2

x(t) + e2
y(t) + e2

z(t) + e2
w(t)) +

0∫
−τ

(e2
x(t + θ) + e2

y(t + θ) + e2
z(t + θ) + e2

w(t + θ))dθ (21)

for all t ≥ 0, it is clearly shown that V(t) is a positive-definite function. Evaluating the time
derivative of V(t) along the trajectory shown in the error system (4) gives

.
V(t) = ex(t)

.
ex(t) + ey(t)

.
ey(t) + ez(t)

.
ez(t) + ez(t)

.
ez(t) + [(e2

x(t) + e2
y(t)+

e2
z(t) + e2

w(t))− (e2
x(t− τ) + e2

y(t− τ) + e2
z(t− τ) + e2

w(t− τ))]

= −(l1 + a− 1)e2
x(t)− (l2 − c− 1)e2

y(t)− (l3 + d− 1)e2
z(t)− (l4 − 1)e2

w(t)
+(a + b)ex(t)ey(t) + ey(t)ew(t)− hex(t)ew(t) + pexe(t− τ)
−(e2

x(t− τ) + e2
y(t− τ) + e2

z(t− τ) + e2
w(t− τ))]

(22)

according to arithmetic-geometric mean inequality

.
V(t) ≤ −(l1 + a− 1)e2

x(t)− (l2 − c− 1)e2
y(t)− (l3 + d− 1)e2

z(t)− (l4 − 1)e2
w(t)

+(a + b)ex(t)ey(t) + ey(t)ew(t)− hex(t)ew(t) +
p2

4 e2
x + e2

x(t− τ)
−(e2

x(t− τ) + e2
y(t− τ) + e2

z(t− τ) + e2
w(t− τ))]

≤ −(l1 + a− 1− p2/4)e2
x(t)− (l2 − c− 1)e2

y(t)− (l3 + d− 1)e2
z(t)

−(l4 − 1)e2
w(t) + (a + b)ex(t)ey(t) + ey(t)ew(t)− hex(t)ew(t)

(23)

Assume eT(t) = (ex, ey, ez, ew), taking on the structure of the quadratic form

.
V(t) ≤ −eT(t)


l1 + a− 1− p2

4 −a− b 0 h
0 l2 − c− 1 0 −1
0 0 l3 + d− 1 0
0 0 0 l4 − 1

e(t) (24)

By Krasovskii’s sufficient condition, the error system (4) is asymptotically stable
when the derived function

.
V(t) is negative as the control parameters l1 > 1− a + p2/4,

l2 > c + 1, l3 > 1− d , l4 > 1, achieving the chaotic time-delay synchronization of the
drive system and the response system. When delay time τ = 1.4ms, control parameters
p = 3, l1 = −1, l2 = 24, l3 = 2, l4 = 4, the initial values of the drive Equation (8) are
[−17; 7; 18; 15], the initial values of response Equation (18) are [8; −9; 6; 20], and the
synchronous error curves can be obtained in Figure 7.

Through the curves ex, ey, ez, ew, the error system converges to zero in a relatively
short time under active control, which shows that the time-lag synchronous system can
achieve chaotic synchronization rapidly with good robustness and stability. The effects of
the control parameter l, the initial value of the drive response system, and the time lag τ on
the speed t of synchronous convergence are given.

Table 2 indicates that the speed of convergence on the delay synchronous system is
more sensitive to changes in the control parameters. In contrast, the initial value of the drive
response system and time delay has less influence on the convergence rate, and convergence
speed slows down significantly with the control parameter l increase. For further research,
it is expected that the proposed time-delay system state can be adaptively adjusted by
improving the control algorithm to ensure that the system can work dynamically in an
optimal state.
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Table 2. System synchronous convergence time comparison table.

Initial
values [−19; 6; 20; 16; 10; −10; 8; 22] [−17; 7; 18; 15; 8; −9; 6; 20]

l [−3; 14; −1; 2] [−3; 14; −1; 2] [−1; 24; 2; 4] [−1; 24; 2; 4]

τ/(ms) 1.4 2.4 1.4 2.4 1.4 2.4 1.4 2.4

t/(s) 12.5 12.7 11.9 10.5 14.7 14.8 13.5 14.0
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4. Time-Delay Chaotic Circuit

The growing research on chaos theory makes the connection between chaos and
engineering even tighter. Purposeful enhancing and modeling of chaotic phenomena has
become a pressing object of investigation [56]. In this section, we will define a detailed
time-lag chaotic circuit with basic circuit components under the mathematical model of
chaotic dynamics. Chaotic waveforms and chaotic phase diagrams comparable to the
numerical study can be obtained from the oscilloscope. At the same time, the data were
manipulated by computer, and various nonlinear dynamics parameters could be extracted,
confirming that the chaotic system does coexist in nature.

We design simulation circuits for a four-dimensional chaotic time-delay system. The
time-lag module is the central part of the system (9) simulation, which consists of a network
of T-shaped LCL filters, as shown in Figure 8. As the reactance varies with frequency, the
LC low-pass filter is connected to an inductor at serial and a capacitor at parallel. The
signal frequency limits the network constructed by the low-pass filter, showing high input
impedance and high output impedance when the frequency is increased. Test results
showed that the time lag unit has smooth characteristics below the cutoff frequency 1 kHz.
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Figure 8. Time-delay module circuit.

A multi-stage filter is formed by placing n = 10 filter modules between the input
and output ports to avoid single-stage filters failing when the useful signal frequency
and the noise frequency are close together. Two matching resistors R27, R28 = 1 kΩ are
placed at each port, and the characteristic impedance in the passband is constant. The time
lag τ can be calculated by taking R23 = R24 = R26 = 10 kΩ, R20 = R23 = 1 kΩ in the
following equation

τ = n
√

2LC (25)

By taking L = 20 mH, C = 500 nF, τ = 1.4 ms, the calculated delay time t remains the
same as the value of delay time t set by the time-delay chaotic system (9). After testing
the simulation circuit, we found that the Vx variable channel frequency is maintained at
about 700 Hz, much smaller than the low-pass filter cutoff frequency fc, thus ensuring that
the signal passes through the module with low loss. To test the time-lag effect of the unit,
we use a signal generator to input a 700 Hz sine wave to it and, comparing the input and
output waveforms in Figure 9, we find that the output delay time is about 1.4 ms.

Multisim software is used to simulate the oscillator circuit of the time-delay system
(2). The operational amplifier LF347BD and the analog multiplier used in the circuit are
active devices. The typical working voltage of LF347BD is ±15 V, and the linear dynamic
range is only±13.5 V. It is necessary to ensure that the device voltage output value does not
exceed its working voltage and linear dynamic range, otherwise they may appear saturated
distortion, affecting the display effect of chaotic graphics. We linearly transform the system
(9) so that its signal output level is 10% of the original, let

x = 10Vx , y = 10Vy , z = 10Vz , w = 10Vw (26)
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Equation (9) is adjusted as
.

Vx = a(Vy −Vx)− pVx(τ).
Vy = bVx + cVy − 10VxVz + Vw.
Vz = 10VxVy − dVz.
Vw = −hVx

(27)

The circuit in Figure 10 is designed with five inter-coupled channels to perform the
integration operations of the four system variables x(t), y(t), z(t), w(t) and the time-lag
functions of the state variable x(t). An analog multiplier is used to implement the nonlinear
terms in the system to avoid changing the initial nonlinear characteristics of the chaotic
system, an operational amplifier is used to perform the addition and subtraction operations
of the circuit, and linear resistors and capacitors are applied to assist in the addition,
subtraction, multiplication and differentiation operations.
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Since no voltage is applied to the capacitor before integration, the initial value of
its terminal voltage is zero, which is negligible. The output gains G1, G2 of the analog
multiplier in the y(t), z(t) variable channels are set to 0.1. According to the values of
the system parameters, the resistance values are obtained as R1, R2, R6, R7, R14, R16,
R21 = 10 kΩ, R5, R10, R15, R17, R22 = 100 kΩ, R11, R13 = 1 kΩ, R4 = 35kΩ, R8 = 15 kΩ,
R9 = 8.3 kΩ, R20 = 20 kΩ, and the integrator capacitance C1, C2, C3, C4 are 1 µF. Based on
the nodal voltage method to analyze the structure shown in Figure 10 and substituting the
parameters into Equation (28), it can be verified that the mathematical model of the circuit
is the same as the system (9).

.
Vx = − R4R7

R1R5R6C1
Vx +

R4
R2R5C1

Vy +
R4

R3R5C1
Vx(τ)

.
Vy = R16

R8R17C2
Vx +

R16
R9R17C2

Vy − G1R7R16
R6R11R17C2

VxVz +
R16

R10R17C2
Vw

.
Vz = − R14R19

R12R15R18C3
Vz +

G2R14
R13R15C3

VxVy
.

Vw = − R7R21
R6R20R22C4

Vx

(28)

We reduce the integral capacitances C1, C2, C3, C4 to 1 nF to adjust the capacitance
multiplier, and thus can avoid interference from high-frequency signals, which means
increasing the output signal frequency by a factor of 1000 while maintaining the original
system properties, changing only the time series of the signal.

The experiment was conducted in Multisim, and the results were presented in Figure 11.
The circuit simulation of the time-lagged Lorenz system is consistent with the numer-
ical analysis of the system (9), which proves the effectiveness of the method for high-
dimensional time-delay chaotic systems and the feasibility of time-delay Lorenz circuits
and lays an experimental foundation for the study of time-delay chaos in secure communi-
cation and practical engineering applications.
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5. Simulation of a Self-Synchronous Circuit for a Four-Dimensional Time-Delay
Lorenz System

Researchers have gradually realized the value of chaos synchronization and its appli-
cation in chaos theory research in recent years, such as adaptive, self-activating control, and
backstepping methods. The coupled synchronous control method was used in the research
of L.M. Pecora and T.L. Carroll in 1990. Then Chua conducted an in-depth analysis and
study of the coupled synchronization of Chua’s circuits, theoretically proving that as long
as the coupling between two chaotic systems is strong enough, chaotic synchronization
can be achieved. However, most of the coupled synchronous schemes that have been
proposed are limited to chaotic systems with only one positive Lyapunov exponent. In
contrast, relatively few studies have been carried out to realize coupled synchronization of
multi-dimensional chaotic systems or even hyperchaotic systems. Extending the coupled
synchronous scheme to hyperchaotic synchronous systems would be a research trend [14].

There are many basic methods for determining the existence of chaotic synchronization,
such as the Routh–Hurwitz stability discrimination method, the method for solving the
optimal solution of linear inequalities based on Lyapunov stability, and the Lyapunov
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function method [56]. We will choose the Lyapunov function method to determine the
existence of a coupled synchronous system model.

The dynamical equations of the chaotic system take the form

.
X(t) = AX(t) + f (X(t), t) (29)

where X ∈ Rn is the n-dimensional state vector of the system, A is the n-dimensional
constant matrix, and f is a smooth nonlinear continuous function, and adding the time-
delay linear perturbation term gives

.
X(t) = AX(t) + f (X(t), t) + PX(t− τ) (30)

P is an n-dimensional constant matrix and τ is the time lag constant of the system. By
choosing an appropriate time delay τ and linear perturbation P, the system (30) can be left
in a chaotic state.

We take the system (29) as the driving system and obtain the response system as

.
X̃(t) = AX̃(t) + f (X̃(t), t) + PX̃(t− τ) + U(t) (31)

where U(t) = (U1(t) , U2(t) · · ·Un(t)) is the synchronous controller.
For an initial value, the drive system (29) is said to have achieved synchronization

with the response system (31) if it is such that

lim
t←∞
‖X(t)− X̃(t)‖ = 0 (32)

the following error system is obtained by subtracting the general chaotic system (29) from
the constructed time-lag chaotic system (31)

.
e(t) =

.
X(t)−

.
X̃(t) = Ae(t)− PX̃(t− τ)− f (X̃(t), t) + f (X(t), t)−Qe(t) (33)

The response system (31) can be adjusted without affecting the drive system (29) to
achieve a coupled synchronization of the drive system (31) and the response system (33)
with a suitably selected control gain Q.

From the median theorem, it follows that

f (X(t), t)− f (X̃(t), t) = Ke(t) (34)

where K is the Jacobi matrix of f .
In Equation (33), the control matrix Q = diag(q1 , q2 · · · qn) is referred to as the

feedback gain matrix

.
e(t) = (A + K−Q)e(t)− PX̃(t− τ) = A f (t)e(t)− PX̃(t− τ) (35)

At this point, Equation (35) is a time-varying system of chi-square linear equations.
An appropriate feedback gain matrix Q can be chosen so that the eigenvalues of the matrix
A f (t) all have negative real parts, allowing equation (32) to be implemented. The drive
system (29) and response system (31) will be coupled and synchronized. Then, based on the
Lyapunov stability theory, the analysis of the Lyapunov functional of the chaotic dynamical
error system (35) yields

V(e(t)) =
1
2

eT(t)e(t) +
0∫
−τ

eT(t + θ)e(t + θ)dθ (36)
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then the derivative of V for time t is
.

V(e(t)) = eT(t)
.
e(t) + eT(t)e(t)− eT(t− τ)e(t− τ)

= eT(t)L1e(t)− eT(t− τ)L2e(t− τ)
(37)

where L1, L2 are positive definite matrices, both represent the coefficient matrices after
Lyapunov functional analysis.

By selecting the feedback gain matrix Q appropriately, it is possible to make the system
matrix L1 negative and thus keep the derivative of V(e(t)) negative. In this case, the error
system (33) is globally asymptotically stable near the origin, meaning that for any initial
condition, lim

t→∞
‖e(t)‖ = 0.

We introduce the coupled synchronous scheme into a four-dimensional time-delay
Lorenz chaotic system to achieve coupled chaotic synchronization of two time-lagged
hyperchaotic systems with the same initial values, prove the corresponding asymptotic
conditions for synchronous convergence, and innovatively propose a coupled synchronous
control circuit that can be verified by simulation to demonstrate that the method is effective.

The proposed four-dimensional Lorenz system (8) is used as the driving system for
the coupled synchronization and is written in matrix form as follows

.
X(t) = AX(t) + f (X(t), t) (38)

where X(t) = [X1(t) , X2(t) , · · · , X4(t)]
T ,

A =


−a a 0 0
b c 0 1
0 0 −d 0
−h 0 0 0

, f (X(t), t) =


0

−x(t)z(t)
x(t)y(t)

0


the constructed time-delay chaotic system (9) is taken as a coupled synchronous response
system as follows

.
X̃(t) = AX̃(t) + f (X̃(t), t) + PX̃(t− τ) + Q(X(t)− X̃(t)) (39)

let us denote the error system

e(t) = X(t)− X̃(t) =


e1(t)
e2(t)
e3(t)
e4(t)

, ei(t) = Xi(t)− X̃i(t)

the error system of the coupled system (39) and system (38) is

.
e(t) = Ae(t)− PX̃(t− τ)− f (X̃(t), t) + f (X(t), t)−Qe(t) (40)

where

f (X(t), t)− f (X̃(t), t) =


0

−X(t)Z(t) + X̃(t)Z̃(t)
X(t)Y(t)− X̃(t)Ỹ(t)

0



=


0 0 0 0

−Z(t) 0 −X̃(t) 0
Y(t) X̃(t) 0 0

0 0 0 0

•


e1(t)
e2(t)
e3(t)
e4(t)

 = Ke(t)

(41)

The synchronization of the coupled system (39) with the system (38) is achieved by
simply satisfying certain conditions on the parameters of the coupling function so that its
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error system is asymptotically stable as time tends to infinity, allowing the nonlinear cou-
pling and synchronization of two uniform chaotic systems with different initial conditions
but the same structure.

In the coupled system (39), the matrix of functions of the state variables is taken

Q =


q1 −Z(t) Y(t) 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 (42)

where qi ≥ 0 (i = 1 , 2 , 3 , 4) are the parameters to be determined. We obtain the error
system (40) as

.
e(t) = Ae(t) + (K−Q)e(t)− PX̃(t− τ) (43)

by calculating, we get

K−Q =


−q1 Z(t) −Y(t) 0
−Z(t) −q2 −X̃(t) 0
Y(t) X̃(t) −q3 0

0 0 0 −q4

 (44)

then we can write

1
2

[
(K−Q) + (K−Q)T

]
= diag(−q1 , −q2 , −q3 , −q4) (45)

We construct the Lyapunov function V(e) = 1
2 eT(t)e(t) +

∫ 0
−τ (e

T(t + θ)e(t + θ))dθ
and find its derivative for time t as

.
V(e) = eT(t)

.
e(t) + [e2(t)− e2(t− τ)]

= eT(t)Ae(t) + eT(t)(K−Q)e(t) + [e2(t)− e2(t− τ)]

= eT(t) A+AT

2 e(t) + eT(t)Qe(t) + [e2(t)− e2(t− τ)]
= eT(t)Re(t) + [e2(t)− e2(t− τ)]

(46)

the calculation yields

R =


−a− q1

a+b
2 0 − h

2
a+b

2 c− q2 0 0
0 0 −d− q3 0
− h

2 0 0 −q4

 (47)

To make R negative, we must meet the following conditions for

(1) ∆1 = −a− q1 < 0

(2) ∆2 = (a + q1)(q2 − c)− (a+b)2

4 > 0
(3) ∆3 = −(d + q3)∆2 < 0

(4) ∆4 = −q4∆3 +
h2

4 (c− q2)(−d− q3) > 0

(48)

We compute the principal subdivisions of the matrix R at each level of order and
know that

q1 > −35, q2 > 453, q3 > −3, q4 > 0, (49)

At this point, R is negative, thus the derivative of V(e(t)) is also negative, so the
error system (42) is globally asymptotically stable at the origin, lim

t→∞
‖e(t)‖ = 0 for any

initial condition.
Based on the chaotic time-delay system in the simulation experiment in Figure 10,

we used Multisim software to design the univariate coupled time-lag chaotic oscillator
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synchronous circuit shown in Figure 12. The solution involves controlling the synchro-
nization of two constructive time-delay chaotic systems with similar evolutionary laws by
appropriately driving the system variable Y back to the response system, thus controlling
the system to synchronize its variable coupled system.
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We choose the chaotic system (8) as the driving system so that the response (controlled)
system is 

.
x1(t) = a(y1(t)− x1(t)) + px1(t− τ)
.
y1(t) = bx1(t) + cy1(t)− x1(t)z1(t) + w1(t) + q(y(t)− y1(t)).
z1(t) = x1(t)y1(t)− dz1(t).
w1(t) = −hx1(t)

(50)

By choosing the appropriate control gain q, we can adjust the response system (50)
without affecting the drive system (8) so that the state of the system (50) converges to the
system (8) and is eventually fully synchronized.

We show the synchronous control circuit in Figure 13 with the variable Y of the drive
system (8) and the variable Y1 of the response system (50) at the two inputs, and the
controlled feedback value Y−Y1 at the output. To illustrate the synchronous effect of this
control circuit, we can use the nodal voltage method to derive the state equation Ỹ− Ỹ1 in
front of the resistor R34 as follows

VỸ−Ỹ1 = −R31

R29
Y +

R31R32

R30R33
Y1 (51)
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Figure 13. Synchronous control circuit.

Different control gain q can be produced by tuning the resistance values of R29, R30,
R31, R32, and R34, as shown in Table 3.

Table 3. Synchronous control gain.

R29, R30, R31, R32 (kΩ) [10, 10, 10, 10]

R34 (kΩ) 100 300 500 700

control gain q 10 3.3 2 1.4

We compare the synchronous effect of this synchronous control circuit for different
control gains and observe the system variable Y−Y1 on an oscilloscope. The synchronous
phase diagrams are presented in Figure 14.
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signal 1YY −  is used for synchronous control. At this point, both the drive and response 
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Figure 14. Synchronous effects with different control gains. (a) q = 10 (1 V/div, 1 V/div); (b) q = 3.3
(1 V/div, 1 V/div); (c) q = 2 (1 V/div, 1 V/div); (d) q = 1.4 (1 V/div, 1 V/div).

Through numerical simulations, we have found that the two time-lagged chaotic
systems can only be synchronized gradually when the control gain q > 2.5, and that the
chaos synchronous effect is proportional to the value of the gain.

The value of the gain q can be adjusted independently by changing the value of the
resistor R34.

q =
1

R34 · C
(52)

The threshold value corresponding to the control gain is taken as R34 = 400 kΩ. When
the gain is applied q = 10, a comparison of the waveforms of the system variable Y−Y1 is
observed on an oscilloscope, as in Figure 15.
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Our synchronous experiments find that the univariate coupling synchronous control
method did not work well enough for the other three coupled states X− X1, Z− Z1, and
W −W1. Therefore, the system is most easily controlled and most effective when the input
signal Y−Y1 is used for synchronous control. At this point, both the drive and response
systems are controlled by each other’s coupling, prompting the error between the drive and
response systems to rapidly converge to the origin position, realizing a nonlinear coupled
global asymptotic synchronization of the hyperchaotic system.
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6. Conclusions

In this paper, we propose a new time-delay chaotic mathematical model with a simple
topology, which is highly sensitive to initial values and can achieve stable synchronization
in a short time. The sufficient conditions for synchronous convergence are derived through
the construction of time-lag chaotic synchronization. The control parameter l influences
the rate of synchronous convergence significantly. We have innovated the design of an
oscillator simulation circuit for a time-delay system, applied the univariate coupled con-
trol method to achieve synchronous control on two four-dimensional time-delay chaotic
systems, and gave a complete synchronous experimental circuit. These lay the foundation
for the in-depth study of time-delay chaotic synchronous theory in secure and spread
spectrum communication.
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