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Abstract: Coronavirus disease (COVID-19) is a viral pneumonia that originated in China and has
rapidly spread around the world. Early diagnosis is important to provide effective and timely
treatment. Thus, many studies have attempted to solve the COVID-19 classification problems of
workload classification, disease detection, and differentiation from other types of pneumonia and
healthy lungs using different radiological imaging modalities. To date, several researchers have
investigated the problem of using deep learning methods to detect COVID-19, but there are still
unsolved challenges in this field, which this review aims to identify. The existing research on the
COVID-19 classification problem suffers from limitations due to the use of the binary or flat multiclass
classification, and building classifiers based on only a few classes. Moreover, most prior studies have
focused on a single feature modality and evaluated their systems using a small public dataset. These
studies also show a reliance on diagnostic processes based on CT as the main imaging modality,
ignoring chest X-rays, as explained below. Accordingly, the aim of this review is to examine existing
methods and frameworks in the literature that have been used to detect and classify COVID-19, as
well as to identify research gaps and highlight the limitations from a critical perspective. The paper
concludes with a list of recommendations, which are expected to assist future researchers in improving
the diagnostic process for COVID-19 in particular. This should help to develop effective radiological
diagnostic data for clinical applications and to open future directions in this area in general.

Keywords: artificial intelligence; COVID-19; CXR; CT-scan; deep learning; diagnosis; image classification;
multi-classes; pneumonia

1. Introduction

COVID-19 is a form of viral pneumonia that has emphatically threatened the world’s
healthcare infrastructure. The virus affects the respiratory system (i.e., lungs) of the infected
patient, which can lead to respiratory insufficiency. Since China reported its initial cases to
the World Health Organization (WHO) in December 2019, there have been 588,757,628 con-
firmed cases of COVID-19 and 6,433,794 deaths—due to respiratory failure and injury to
other major organs—reported to the WHO as of August 2022 [1]. The rapid spread of the
disease has also increased the number of hospitalizations worldwide [2].

The standard way to diagnose COVID-19 involves the use of the reverse-transcription
polymerase chain reaction (RT-PCR) method [3]. RT-PCR is “a highly sensitive technique
for the detection and quantitation of messenger ribonucleic acid (RNA)”; it is used for
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many types of viruses, including SARS-CoV-2. The technique involves taking a sample
from a part of the body, such as the nose, to extract the virus’ RNA [4]. Physicians are
facing difficulties due to the limitations of this method, which include long waiting times
for results, low availability of examination kits, and suboptimal sensitivity [5]. These
limitations can compromise patients and further the spread of COVID-19.

In urgent cases, physicians can ask radiologists to complete the diagnostic process
using radiological imaging modalities such as chest X-rays (CXRs) or computed tomogra-
phy (CT) scans of the lungs. These images are then analyzed by a specialist to reach a final
diagnosis. Accurate analysis of these medical images can help to overcome the limitations
of RT-PCR [6].

However, the limited time available for radiologists to screen medical images and
differentiate between COVID-19 infection and other lung diseases—especially under time
constraints and high patient numbers—makes completing these processes difficult. In
addition, radiologists with different skills and lower diagnostic accuracy may lead to an
inaccurate diagnosis, producing incorrect results [7]. A recent trend in healthcare involves
deploying artificial intelligence (AI) algorithms in image classification problems (e.g., iden-
tifying cardiovascular abnormalities, detecting fractures and other musculoskeletal injuries,
and diagnosing neurological diseases) [8]. High-accuracy AI models have been developed
through training on medical images, yielding promising results after learning complex
problems in radiology. More broadly, machine learning and deep learning models have
produced effective results in several key aspects of radiology [9].

Given the extent of the recent pandemic, many of the studies that are reviewed in
Section 4 have used deep learning techniques to diagnose and detect COVID-19 pneumonia
using medical imaging in a theoretical way that cannot be deployed clinically. Accordingly,
there are many review articles in this field that highlight the efficiency of deep learning
algorithms and imaging modalities for the diagnosis of COVID-19 [10,11].

The novelty of this review consists of the provision of a theoretical background on
topics relating to these issues. In addition, the analysis developed in this review focuses on
the methods and the main approaches that have been adopted in recent studies, seeking
to identify limitations and gaps for further research and improvement. Finally, recom-
mendations related to these limitations are presented, aiming to help researchers develop
practical models that advance AI applications in radiology for the detection of pneumonia
and produce reliable results for other future medical applications.

2. Survey Method

A literature review was performed in order to identify a broad range of deep learning
approaches for addressing the detection and classification of COVID-19. We documented
some details of the review’s search process so that other researchers may more confidently
use this literature review in future research. The Google Scholar [12], IEEE Xplore [13], and
PubMed [14] databases were used to find candidate papers. Keyword searches included
combinations of query terms such as ”COVID-19”, ”pneumonia diagnosis”, “multi-classes”,
“deep learning”, ”image classification”,” hierarchical”, and “CXR”. The included publica-
tions on the COVID-19 pandemic were published from 2019 to 2022. A total of 184 articles
were extracted, and the search results were reviewed and filtered, removing those that
did not demonstrate learning by deep learning techniques along with those articles that
achieved their results using simple binary classification methods. Additional exclusion
criteria were applied to the papers that used the same approach that was followed by the
selected papers after screening based on their titles and abstracts, and these papers were
removed so that the same information was not repeated.

The final 47 studies meeting the inclusion criteria included journal articles and confer-
ence papers. In order to be included in the review, the papers needed to meet the following
inclusion criteria:

• Articles that employ deep learning approaches.
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• Articles that address the problem of detection, identification, and classification of
COVID-19.

• Articles written in English (from any country).
• Articles published since the end of 2019.
• Peer-reviewed articles.

3. Background
3.1. Coronavirus Taxonomy

Pneumonia is an acute infection that attacks the respiratory system (i.e., lungs), caused
by various pathogens. The virus that causes COVID-19 is referred to as severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2) due to its high pathogenicity, comparable to
SARS-CoV [15]. Figure 1 illustrates the most common types of pneumonia, in a hierarchical
structure. The known types of pneumonia differ in terms of their characteristics, causes,
symptoms, and diagnosis [16]. The International Classification of Diseases (ICD) classifies
all diseases, including pneumonia, using a complex hierarchical structure, as shown in
Figure 2 [17]. In the 10th revision of the ICD (ICD-10), a new type of viral pneumonia was
introduced, belonging to the coronavirus family: the 2019 novel coronavirus, coded as
“COVID-19”. In December 2019, COVID-19 originated in Wuhan (Hubei Province, China),
after which it rapidly spread worldwide. Due to the high mortality rate of the disease and
its global transmission, the WHO defined COVID-19 as a pandemic soon after.
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Figure 1. Hierarchical structure of the most prevalent pneumonia. Figure 1. Hierarchical structure of the most prevalent pneumonia.

The first human coronaviruses began to emerge worldwide in the 1960s. Six human
viruses belong to the coronavirus family, four of which are associated with mild symptoms,
similar to those of the common cold and gastrointestinal system infections. The other
two viruses are marked by differences, including their highly pathogenic nature, namely,
Middle East respiratory syndrome coronavirus (MERS-CoV), which first originated in Saudi
Arabia in 2012, and severe acute respiratory syndrome coronavirus (SARS-CoV-1), which
emerged in Asia in February 2003 [18,19]. Furthermore, their impact on endemic countries’
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health systems has been significant in raising mortality rates more than in other countries
where the virus moved and did not originate, e.g., when MERS-CoV initially arose in
the Middle East, most of the verified cases and deaths originated from Saudi Arabia [20].
At the beginning of the outbreak, COVID-19 was referred to as severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) due to its high pathogenicity, comparable to that of
SARS-CoV [15].
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3.2. Radiological Imaging Modalities

Since the emergence of COVID-19, due to the high number of deaths, many orga-
nizations in different countries have sought to develop rapid and accurate diagnostic
methods. Given that COVID-19 causes distinct spots on the lungs—as shown by the sample
in Figure 3—a radiological examination of the chest is an important tool that can be used
in the diagnostic process [19]. CT scans play an essential role in diagnosing pneumonia,
especially given their efficiency and accuracy in detecting the features of pneumonia. Ac-
cordingly, many prior studies (in Section 4.3) have used the CT scan modality for the
examination and diagnosis of COVID-19 despite the fact that CXR is more appropriate for
the process, for the following reasons: firstly, it is difficult to control the spread of infectious
diseases in CT suites and to decontaminate CT scanning machines; secondly, CT scans are
costly, and are not available in all hospitals; thirdly, CT scanners are not portable [21]. In
comparison, CXR is portable, cheap, simple to perform, and available in most hospitals.
Therefore, CXR is the most commonly applied method for the radiological examination of
the lungs [22]. The American College of Radiology (ACR) recommends that portable chest
radiography tools should be used to limit the risk of disease transmission when scanning
COVID-19 patients [23].
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3.3. Hierarchical Image Classification

The data classification process aims to classify objects into related, predefined classes
or categories. Image classification is an important topic in the research area of image
processing, helping to classify images in different domains [24]. As shown in Figure 1, the
nature of COVID-19 is organized in a hierarchical structure, which means that this is a
hierarchical classification problem. Class hierarchy in hierarchical classification models
supposes that an “IS-A” relationship exists between any node and its parent [25]. In
hierarchical levels, the labels in high-level nodes are referred to as coarse-grained nodes
that inherit all of the features from their parent node and have special features that will be
passed down to their child nodes. In addition, the leaf node in the structure is referred to
as fine-grained, which is the last level of nodes in the structure, and it inherits all of the
features of its parent, and does not have children. Therefore, if the output of a classifier is
class fine#2, it is natural to say that it also belongs to classes coarse#1.1 and coarse#1, as
shown in Figure 4, where R is the root node.
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Factors that improve performance when using classification models include—but
are not limited to—the sharing of features between classes that fall on the same path in
hierarchical classifications, and using the relationships between coarse- and fine-grained
classes [26]. Despite this, most of the literature has focused on solving multi-class problems
using flat classification (see examples in Sections 4.1, 4.2, 4.3, 4.5, and 4.6). Flat classi-
fication is a straightforward approach wherein there is no inherent hierarchy between
the classes, which does not help the model to learn relevant features from the different
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classes. Nevertheless, most classification problems—especially in the medical field—are
hierarchical [27].

3.4. Deep Learning for Image Classification

Deep learning is an active subdomain of AI that has emerged recently. The term “deep”
signifies that the neural network consists of a large number of hidden layers. Deep learning
solves data-related problems effectively with minimal guidance from the developer. In
addition, deep learning helps to reduce the time needed to solve problems involving big
data [28].

In the field of medical imaging, deep learning has achieved remarkable successes
in feature learning and image classification [29]. Consequently, this has encouraged re-
searchers to explore deep learning techniques in greater depth. Compared to the existing
diagnostic imaging-checking procedures that rely entirely on radiologists, deep learning
algorithms perform excellently [30]. In particular, convolutional neural networks (CNNs)
have yielded good results in previously impossible cases [31]. This is due to the fact that
CNNs can detect and learn important features that radiologists cannot easily notice using
the naked eye [32]. Therefore, deep learning offers novel models for image classification
and medical image diagnostics, achieving excellent performance [33]. Furthermore, it is
expected that deep learning techniques can help radiologists in the process of assessment
and diagnosis.

3.5. Multimodal Data Fusion using Deep Learning

Multimodal data fusion is the process of learning features from heterogeneous data by
integrating data from different sources (or types) into a single model to produce a unified
result [34]. Since a single modality rarely provides complete knowledge of any real-world
area of interest, multimodal data fusion is often essential. This is a form of multimodal big
data that has a high volume and a high variety of data, and consists of several modalities.
Diverse characteristics are extracted from multiple data sources and fed into the model,
yielding a model with rich information—more so than is the case with a single modality, as
mentioned above. This leads to significant performance improvements compared to the
use of only a single feature modality [35] due to comprehensive characterization through
mapping between different data types/sources.

Deep learning methods support the architecture of multimodal data fusion. Deep
learning techniques have achieved substantial progress in multimodal structures in dif-
ferent domains, including medical assistant diagnosis [36]. Generally, the performance of
multimodal deep learning models depends on the availability of a platform with a high
computing capability to serve as the training device. The learning approach for multimodal
deep learning models involves extracting the features of each modality separately. In turn,
they are transformed into high-abstraction representations, which are concatenated into
vectors as global representations of the multimodal data fusion that are used at the end by
the deep learning model [37].

4. Deep Learning for COVID-19 Detection and Classification

COVID-19 medical image classification has recently gained significant attention as
a research field due to the ongoing pandemic. Several researchers have developed deep
learning classification and detection models to diagnose COVID-19 accurately and effi-
ciently by classifying radiological images, as shown in this section. However, most existing
approaches to the COVID-19 classification problem contain gaps and areas to extend, which
we attempt to clarify in this paper. In the following subsections, a review is presented of
studies that have adopted contrasting approaches to the problems in the literature. Table 1
summarizes most of the key approaches addressed in these studies.
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4.1. Identification of COVID-19 from CXR Images using Ensemble of Deep Learning Models

Ensemble learning involves capturing the outputs produced by different classifiers,
which helps to ensure a robust prediction and increases the accuracy of deep learning mod-
els [38]. Chouhan et al. [39] designed a model based on the performance of the following
pre-trained deep learning models for the detection of pneumonia: AlexNet, DenseNet121,
ResNet18, Inception-v3, and GoogLeNet. The dataset was obtained from the Guangzhou
Women and Children’s Medical Center (GWCMC); it consisted of a total of 5232 images
labelled with the following classes: viral pneumonia, bacterial pneumonia, and normal.
Random distribution of data into training (5232 images) and test (624 images) datasets
was provided to avoid bias in performance. Some of the steps for data preprocessing
include noise addition, random horizontal flip, and random-resized crop as augmentation
techniques, with the images resized to 224 × 224 pixels. The classification results from the
pre-trained CNN models were combined into a prediction vector, and majority voting was
applied to generate a final prediction output. The proposed deep learning framework of
the ensemble model achieved 96.4% testing accuracy.

Khan et al. [40] compared the performance of deep hybrid learning (COVID-RENet-1
and COVID RENet-2) and deep boosted hybrid learning (COVID-RENet-1 and COVID-
RENet-2) with the well-established CNNs (i.e., VGG-16/19, GoogLeNet, InceptionV3,
ResNet-18/50, SqueezeNet, DenseNet-201, and Xception). Initially, the dataset images
were resized to 224 × 224 pixels, followed by data augmentation with the help of rotation,
reflection, and scaling operations. The balanced public CXR dataset from the GitHub
and Kaggle repositories was divided into 3224 COVID-19-infected and 3224 healthy cases.
In order to reduce bias, the dataset images were randomly distributed into training and
validation datasets, with 80% of data for system training and 20% for system validation.
Within the deep boosted hybrid learning framework, transfer-learning-based fine-tuned
deep COVID-RENet-1 and 2 were used for feature extraction, followed by eigenvector-
based transformation using principal component analysis (PCA) and SVM as the final
classifier. The authors observed that the deep hybrid learning models outperformed the
well-established CNN models, while the deep boosted hybrid learning models performed
the most effectively.

Al-Waisy et al. [41] also proposed an ensemble COVID-19–DeepNet system based
on the integration of a deep belief network and a convolutional deep belief network. The
purpose of the system was to differentiate between healthy and COVID-19-infected CXR
images. A public dataset consisting of 24,000 CXR images was obtained from GitHub,
Radiopaedia, the Italian Society of Medical and Interventional Radiology, the Radiological
Society of North America, and Kaggle. A balanced dataset with 400 images for COVID-19
and 400 images for normal cases was used to obtain an augmented dataset with around
24,000 images of 128 × 128 pixels in size. Some of the different operations used for
data augmentation included random sampling of data into mutually exclusive training,
contrast balancing using contrast-limited adaptive histogram equalization (CLAHE), noise
removal with the help of a Butterworth bandpass filter, horizontal flipping, and five-
degree rotation. To avoid bias in the results, the data were randomly distributed into
training (75%), testing (25%), and validation (10%) sets. The results from two different
deep learning approaches—namely, the deep belief network and the convolutional deep
belief network—were fused together by computing predicted probability scores, and the
final decision regarding classification was based on decision-level fusion. The proposed
model was compared with the state-of-the-art approaches (e.g., COVID-Net, ResNet 50,
COVID-ResNet, and EfficientNet-B3 model), and it outperformed other approaches, with a
detection accuracy rate of 99.93%.

In another study, Mazaar et al. [42] proposed a hybrid model that exploits the potential
of deep learning and transfer learning techniques to develop accurate and robust models for
detecting COVID-19. The preprocessing function involved transforming the dimensions of
the original dataset into 120 × 120 pixels. Three basic blocks were used for building seven
different variants. These building blocks included (1) a CNN block, (2) a transfer learning
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block using VGG16 or VGG19, and (3) a machine learning block. A publicly available
dataset obtained from Kaggle was used with a private dataset from Asir Hospital, Abha,
Saudi Arabia, which consisted of a total of 4103 CXR images labelled as COVID-19, viral,
or normal. To avoid bias in the performance, a random distribution of data into training
(3279 images) and validation (820 images) sets was performed. The hybrid model using
VGG-16 with transfer learning was able to outperform all other variants, with an accuracy
of 97.6%.

Bhowal et al. [38] applied the Choquet integral for ensemble deep learning models and
evaluated the fuzzy measures for each classifier using coalition game theory (Shapley value),
information theory, and lambda fuzzy approximation. Some of the preprocessing functions
involved downscaling of original images to 512 × 512 pixels using bicubic interpolation
and color-space translation to convert the original dataset images from RGB to grayscale.
For deep feature extraction, three standard deep learning models with pre-trained weights
on the ImageNet dataset were used—namely, VGG-16, Xception, and Inception-v3. The
authors obtained a public dataset of CXR images from two repositories (namely, GitHub
and Kaggle), which was used to create a single dataset called the Novel COVID-19 Chest
X-ray Repository. The dataset consisted of 752 COVID-19-infected, 1584 viral pneumonia,
and 1639 normal CXR images. Random sampling of images was used for the training,
validation, and testing datasets, with the ratio of training, testing, and validation data as
77%:20%:3%, respectively. Finally, the results were combined to generate a final output as
one of the following three classes: COVID-19, pneumonia, or normal. The ensemble model
outperformed many recent methods, with an area under the curve (AUC) of 0.97 and a
validation accuracy of approximately 98.99%.

Another method used ECG data for the classification of COVID-19 [43]. The pro-
posed automated tool consisted of four steps: ECG trace image preprocessing, deep feature
extraction and feature incorporation, hybrid feature selection, and classification. In the
preprocessing stage, the dimensionality of the input image was reduced from the origi-
nal image (ranging between 952 × 1232 and 2213 × 1572 pixels) to 224 × 224 pixels for
ResNet-50, ShuffleNet, and MobileNet and 229 × 229 pixels for Inception-v3, Xception, and
Inception-ResNet. The dataset consisted of 250 scans of cases with COVID-19, 848 for trace
records of cases with a present or former myocardial infarction and irregular heartbeat,
and 859 normal images. To avoid the classification bias arising from class imbalances,
the number of images per class was kept equal (i.e., 250 images per class) for the binary
and multi-class classification. The proposed method for hybrid feature extraction utilized
10 different DL-based approaches. These networks include Inception–ResNet, ResNet-18,
ResNet-50, ShuffleNet, Inception-v3, MobileNet, Xception, Dark-Net-19, DarkNet-53, and
DenseNet-201. The fully connected deep features obtained from the different networks
were followed by hybrid feature selection utilizing a forward search with a random for-
est classifier. The performance of the proposed system was compared with ResNet-50,
ShuffleNet, and MobileNet to reveal the superior performance of the proposed method.

Rajaraman et al. [44] utilized deep ensemble learning via a proposed network that
consisted of two stages of pre-training followed by the actual deep learning architecture
developed specifically for the recognition of COVID-19, which provided an input CXR of
256 × 256 pixels in size. The first stage of pre-training was composed of different deep
learning models (i.e., ResNet18, VGG-16, VGG-19, Xception, Inception-V3, Dense-Net-121,
MobileNet-V2, and NasNet-Mobile) with pre-trained weights on an ImageNet dataset,
followed by successive layers for zero-padding, fully convolutional layers, pooling layers,
dropout, and softmax activation. The second stage of pre-training was based on the first-
stage pre-training model, followed by additional pooling, dropout, and softmax activation
layers. The two stages of pre-training were concatenated with additional pooling and
activation layers to provide the final recognition results. The ensemble learning leveraged
the top three, top five, and top seven results from the proposed models with majority
voting, simple averaging, and weighted averaging to obtain the final results. A total of
720 CXRs from the Montreal COVID-19, Twitter-COVID-19, RSNA, CheXpert, and NIH
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collections were used in this study. These data were randomly split into 80% for training
and 20% for validation to avoid bias in the performance of the proposed system. The
proposed system with deep ensemble learning was able to achieve an accuracy of 90.97%.

The proposed deep stacked ensemble in [45] requires the preprocessing stage to
reduce the size of the original images to 224 × 224 pixels, which is given as input to the
feature extraction module leveraging different deep learning models (i.e., ResNet, Mo-
bileNet, Inception, DenseNet, and NasNet). The two models with the best performance
are stacked to form a deep ensemble model for COVID-19 prediction. The dataset used
in this study contained a total of 2905 images (219 COVID-19 images and 2686 normal
class images), which were randomly divided into training (80%) and test sets (20%) by
maintaining consistency in class labels at each partition and minimizing classification
bias. However, the overall class imbalance was present throughout the training data.
The proposed stacked ensemble was able to provide the best accuracy result of 95.1%
on the given dataset. The development of COVID-Net and COVID-EnsembleNet was
discussed in [46]. The COVID-Net architecture was based on four pairs of consecutive
convolution and maximum-pooling layers, with filters ranging from 16 in the first pair to
128 in the fourth pair. These convolutional layer blocks were followed by the flattening
operation and two fully connected layers with 128 and 2 filters, where each fully connected
layer employed the softmax regression activation function. The COVID-EnsembleNet was
constructed using the proposed COVID-Net architecture along with the existing VGG-16
architecture. The dataset used in this study contained 1281 positive cases and 3269 negative
cases, with a random distribution of data into training (3641 images), testing (455 images),
and validation (455 images) sets to avoid classification bias. Some of the preprocessing
functions included image resizing to 224 × 224 pixels, image normalization for faster
network convergence, and data augmentation techniques such as random horizontal and
vertical image flipping, followed by a random 72-degree rotation. The proposed ensemble
model was able to provide binary accuracy of 99.56% and multiclass accuracy of 97.56%.

A novel ensemble deep learning model for the detection of COVID-19 from CT images
was developed in [47], utilizing 2500 lung CT images from COVID-19 patients, along with
2500 CT images of lung tumors and 2500 CT images of normal lungs from a hospital.
These images were randomly distributed into 6000 images for training and 1500 images
for validation. Transfer learning was used for model parameter initialization, followed
by deep feature extraction using three pre-trained deep convolutional neural network
models, namely, AlexNet, GoogLeNet, and ResNet. The ensemble classifier EDL-COVID
was obtained via relative majority voting of the aforementioned individual classifiers. With
an average accuracy of 99.1%, precision of 99.1%, and recall of 99.6%, the ensemble classifier
was able to outperform the results of the individual classifiers.

Taken together, the results of these previous studies strongly indicate that deep learn-
ing models built using multiple learning algorithms and, in particular, with ensemble
learning classifiers, can benefit from improved performance. Nevertheless, it is worth
mentioning that these studies have some limitations, not least because building ensemble
models based on a single modality (in this case, mainly CT over CXR) leads to clinical
challenges because, practically speaking, it is not preferable to expose the patient to CT
radiation, and CXR imaging is not sufficient for the diagnosis of COVID-19 without any
additional data [48].

4.2. Identification of COVID-19 in CXR Images Using Deep Learning Models

A substantial body of research has been published recently on models for the detection
and classification of COVID-19 using binary/multi-class classifiers for CXR images with
off-the-shelf networks. In this review, we chose not to address studies with solutions
involving binary classification. This is because the ability of AI systems to differentiate
between the different classes has considerably improved, as these systems are able to learn
from diverse data belonging to different classes [49]. Abdelsamea et al. [50] proposed the
use of a CNN called Decompose, Transfer, and Compose (DeTraC); this method helps to



Appl. Sci. 2022, 12, 10535 10 of 30

deal with any irregularities and the limited availability of annotated CXR images. Their
study used data from different sources—80 cases of normal CXR images with 4020 × 4892
pixels from the Japanese Society of Radiological Technology (JSRT), along with 105 and
11 cases of COVID-19 and SARS, respectively, with 4248 × 3480 pixels. Data augmentation
techniques were used to generate 1764 samples from the original limited dataset. The
different augmentation techniques included random up/down and right/left flipping,
random translation, and rotation using five different angles. A histogram modification
technique was applied to the augmented images to enhance the contrast of the images. The
augmented dataset was randomly divided into 70% training and 30% validation sets to
minimize classification bias. An AlexNet network based on shallow learning was used for
the class decomposition layer, and different ImageNet pre-trained CNN networks were
used for the transfer learning stage. The high-dimensional feature space was substantially
reduced using PCA. The highest accuracy was achieved by VGG19 in DeTraC. The accuracy
rate after applying the model was 93.1%.

Brunese et al. [51] implemented a deep learning model using a dataset containing
6523 CXR images collected from three different CXR image sources. The dataset was la-
belled with 250 COVID-19 images, 2753 images belonging to patients with other pulmonary
diseases, and 3520 normal patients. The preprocessing stage allowed the reduction of
the image dimensions to 224 × 224 pixels as well as random distribution into training
(2000 images), testing (1100 images), and validation (803 images) sets. Data augmentation
was performed via random clockwise and counterclockwise rotation by 15 degrees. The
proposed approach is based on a threefold method: Firstly, a process for the detection
of any type of pneumonia in the CXR image is conducted. Secondly, if the lungs are not
normal, then the system tries to classify between COVID-19 and other pneumonia. Finally,
in the event of COVID-19 classification, the images are used to identify the area in the CXR
that indicates the presence of COVID-19. The researchers applied the VGG-16 CNN model
with 16 layers, which yielded an accuracy of 98% for the detection of COVID 19.

The limited number of CXR images that exist for COVID-19 research constituted
the focus of the study undertaken by Loey et al. [52]. The dataset used in this research
was created by Dr. Joseph Cohen from the University of Montreal; it consists of total
307 CXR images, including 69 from COVID-19 patients, while the remainder belong to
normal, bacterial, and viral pneumonia patients. The proposed model consists of two
stages: In the first stage, a generative adversarial network (GAN) is used to generate
additional images to increase the size of the existing limited dataset. In the second stage,
deep transfer learning is used in the training, validation, and testing phases of the proposed
model. For their investigation, the researchers selected the following deep transfer learning
models: AlexNet, GoogLeNet, and ResNet18. Each of these networks can take an input
image of 512 × 512 pixels in size. The choice of the models was due to their architectures,
which contain a small number of layers, thereby reducing the processing time, the memory
consumed, and the proposed model’s complexity. The highest test accuracy (80.6%) for a
scenario that included all four classes was achieved by the GoogLeNet framework.

Oh et al. [53] proposed a batch-based CNN approach with a probabilistic Grad-CAM
saliency map that was compatible with a batch-based approach. This approach considered
the limited availability of CXR images for the classification of COVID-19. The researchers
used a public dataset containing 502 CXR images, including 180 COVID-19 images, 191 nor-
mal images and 113 belonging to three other classes: viral pneumonia, bacterial pneumonia,
and tuberculosis. To reduce classification bias in the system, the data were randomly
distributed into training (354 images), validation (49 images), and test (99 images) sets. The
CXR images were first preprocessed for data normalization, and the images were resized
to 224 × 224 pixels to obtain the preprocessed data. The preprocessed data were then
fed into a segmentation network, from which lung areas could be extracted for network
training and classification using patch-by-patch training and inference. The final decision
regarding the network classification was based on majority voting. The experimental
results were stable with a small dataset and achieved 88.9% accuracy using the proposed
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batch-based CNN approach. The effects of patch size, different segmentation methods (e.g.,
U-Net, FC-DenseNet63, FC-DenseNet-103), and training dataset size were also evaluated
in relation to the overall performance of the proposed system.

An attention-based VGG-16 model was used for the classification of COVID-19 in [54].
A total of 4901 image data were used in this study from three different datasets with their
own sets of unique challenges and limitations. The original image size was reduced in
dimensions to 224 × 224 pixels. To reduce the classification bias, data from each dataset
were randomly divided into 70% training and 30% validation sets. The proposed attention-
based method was based on four main building blocks: an attention module, a convolution
module, FC layers, and a softmax classifier. The attention module was used to capture the
spatial relationships of visual clues in the COVID-19 CXR images. The output from the
attention module was given as an input to both maximum pooling and average pooling on
the input tensor, which was the fourth pooling layer of the VGG-16 model in the proposed
method. After that, these two resultant tensors (maximum-pooled 2D tensor and average-
pooled 2D tensor) were concatenated to one another to perform a convolution, followed by
the fully connected layers and the softmax classifier to give the final output. Based on the
inherent characteristics and limitations of each dataset, the performance of the proposed
approach varied, with the accuracy ranging between 80% and 87%.

A deep learning pipeline for the diagnosis and discrimination of viral, non-viral, and
COVID-19 pneumonia CXR images was developed in [55]. The dataset used in this study
included data from two public datasets: CheXpert and CC-CXRI. The total CXR images
included 1571 COVID-19 images, 5656 viral pneumonia images, 11,591 other pneumonia
images, and 10,477 normal images. The CXR images were resized to 512 × 512 pixels. The
common thoracic disease detection module classified the standardized CXR images into
14 different classes. Multiple external validations were performed, with an average ratio of
random training, validation, and testing data distribution amounting to 80%, 10%, and 10%,
respectively. The following three modules provide the main functionality of the proposed
deep learning pipeline: (1) a CXR standardization module, (2) a common thoracic disease
detection module, and (3) a final pneumonia analysis module. The pneumonia analysis
module consists of a lung-lesion segmentation model and a final classification model
to estimate the subtype of pneumonia and the severity of COVID-19. The lung-lesion
segmentation training was based on 1016 CXR images that were manually segmented
into four categories and common lesions to develop a model that could differentiate
between COVID-19 and other types of pneumonia. The final classification model was
developed based on the DenseNet-121 architecture, which was able to perform lung-lesion
segmentation and pneumonia diagnosis. The results showed that the proposed deep
learning pipeline was able to predict COVID-19 pneumonia with an AUC of 86.8%, along
with a recall of 80.65% and precision of 82.05%.

Fusion Module–Hand-Crafted Features–Deep Learning Features (FM–HCF–DLF) is
another model for COVID-19 CXR classification given in [56]. The study made use of an
imbalanced dataset containing 220 images for COVID-19, 27 for normal lungs, 11 for SARS,
and 15 for pneumonia. In the preprocessing part of the system, a 1D Gaussian operator was
used for noise removal and image smoothing for the input images, followed by resizing
the original images down to 299 × 299 pixels. The FM model incorporates the fusion of
hand-crafted features with the help of local binary patterns (LBPs) and deep learning. The
deep learning (DL) features are computed using the convolutional neural network (CNN)-
based Inception-v3 framework, followed by a multilayer perceptron (MLP) to provide the
final output classification. The proposed method’s performance was compared with that of
traditional ML algorithms to highlight the superior performance of the proposed model,
which achieved 94.08% accuracy.

CVDNet is a deep convolutional neural network (CNN) model to distinguish COVID-19
infection from normal lungs and other pneumonia cases using chest X-ray images, as pre-
sented in [57]. The proposed architecture is based on a residual neural network and is
constructed by using two parallel levels with different kernel sizes to capture the local
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and global features of the inputs. This model is trained on a publicly available dataset
containing a combination of 219 COVID-19, 1341 normal, and 1345 viral pneumonia CXR
images. The images are randomly distributed into 70% for training, 10% for validation, and
20% for testing to reduce classification bias. Some of the preprocessing functions include
cropping and resizing the original images to provide input images of 256 × 256 pixels in
size. Two streams with four parallel residual blocks are used for deep feature extraction,
followed by feature concatenation leading to a final residual block, and ending with a fully
connected layer and a softmax classifier. The proposed system can provide an accuracy of
96.69%, which is comparable to state-of-the-art methods for the classification of COVID-19.

Azemin et al. [58] used a ResNet-101-based deep learning model. A total of 10,359 im-
ages were used in this study, of which 154 were from COVID-19. Despite the over-whelming
imbalance in the dataset used in this study, the authors failed to provide an adequate strat-
egy for mitigating the effects of data imbalance on the overall system performance. The
input data were randomly distributed into training (3063 images), validation (1313 images),
and test (5828 images) sets to evaluate the performance of the proposed system. The best
accuracy provided by the proposed system was 71.9%, which is considerably lower than
that achieved in many of the studies discussed in this section.

Despite the findings of these studies, there are notable limitations in terms of small
sample sizes, the use of too few pneumonia classes, and dependence on one modality. These
limitations have implications for the potential use of these research findings in real-world
healthcare applications.

4.3. Identification of COVID-19 in Chest CT Images Using Deep Learning Models

Multiple studies have used chest CT scans to detect and classify COVID-19 in im-ages.
CT images are chosen due to the ease of detecting abnormal regions in infected lungs, along
with their accuracy in extracting features of pneumonia. However, in practice, CT scans
are not the most suitable option for COVID-19 diagnosis due to the limited availability of
the necessary equipment and the high cost associated with the process. In addition, both
the American College of Radiology and the Italian Society of Radiology (SIRM) do not
recommend chest CT scans as a screening tool for COVID-19 [59]. Based on these guidelines,
many studies refrain from using CT images as the input modality for the classification of
COVID-19. Consequently, this subsection of the paper considers studies that ultimately
decided to rely on CT scans as the primary modality for data collection for the development
of their deep-learning-based models for the classification of COVID-19.

Amyar et al. [60] designed a slice-level classification model for three learning tasks—
segmentation, classification, and image reconstruction—for CT scan images. A CNN model
was used, the architecture of which consists of a common encoder and two decoders based
on U-Net. A common encoder module was used for the three tasks, taking a CT scan as
its input, and its output was then used for image reconstruction through the first decoder
module, followed by the segmentation task completed by the second decoder module
and multi-class classification for COVID-19 (and other lung diseases) performed by the
multilayer perceptron. Different state-of-the-art models were compared to this classification
model; the authors used AlexNet, VGG-16, VGG- 19, ResNet-50, 169-layer DenseNet,
InceptionV3, Inception-ResNet v2, and EfficientNet. The dataset was collected from three
hospitals and contained 1369 images divided into three classes: 425 for normal cases, 449 for
COVID-19 cases, and 495 for other infections. In order to avoid classification bias, the
original balanced dataset was randomly distributed into training (1069 images), validation
(150 images), and test (150 images) sets for performance evaluation. The preprocessing
stage involved the conversion of original images down to 256 × 256 × 3 pixels and
512 × 512 × 3 pixels, and these two sizes were used as inputs to the proposed models,
with the smaller images providing a comparatively better performance. The proposed
model outperformed state-of-the-art methods for the classification and segmentation of
COVID-19, achieving an accuracy of 94.67% for the classification task and a dice coefficient
of 88.0% for the segmentation task.
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Li et al. [61] developed a 3D deep learning framework using the architecture of
COVNet to identify COVID-19 from CT scan images. The initial input data of 3D CT scans
were preprocessed to reduce the original dimensions to 512 × 512 × 3 pixels, followed by
the extraction of the region of interest (i.e., lungs) using a U-Net-based segmentation model.
The preprocessed image was given as an input to COVNet to extract visual features from 2D
local and 3D global images. The COVNet framework leverages ResNet-50 as the backbone
model for deep feature extraction from CT slices, which are combined using a maximum
pooling operation, followed by a fully connected layer and softmax activation function
to generate a probability score for classification (COVID-19, CAP, and non-pneumonia).
The study used a dataset obtained from six hospitals, amounting to 4356 CT scan images
divided into three classes: 1296 for COVID-19, 1735 for CAP, and 1325 for non-pneumonia.
To remove classification bias, the original balanced dataset was randomly distributed into
3918 CT images for model training and 434 CT images for model testing. The proposed
framework achieved an AUC of 96% for the identification of COVID-19 and 95% for CAP
on CT scan images.

Another study proposed a DL-based pipeline for CT images called CoviWavNet for
the automatic diagnosis of COVID-19 [62]. In the preprocessing phase of the proposed
system, data from two different datasets are concatenated and augmented to increase
the size of each of the datasets and reduce overfitting. Some of the augmentation pro-
cesses performed include scaling, shearing, rotation, flipping on the x- and y-axes, and
random translation in the x- and y-directions. Finally, the augmented images are resized to
227 × 227 × 3 pixels. The proposed CoviWavNet uses multilevel discrete wavelet trans-
form (DWT) and heatmaps of the approximation levels to train three different ResNet
models for classification. To examine the effect of the combination of spatial and spectral–
temporal information on diagnostic accuracy, deep spectral–temporal features are generated
from ResNet using transfer learning and integrated with deep spatial features extracted
from ResNet models trained with the original CT slices. To reduce the dimensionality, the
most valuable feature is selected using the minimum-redundancy–maximum-relevance
(mRMR) technique and used as inputs to three support-vector machine (SVM) classifiers.
The performance of the proposed system achieves accuracy of 98.62%, precision of 99.54%,
an F1-score of 99.62%, and recall of 99.69%.

Alshazly et al. [63] applied two separate CT datasets for developing a deep-learning-
based system for the classification of COVID-19 using the most advanced networks, such
as SqueezeNet, Inception, ResNet, ResNeXt, Xception, ShuffleNet, and DenseNet. The
original images from the two datasets were randomly distributed into 60% for training and
40% for testing, and were resized to 253 × 349 × 3 pixels. Data augmentation methods
were implemented to effectively increase the number of training samples for improved
generalization. Some of these methods included random horizontal flipping, normalization,
cropping, blurring, Gaussian noise addition, and brightness and contrast improvement. To
assess the performance of the proposed models, stratified K-fold (K = 5) cross-validation
was used to ensure class-level consistency in each of the five folds. The proposed model
achieved high accuracy, with 99.4%, and an F1-score of 99.4%.

Another study proposed a combination of radiomics and artificial intelligence for
the analysis of medical images using a CAD framework with four phases [64]: image
preprocessing, feature extraction, feature fusion, and classification. In the first phase, the
images are analyzed using two texture-based radiomic approaches: gray-level co-variance
matrix (GLCM), and discrete wavelet transform (DWT). The radiomics and original CT
images are resized to 227 × 227 × 3 pixels before they are given as inputs for the feature
generation and extraction phase. Different data augmentation techniques are performed
on the radiomics and original CT data, including shearing, scaling, random translation,
and rotation. In the second phase of the proposed framework, three residual networks
(ResNets) are used for deep feature extraction. In the third phase, these features are fused
together using discrete cosine transform (DCT). In the fourth phase, three machine learning
classifiers are used to perform the classification procedure. The dataset used in this study
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was a benchmark 2D CT dataset containing a total of 2482 CT images, with 1252 for
COVID-19, while the remaining 1230 were non-COVID-19. The proposed framework was
able to provide accuracy of 99.6% and an F1-score of 99.6%.

The uAI Intelligent Assistant Analysis System (IAAS) is a deep-learning-based soft-
ware platform developed by United Imaging Medical Technology Company Limited
(Shanghai, China) for the classification of COVID-19 [65]. The IAAS software has an
underlying deep learning architecture consisting of a modified 3D convolutional neural
network and a combined V-Net with bottleneck structures. A total of 2460 images were
used in this study (2215 for COVID-19, while the rest were normal). The authors failed to
provide details regarding the data imbalance issues with respect to the distribution of the
training and validation sets. At the same time, detailed information regarding preprocess-
ing procedures and final performance was also not provided. One potential reason could
be that the main purpose of the study was to assess the feasibility of utilizing the uAI IAAS
as a diagnostic tool for COVID-19 from CT images.

Shah et al. [66] utilized different deep learning frameworks to differentiate between
the CT images of COVID-19 and non-COVID-19 patients. CTnet-10 was designed for
the diagnosis of COVID-19, developed using six successive layers of convolution and
maximum pooling, followed by flattening and dropout layers, and ending in a softmax
classification layer. Some of the other models that were tested included DenseNet-169,
VGG-16, ResNet-50, InceptionV3, and VGG 19. The performance of the different deep
learning models was assessed to highlight the most suitable option for the classification
of COVID-19. For the CT-net model, the input image size was 128 × 128 pixels. For the
VGG-19 model, the image dimensions used were 224 × 224 × 3 pixels. The images were
randomly distributed into 80% for training, 10% for validation, and 10% for testing. CT-net
provided an accuracy of 82.1%, while the VGG-19 model was able to provide an accuracy
of 94.5%.

Wang et al. [67] developed a deep-learning-based framework for CT scans of COVID-19
cases. The dataset used in this study was based on 1065 CT images of COVID-19 patients
as well as patients who had a prior history of typical viral pneumonia. Unfortunately, the
authors did not mention the class-wise distribution of data for the different lung diseases
and COVID-19, limiting the ability to assess class balance for this study. The dataset was
randomly divided into one training subset (320 CT im-ages), one internal validation subset
(455 CT images), and one external validation cohort (290 CT images). The proposed archi-
tecture consisted of the preprocessing module, deep feature extraction module, and final
classification module. The preprocessing module involved the conversion of the original
images into grayscale, followed by grayscale binarization, background area filling, color
reversal, and ROI selection. The preprocessed images were rescaled to 299 × 299 × 3 pixels
before being used for deep feature extraction. The transfer learning process involved
training with a predefined model, which in this study was the GoogLeNet–Inception-v3
deep learning architecture. After feature extraction, the final step was to provide multi-class
classification using an ensemble of classifiers to improve performance. The proposed model
was able to provide an accuracy of 89.5% on internal validation and 79.3% on external
validation, which is significantly lower than the performance provided by prior studies
discussed in this section.

As this review’s findings indicate, many studies have been published that rely on CT
scans to diagnose COVID-19. However, these studies not only suffer from limitations, but
also produce models that cannot be applied practically and economically in routine clinical
practice. This is especially due to the cost and limited availability of CT scans, as well as
the circumstances of the ongoing pandemic. In comparison, CXR has better availability and
ease of execution, and minimizes in-hospital transmission; it is neither time-consuming
with lengthy waiting times, such as the CT scan procedure, nor does it require wearing a
special suit. In addition, CT scans are often optimally applied in critical cases where the
infected lungs are very clear for radiologists.
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4.4. Identification of COVID-19 from CXR Images using Deep Learning Models in a Hierarchical
Classification Scenario

One of the earliest studies that applied hierarchical image classification using deep
learning was carried out in 2015 [68]. A hierarchical deep CNN (HD-CNNs) model was
proposed by embedding deep CNNs into a two-level category hierarchy, where the easily
distinguishable classes were classified using a coarse-category classifier and difficult classes
were classified using fine-category classifiers. Hierarchical classification models have a
noticeable impact on reducing classification errors.

Despite their advantages in classifying COVID-19 due to the similarity in symptoms
and physical features shared with many other diseases (e.g., viral pneumonia, bacterial
pneumonia, tuberculosis), only one study by Pereira et al. [69] has used a deep hierarchical
model for the classification of COVID-19. The study leveraged deep learning with a pre-
trained CNN model to classify 1144 CXR images for 7 flat labels and 14 hierarchical labels
of multi-class pneumonia classification, including COVID-19 and healthy lungs. To reduce
classification bias, the dataset was randomly distributed into training and validation sets of
70% and 30%, respectively. To reduce the effect of imbalanced data on the final performance
of the classifier, different resampling algorithms were employed (i.e., ADASYN, SMOTE,
SMOTE-B1, SMOTE-B2, Al-lKNN, ENN, RENN, TomekLinks (TL), and SMOTE + TL). In
the feature extraction phase, different hand-crafted features were used, including oriented
basic image features (oBIFs), locally encoded transform feature histograms (LETRISTs),
and local directional numbers (LDNs), using local phase quantization (LPQ) and deep
learning (Inception-v3) methods. Both early and late fusion techniques were employed,
followed by data resampling and multi-class and hierarchical classifiers. For multi-class
classification, different traditional ML methods were employed, namely, support-vector
machines, multilayer perceptrons, random forests, and decision trees. For the hierarchical
classification, Clus-HMC—an unsupervised predictive clustering algorithm—was selected
as the hierarchical classifier. The experiment proved that the hierarchical structure for
the classification of COVID-19, which was tested on the RYDLS-20 dataset, achieved a
higher F1-score (89%) with early fusion and BSIF, EQP, and LPQ features, compared to a
flat structure for classification (83%). However, these findings are limited due to the way in
which the authors classified pneumonia, as well as the extraction of features from a single
modality, which were applied on a small sample size.

4.5. Identification of COVID-19 in Chest CT and CXR Images Using Multimodal Deep
Learning Models

Models based on data from diverse radiological imaging modalities can achieve a
higher accuracy rate compared to models that use only one imaging modality. However, an-
alyzing CXR and CT images for the same patient in the context of the COVID-19 pandemic
is impractical in clinical practice and is considered a significant gap in prior studies.

Horry et al. [70] proposed multimodal imaging data to detect COVID-19 by combining
CXR, ultrasound, and CT scans using a VGG-19 model. A publicly accessible dataset
gathered from different data sources, containing 1118 COVID-19 images, 996 pneumonia
images, and 60,533 images with no findings, was used in the experiment. To prevent bias
in classification, the original dataset was randomly distributed into 20% for validation
and 80% for training. To enhance different features in the original images, the contrastive
limited adaptive histogram equalization (CLAHE) method was used. Since the different
deep learning models have different limitations in terms of image size, the original image
dataset had to be modified due to the utilization of different deep learning models, and
the input image sized varied from 224 × 224 pixels for VGG variants to 299 × 299 pixels
for Inception-v3. The performance of the proposed approach varied based on the type
of data modality being used for system training, such that the highest performance was
provided by the proposed models trained on ultrasound data and the lowest performance
was provided for the proposed models trained on CT scan data. The results indicate that
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ultrasound images were more accurate compared to CXR and CT scans, with a precision of
100% compared to 86% and 84%, respectively.

Vinod et al. [71] demonstrated the possibility of integrating CXR images with CT
scans in deep learning models to diagnose COVID-19 patients. A deep COVIX-Net model
was used to classify CXR and CT images into one of the following three classes: normal,
COVID-19, and pneumonia. The dataset was obtained from the Kaggle and GitHub reposi-
tories, consisting of 9000 CXR images (3000 pneumonia, 3000 COVID-19, and 3000 normal)
and 6000 CT scans (3000 pneumonia and 3000 COVID-19). The original dataset was ran-
domly distributed between 80% training and 20% validation subsets; this ensured that
the developed system was able to minimize the classification bias. The images from the
original dataset were converted to 224 × 224 pixels, and these images were subjected to
different techniques for feature extraction. The features were extracted from the medical
images using the following techniques: texture, gray-level co-occurrence matrix (GLCM),
gray-level difference method (GLDM), fast Fourier transform (FFT), and discrete wavelet
transform (DWT). From the different feature extraction techniques used, some of the differ-
ent statistical features used for model training included average, skewness, kurtosis, energy,
average deviation, dimension, RMS, consistency, average gradient, minimum, and median.
Unfortunately, there is no further information regarding the structure of deep COVIX-Net
shown in the paper. The outputs from feature extraction from different techniques were
given as inputs to a random forest classifier to provide the final classification output. The
proposed model achieved promising outcomes, with 96.8% accuracy for the CXR images
and 97% for CT scans.

Yadav et al. [72] proposed a deep unsupervised framework (Lung-GANs) to classify
lung diseases based on chest CT scans and CXR images using unlabeled data. The proposed
method involved the use of six large, publicly available datasets consisting of 38,155 CXR
and CT scan images from healthy, sick, tuberculosis (TB), viral pneumonia, COVID-19,
and non-COVID-19 classes. A number of different image preprocessing procedures were
leveraged for modifying the original dataset images, such as color mode conversion, image
resizing (original images were converted to 512 × 512 pixels), and image normalization.
After that, the preprocessed images were randomly distributed into training (70%) and
validation (30%) sets to reduce classification bias. The generator module in Lung-GAN
takes in a 100-dimensional vector as its input and outputs a single 512 × 512 image. The
discriminator module in Lung-GAN is a CNN architecture that can differentiate between
real and synthesized images of 512 × 512 pixels in size as inputs, and its output is given as
a probability value specifying whether the image is real or not. The authors developed an
ensemble of classifiers, with linear support-vector classification (SVC) and random forests
serving as the base classifiers, which were combined with predictions from each classifier to
produce the final result. The CNN architecture was used for both models. The performance
of a GAN-based single framework for all binary classifications on all datasets achieved
higher accuracy compared to other state-of-the-art unsupervised models in this area. The
breakdown of the performance of Lung-GAN for the different datasets showed diverse
results, which varied considerably from one dataset to another. The accuracy values ranged
between 94% and 99.5%, with an average accuracy of 97.6%. This shows that the proposed
system is sensitive to variations in dataset characteristics (i.e., noise, image dimensions,
quality and quantity of data, metadata).

Kalaiselvi et al. [73] designed three artificial intelligence models: sANN ML, using
machine learning; pVGG TL, using transfer learning; and pCNN DL, using deep learn-ing.
The purpose of each model was to detect COVID-19 from CXR and CT scan images. Each
model used the ReLU and E-Tanh activation functions. The public dataset was collected
from different research and medical centers, and contained a total of 650 CXR images
and 746 CT images divided into positive and negative COVID-19 cases. The training and
validation sets contained a total of 625 images for training and 10 images for validation.
Despite the considerable data imbalance, the study failed to shed light on the techniques to
be used for mitigating the underlying issues. For the different models highlighted above,
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a VGG-16 network, ANNs with different activation functions, and CNNs with different
activation functions were used to provide the backbone for classification. The sANN ML
and pVGG TL models achieved high accuracy (100%) in the detection of COVID-19 from
CXR images. However, pCNN DL did not perform well, which could be attributed to the
small size of the dataset. Notably, each model had a low detection performance for CT
scan images compared to CXR images. In addition, the E-Tanh activation function yielded
positive results for CXR images.

Another study made use of 8879 CXR and 3724 CT images for the training and de-
velopment of the proposed deep learning model [74]. The authors did not specify the
distribution of the original data between training, test, and validation sets. In the prepro-
cessing stage of the proposed model, contrast-limited adaptive histogram equalization
(CLAHE) was used for contrast and feature enhancement. The use of different data aug-
mentation strategies, such as random transformations (i.e., rotation, horizontal and vertical
translations, zooming, and shearing), ensured that the system could be generalized well to
unknown data. All of the data were resized to 512 × 512 pixels before being used in the
system. In the first stage of the proposed model, an In-ception-v3 deep model was trained
for the recognition of COVID-19 using multimodal learning by leveraging data from both
modalities, i.e., X-ray and CT scan. The second stage was based on a convolutional neural
network architecture for recognizing three types of lung disease. The third stage was based
on transfer learning from pulmonary nodule segmentation in CT scans to produce binary
masks for segmenting similar regions in the given data. Ultimately, this method showed an
accuracy of 99.4%, precision of 99.5%, recall of 99.1%, and F1-score of 99.3%.

Ibrahim et al. [75] examined the effects of four deep learning models for the classifi-
cation of COVID-19 using multimodal data consisting of CXR and CT images. The first
stage of the proposed system is responsible for performing different image preprocessing
functions, such as resizing, image augmentation (i.e., flipping, rotation, and skewing),
and random data distribution of the total dataset (75,000 images) into training (70%) and
validation (30%) subsets. Unfortunately, the authors did not provide the distribution of
the dataset, limiting our ability to assess the level of balance in the dataset between the
individual classes. The input images were resized to 224 × 224 pixels, which is a standard
size that is suitable for input to the different deep learning models used in this study. The
second and third stages are responsible for deep feature extraction and image classification
using the following four networks: VGG19-CNN, ResNet152-v2, ResNet152-v2 + gated re-
current unit (GRU), and ResNet152-v2 + bidirectional GRU (Bi-GRU). Of the four networks
mentioned, the best results were provided by ResNet152-v2 + bidirectional GRU, with an
accuracy of 98%, precision of 99.5%, recall of 98%, and F1-score of 98.24%.

Sharma et al. [76] used the VGG-16 deep learning model for the classification of
COVID-19. Before identifying the different lung infections, different preprocessing func-
tions and data augmentation operations were performed to minimize the classification
bias, enhance the system’s generalizability, and improve the quantity and diversity of the
data. Open-source data were acquired for this study, namely, the COVIDx CT-2A dataset,
which includes 194,922 images from 3745 patients. From the open-source data, original
data were used and randomly distributed into 80% for training and 20% for testing. The
authors of this paper failed to highlight the class-wise distribution of the dataset used in
their study, limiting our ability to assess level of class imbalance. Augmented images were
converted into 512 × 512 pixels before being used for model training and validation. For the
classification of COVID-19, the proposed model was able to provide the best performance,
with 99.2% accuracy, 99.6% precision, and 99.8% recall.

A deep transfer learning algorithm was proposed in another study [77] to provide a
rapid-response-based system for the classification of COVID-19 using multimodal data for
CXR and CT images. Data from different publicly available sources were consolidated and
utilized in this study. For example, a total of 6111 CXR images were acquired from two
separate sources. Similarly, another data source was used for acquiring a total of 1252 CT
scans. In the preprocessing stage, the original images were converted into 512 × 512 pixels.
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The data were randomly split into training, validation, and testing subsets of 64%, 20%,
and 16%, respectively. VGG-19 was used for transfer learning in this study; this deep
learning model is based on 16 convolution layers and 3 fully connected layers, followed
by 5 maximum-pooling layers and a softmax layer. The VGG-19 model is followed by the
Grad-CAM model, which takes an image input to provide improved visualization output
for detecting regions of interest. Once the predicted label has been calculated using the
VGG-19 model, Grad-CAM is applied to the last convolutional layer of the VGG-19 model.
Based on the different experiments performed, the best results obtained by the proposed
algorithm provided an accuracy of 95.61%, precision of 88%, recall of 97%, and F1-score
of 92%.

In another study [78], two separate deep learning models were used for the classifi-
cation of COVID-19. The major difference between the two models was in terms of the
data modalities used: the first model used CNN with CT and X-ray images separately,
whereas the second model used CNN with both CT and X-ray images simultaneously.
The dataset used in this study contained CXR and CT images divided into three separate
classes: COVID-19, normal lungs, and pneumonia. The data were randomly distributed
into training (3135 images) and testing (900 images) subsets. In the preprocessing stage, the
sizes of the CXR and CT images were reduced to 299 × 299 pixels and 512 × 512 pixels,
respectively. In the first model, the architecture consisted of different convolutional layers,
pooling layers, dropout layers, and a softmax classification layer. In the second model
architecture, the data from two modalities were provided to two separate architectures
(where each architecture was based on the first model), followed by the concatenation of
data from two models after the flattening layer and softmax classification layer. The deep
learning model trained on multimodal data was able to outperform models trained on
single data modalities, with accuracy, precision, and recall of 99% each.

4.6. Identification of COVID-19 in Chest CT or CXR Images with Clinical/lab Test Features Using
Multimodal Deep Learning Models

The use of deep learning for multimodal data fusion has a substantial effect on medical
applications. The EMIXER model is the only model that has been proposed in the literature
to utilize CXR images along with radiologists’ reports to classify CXR images and generate
diagnostic reports [79]. The study was based on end-to-end multimodal data fusion that
combined CXR images and corresponding text reports. CNN and recurrent neural network
(RNN) models were used with the MIMIC-CXR dataset, which contains CXR images with
associated reports. EMIXER is composed of five different modules, namely, the image
generator (used to synthesize X-ray images from a prior noise distribution conditioned on
label information), image-to-report decoder (used to provide an output text report when
an X-ray image is given as an input), image discriminator (used to differentiate between
real and synthetic X-ray images), text discriminator (used to differentiate between real and
synthetic X-ray reports), and joint discriminator (used to combine X-ray images and text to
discriminate between real and synthetic data). The COVID-19 classification task dataset
contained 14 different classes that were resized to 128 × 128 pixels. Overall, EMIXER
used 100,000 real images as well as 300,000 synthetic images; the addition of synthetic
images led to a considerable improvement in results, with a maximum accuracy value of
92.4%. The researchers observed that EMIXER improved the classification of COVID-19
from CXR images. Unfortunately, the authors did not specify the class-level information or
the training/validation split for the dataset used, limiting our ability to assess class-level
imbalance and associated biases in performance.

Mei et al. [80] suggested that developing a model based only on CT scans may lead
to limited negative predictive power. Therefore, the authors proposed the use of chest
CT images along with clinical symptoms (e.g., fever, cough, and cough with sputum),
laboratory testing (e.g., white blood cells, neutrophils, percentage neutrophils, lymphocytes,
and percentage lymphocytes), and exposure history. The dataset was collected from
905 patients across 18 healthcare centers in China, where 419 cases were positive and
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486 were negative, to provide a balanced dataset, with an image size of 512 × 512 × 3 pixels.
The original data were randomly distributed into 60% training, 10% validation, and 30%
testing sets. The Inception–ResNet-v2 model was used to process the CT images, while
support-vector machine (SVM), random forest, and MLP classifiers were used for clinical
information. The joint model achieved better performance (AUC = 0.92) compared to the
CNN model trained only on CT scans (AUC = 0.86); furthermore, it outperformed the MLP
model trained on clinical information (AUC = 0.80).

Chen et al. [81] also found that the diagnostic model composed of radiological semantic
features with clinical features was significantly different. The dataset used in the experiment
(CT scans and clinical information) was collected from five independent hospitals in
China. A total of 136 cases were labelled as COVID-19 or non-COVID-19. The researchers
identified 18 radiological semantic features and 17 clinical features, including demographic
information, daily body temperature, blood pressure, heart rate, clinical symptoms, history
of exposure to epidemic centers, total white blood cell (WBC) counts, lymphocyte counts,
lymphocyte ratios, neutrophil count, neutrophil ratios, procalcitonin (PCT), C-reactive
protein (CRP) levels, and erythrocyte sedimentation rates (ESR). To compare diagnostic
performance, the authors developed three models: one for clinical features, a second for CT
scan features, and a third for the proposed model that combined them. The proposed model
outperformed the others, with an AUC of 0.986, while the AUC values for the clinical and
CT scan feature models were 0.952 and 0.969, respectively.

The combined use of CT scan images and clinical findings also occurred in an-
other study [82]. Notably, this research also achieved promising diagnostic results for
COVID-19. The study’s dataset consisted of 168 patients, including 88 COVID-19-positive
and 80 COVID-19-negative patients. The latter category included patients with bacte-
rial infection, Mycobacterium tuberculosis complex, influenza virus A, influenza virus B,
influenza virus B and mycoplasma, and mycoplasma. The total dataset was randomly
distributed into a training subset (118 patients) and a testing subset (50 patients). The data
from continuous variables within the clinical information were categorized into different
classes using means, medians, and standard deviations. The categorical data were ana-
lyzed using chi-squared or Fisher’s tests. Using 10 variables, logistic regression analysis
was performed with ROC curves for analyzing the performance. Data from CT scans
allowed the separation of visual features (i.e., the number of affected lobes and segments,
segments with peripheral GGO, consolidation, air bronchograms, crazy-paving patterns,
subpleural curvilinear lines, bronchiectasis, and patchy lesions), which were used to cat-
egorize between COVID-19 and non-COVID-19 patients. The predictive model utilizing
clinical information with CT scan features was able to achieve good results, with an AUC
of approximately 0.91.

In addition, Chen et al. [83] noted that there is a lack of awareness of the importance
of biomedical features and choosing the right technical approach to diagnose COVID-19.
Therefore, they proposed a late fusion deep learning–machine learning multimodal di-
agnostic approach to classify 214 patients with non-severe COVID-19, 148 patients with
severe COVID-19, 129 patients with other viral infections, and 198 uninfected individuals.
The data for 689 patients were collected from different hospitals in China, and the healthy
cases (control group) were selected from patients who made up a regular annual physical
examination cohort. For the preprocessing stage, the original image dataset was reduced to
512 × 512 pixels. The data were randomly distributed into 80% training and 20% validation
subsets. The features used in the model were clinical (23), lab testing (10), and CT scan
features. A customized ResNet CNN model was used for CT scan images and applied with
three different ML models—random forests, SVM, and k-nearest neighbors (kNN)—for
clinical findings and lab testing. The best performance with regard to all metrics was
achieved when integrating SVM with ResNet, with an overall multimodal classification
accuracy of 99.8%. This was a higher result compared to the use of a single modality
(unimodality), which achieved 75.5% accuracy on clinical features alone, 67.7% accuracy
on lab test features alone, and 90.8% accuracy on CT scan data alone.
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A number of different deep learning models were used in another study, and their
performance was compared to highlight the most suitable alternative for the classification
of COVID-19 [84]. The private dataset was collected from King Fahad University Hospital,
Dammam, KSA, and consisted of 270 cases. The preprocessing step was able to reduce
the image size to 224 × 224 pixels (for case 2) and 300 × 300 pixels (for case 3), followed
by random data distribution into 80% training and 20% validation sets. Different data
augmentation techniques were employed, such as flipping (both horizontal and vertical),
rotation, shifting, cropping, blurring, zooming, rescaling, and shearing. Three different
cases were used in this study for selecting the most suitable deep learning model for the
classification of COVID-19. Case 1 used clinical data for the training and validation of
a 13-layer deep learning model. Case 2 used CXR data for training and validation on a
diverse range of CNN architectures (i.e., ResNet, DenseNet, VGG19, EfficientNet). Case
3 used multimodal data (i.e., clinical and CXR images) with transfer learning to learn
weights for EfficientNet, which was used as a backbone architecture for the classification
of COVID-19. For case 3, which used multimodal data, the proposed system was able to
provide the best performance (accuracy of 97%, recall of 98.6%, precision of 97.8%, and
F1-score of 98.2%).

Similarly, Attaullah et al. [85] used multimodal data of symptoms and CXR images
for the development of a deep-learning-based model for the classification of COVID-19.
The public dataset contained a total of five classes: bacterial, COVID-19, non-COVID-19
viral, initial-stage COVID-19, and normal. The total dataset was subjected to random
splitting into an 80% training set and 20% testing set. The images in the publicly available
dataset were converted into 150 × 150 pixels as one of the main preprocessing steps. For
the symptom data, the preprocessing step involved the removal of duplicate rows and
null values and the application of resampling techniques to address the class imbalance
issues. This step was followed by the training and validation of the preprocessed data
using logistic regression and CNN models. For image data, different data augmentation
techniques—zooming, rotation, and translation—were performed during CNN training.
The CNN model was trained on the transformed images, and the decision tree model was
trained on the labeled results of the previous two trained models to provide the final output,
with an accuracy of 78.88%.

A fully automated hybrid framework based on capsule networks (CT-CAPS) and
random forest classifiers was used in another study for the classification of COVID-19 using
chest CT images and clinical/demographic data [86]. Private CT scans and the associated
clinical/demographic data were collected for a total of 312 patients (176 COVID-19 patients,
60 pneumonia patients, and 76 normal cases) in this study. The dataset was randomly
split into training (60%), validation (10%), and testing (30%) subsets. A capsule-network-
based framework—namely, CT-CAPS—was used in this study, consisting of a stack of
convolutional, pooling, batch normalization, and capsule network layers to extract slice-
level feature maps from CT images in the first stage of the proposed model. The second
stage of the proposed model leveraged the maximum pooling output of the first stage,
followed by a conventional multilayer perceptron for final classification. The proposed
model was able to provide 90.8% accuracy, 94.5% precision, 86% recall, and an AUC of 0.92.

Jiao et al. [87] leveraged deep learning models for the classification and severity
prediction of COVID-19; a total of 1834 patients’ CXR images and clinical data were used.
The data were randomly distributed into 70% for training, 10% for validation, and 20%
for testing. The deep learning features extracted from the model and the clinical data
were used to predict the risk of COVID-19 progression. All images and masks were
resized to 512 × 512 pixels in size and were normalized before being given as inputs to
the segmentation model (i.e., U-Net). For the severity prediction model, the CXR image
data were segmented using a pre-trained U-Net architecture, followed by feature extraction
using a VGG-13 model with five encoder and five decoder blocks to learn the transformation
from input images and binary masks. The final results for disease progression were
computed based on the combined weighted sum of the individual image and clinical data
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scores. The model using combined data was able to provide better prediction performance
on internal and external testing.

For the development of a deep-learning-based system for the classification of COVID-19
in [88], data from 654 patients with a total of 5645 CXR images were acquired. Imaging and
clinical data were used to train five longitudinal transformer-based networks, applying
fivefold cross-validation. In the preprocessing stage, some of the different functions used
to modify the images included inversion, padding, resizing (512 × 512 pixels), pixel value
normalization, and scaling. The data were randomly divided into 80% for the training
subset and 20% for the validation subset. The extracted features from CXRs were combined
using global average and global maximum pooling operations, followed by two fully
connected layers and a softmax layer to provide risk probability. The deep learning model
with the combined data modalities was able to provide the best performance, with 73.2%
accuracy and a 70.7% F1-score.

Despite the superior results that these studies have achieved by using multimodal
models, the existing systems still suffer from some gaps. These include the fact that the
radiologist’s report in the EMIXER model is generated from the CXR image only, without
using any clinical information that may support the report’s findings. Moreover, relying on
a small sample size of CT images to diagnose COVID-19 patients using multimodal deep
learning is another limitation.

Table 1. Summary of the data extracted for each paper included in our review.

References Data Used Sample Size Dataset
Balance

Balance
Strategy Model Type Classification

Method Performance

Chauhan
et al. [39] CXR 5232 images No Augmentation

techniques Ensemble Multi-class Accuracy = 96%

Khan et al. [40] CXR 3224 positive,
3224 negative Yes - Ensemble Binary Accuracy = 98%

F-score = 98%

Al-Waisy
et al. [41] CXR 400 negative,

400 positive Yes - Ensemble Binary Accuracy = 99%

Bhowal
et al. [38] CXR

752 COVID-19
1584 viral, 1639

normal
No Augmentation

techniques Ensemble Multi-class AUC = 97%
Accuracy = 99%

Mazaar
et al. [42] CXR

219 COVID-19,
1345 viral

pneumonia,
1341 normal

No Augmentation
techniques Ensemble Multi-class Accuracy = 97.8%

Attallah
et al. [43]

ECG records
and images

250 COVID-19,
859 normal
848 others

Yes - Ensemble Multi-class
Accuracy = 91.6%
Precision = 91.8%

Recall = 91.6%

Rajaraman
et al. [44] CXR 360 normal

360 COVID-19 Yes - Ensemble Binary

Accuracy = 90.97%
AUC = 95.08

Precision = 93.94
F1 = 90.91

Bharadwaj
et al. [45] CXR 219 COVID-19,

2686 normal No Not mentioned Ensemble Binary
Accuracy = 95.1%
Precision = 100%

Recall = 97%

Al-Mansur
et al. [46] CXR

1281
COVID-19,

3269 healthy
lungs

No Augmentation
techniques Ensemble Binary Accuracy = 97.56%

Tao et al. [47] CT-scan

2500
COVID-19,

2500 normal,
2500 lung

tumors

Yes - Ensemble Multi-class
Accuracy = 99.1%
Precision = 99.1%

Recall = 99.6%

Abdelsamea
et al. [50] CXR

105 COVID-19,
80 normal, 11

SARS
No Augmentation

techniques
Single

modality Multi-class Accuracy = 93%
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Table 1. Cont.

References Data Used Sample Size Dataset
Balance

Balance
Strategy Model Type Classification

Method Performance

Brunese
et al. [51] CXR

250 COVID-19,
6273 other
pulmonary

diseases and
normal

No Augmentation
techniques

Single
modality Multi-class Accuracy = 98%

Loey et al. [52] CXR

69 COVID-19,
79 normal,

79 bacterial,
79 viral

Yes - Single
modality Multi-class Accuracy = 81%

Oh et al. [53] CXR
180 COVID-19,

191 normal,
113 others

Yes - Single
modality Multi-class Accuracy = 89%

Sitaula
et al. [54] CXR 4901 total

images No Not mentioned Single
modality Multi-class

Accuracy = 80–87%
Precision = 91–96%

Recall = 77–95%
F1-score = 83–93%

Wang et al. [55] CXR

1571
COVID-19,
5656 viral

pneumonia,
11,591 other
pneumonia,

10,477 normal

No Augmentation
techniques

Single
modality Multi-class

AUC = 86.8%,
Recall = 80.65%,

Precision = 82.05%

Shankar
et al. [56] CXR

220 COVID-19,
27 normal,
11 SARS,

15 pneumonia

No Not mentioned Single
modality Multi-class

Accuracy = 94.08%,
Precision = 94.85%,

F1-score = 93.2%

Ouchica
et al. [57] CXR

219 COVID-19,
1341 normal,

1345 viral
No Not mentioned Single

modality Multi-class

Accuracy = 96.69%
Precision = 96.72%

Recall = 96.84%
F1-score = 96.68%

Azemin
et al. [58] CXR

154 COVID-19,
5828 no
findings,

2166 opacity,
2210 no
opacity

No Not mentioned Single
modality Binary

Accuracy = 71.9%
Precision = 77.3%

Recall = 71.8%

Amyar
et al. [60] CT-Scan

449 COVID-19,
425 normal,
495 others

Yes - Single
modality Multi-class Accuracy = 95%

Li et al. [61] CT-Scan

1296
COVID-19,
1735 CAP,

1325 non-CAP

Yes - Single
modality Multi-class Accuracy = 96%

Attallah
et al. [62] CT-scan 7264 positive,

6382 normal Yes Augmentation
techniques

Single
modality Binary

Accuracy = 98.62%
Precision = 99.54%
F1-score = 99.62%
Recall = 99.69%

Alshazly
et al. [63] CT-scan

2517
COVID-19,
758 normal,
1644 others

No Augmentation
techniques

Single
modality Multi-class

Accuracy = 99.4%
Precision = 99.6%

Recall = 99.1%
F1-score = 99.4%

Attallah
et al. [64] CT-scan

1252
COVID-19,

1230
non-COVID-19

Yes Augmentation
techniques

Single
modality Binary

Accuracy = 99.6%
Precision = 99.72%

Recall = 99.47%
F1-score = 99.6%

Zhang
et al. [65] CT-scan

2215
COVID-19,
245 normal

No Not mentioned Single
modality Binary Not mentioned
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Table 1. Cont.

References Data Used Sample Size Dataset
Balance

Balance
Strategy Model Type Classification

Method Performance

Shah et al. [66] CT-scan 349 positive,
463 negative No Augmentation

techniques
Single

modality Binary Accuracy = 94.5%

Wang et al. [67] CT-scan

Total 1065
images

including
COVID-19

N/A Not mentioned Single
modality Binary Accuracy = 89.5%

Periera
et al. [69] CXR

90 COVID-19,
1000 normal,

54 others
No Resampling

algorithms
Single

modality Multi-class F-score = 89%

Horry
et al. [70]

CXR/CT-
Scan/Ultrasound

CXR:
115 COVID-19,

322
pneumonia,

60,361 no
finding,
CT-scan:

349 COVID-19,
397

non-COVID-19
Ultrasound:

654 COVID-19,
277

Pneumonia,
172 no finding.

No - Multi-modal Multi-class

Precision = 100%
for Ultrasound

Precision = 86% for
CXR

Precision = 84% for
CT-Scan

Vinod
et al. [71] CXR/CT-Scan

3000 CT-scan,
COVID-19,

3000 CT-scan
pneumonia,
3000 CXR
COVID-19,
3000 CXR

pneumonia,
3000 CXR

normal

Yes - Multi-modal Multi-class

Accuracy = 96% for
CXR

Accuracy = 97% for
CT-Scan

Yadav
et al. [72] CXR/CT-Scan 38,155 CXR

and CT-scan No Not mentioned Multi-modal Multi-class
Accuracy = 96% for

CXR,
97% for CT-scan.

Kalaiselvi
et al. [73] CXR/CT-Scan 650 CXR,

746 CT-Scan No Not mentioned Multi-modal Binary Accuracy = 100%
for CXR

El-Banaa
et al. [74] CXR/CT-scan

5719
COVID-19,

2485 normal,
2122 bacterial,

2277 viral

No Augmentation
techniques Multi-modal Multi-class

Accuracy = 99.4%
Precision = 99.5%

Recall = 99.1%
F1-score = 99.3%

Ibrahim
et al. [75] CXR/CT-scan

75,000 for
COVID-19,

normal,
pneumonia,
lung cancer

No Augmentation
techniques Multi-modal Multi-class

Accuracy = 98%
Recall = 98%

Precision = 99.5%
F1-score = 98.24%

Sharma
et al. [76] CXR/CT-scan Total images =

194,922 No Augmentation
techniques Multi-modal Multi-class

Precision = 99%
Recall = 91%

F1-score = 89%

Panwar
et al. [77] CXR/CT-scan

526 CXR and
CT-scan for
COVID-19,

1252 CT-scan
for COVID-19,
1230 CT-scan

for other,
5856 CXR for
normal and
pneumonia

No Not mentioned Multi-modal Multi-class Accuracy = 95.61%
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Table 1. Cont.

References Data Used Sample Size Dataset
Balance

Balance
Strategy Model Type Classification

Method Performance

Ouahab
et al. [78] CXR/CT-scan

1345
CXR

COVID-19,
1345

CXR normal,
1345
CXR

pneumonia,
1345

CT COVID-19,
1345

CT normal,
1345

CT pneumonia

Yes - Multi-modal Multi-class
Accuracy = 99%

Recall = 99%
Precision = 99%

Biswal
et al. [79]

CXR/Radiologist
report 377,110 CXR N/A Not mentioned Multi-modal Multi-class Accuracy = 92%

AUC = 90%

Mei et al. [80]

CT-
Scan/Symptoms/Lab
Tests/Exposure

history to
COVID-19

415 COVID-19,
486 negative Yes - Multi-modal Binary AUC = 92%

Chen et al. [81]
CT-

Scan/Clinical
information

70 COVID-19,
66 non-COVID-

19,
Yes - Multi-modal Binary AUC = 98.6%

Yang et al. [82]

CT-
Scan/Clinical

informa-
tion/Lab

Tests

88 COVID-19,
80 other

pneumonias
Yes - Multi-modal Multi-class AUC = 91%

Xu et al. [83]

CT-
Scan/Clinical

informa-
tion/Lab

Tests

689 cases Yes - Multi-modal Multi-class Accuracy = 99%

Khan et al. [84] CXR/Clinical
data

222 COVID-19,
48 normal No Augmentation

techniques Multi-modal Binary

Accuracy = 97%
Recall = 98.6%

Precision = 97.8%
F-Score = 98.2%

Attah Ullah
et al. [85] CXR/Symptoms

200 bacterial,
290 COVID-19,

180 viral,
130 normal

No

Resampling
techniques/

Augmentation
techniques

Multi-modal Multi-class Accuracy = 78.88%

Afshar
et al. [86]

CT-
scan/Clinical

data

176 COVID-19,
76 normal,

60 CAP.
No Augmentation

techniques Multi-modal Multi-class Accuracy = 90.8%

Jiao et al. [87] CXR/Clinical
data

Total data =
1834 patients N/A Not mentioned Multi-modal Binary C-index = 0.805

Cheng
et al. [88]

CXR/Clinical
data

Total data =
5645 cases N/A Not mentioned Multi-modal Binary

Accuracy = 73.2%
Recall = 70.7%

Precision = 71.4%
F1-score = 74.6%

5. Recommendations to Bridge the Gap

Based on the limitations of prior studies and the gaps identified by this literature
review, this section provides recommendations covering different aspects that can help
researchers in this area. These recommendations are as follows:

• For problems based on radiological imaging modalities, deep learning has achieved
remarkable successes in feature learning and image classification. The architecture of
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CNNs has resulted in their status as pioneers in the field of image classification and
detection [89]. These systems can detect and learn what radiologists cannot notice
using the naked eye, and they significantly outperform traditional techniques, even in
previously impossible cases [32].

• Referencing the superior results achieved by hierarchical classification compared to
flat classification in previous studies—as shown in the literature—and due to the
natural hierarchical structure of diseases developed by the ICD-10 [69], hierarchical
classification can improve performance compared to flat classification [27].

• Multimodal deep learning models that combine different types of data in a process
of data fusion are more accurate compared to single-modality models, especially in
medical research. In contrast, radiologists have mentioned the difficulties associated
with relying on portable CXRs alone in facilitating the accurate diagnosis of COVID-19.

• Multi-class classifiers (with a large number of classes) are more efficient and lead to
more reliable results compared to binary classifiers.

• Based on the various limitations related to CT imaging modalities—especially in the
context of the ongoing pandemic—CXRs are the most recommended method for the
radiological examination of the lungs.

• Deep learning models perform better with larger datasets compared to smaller datasets.
Accordingly, large amounts of training data from all included classes play a critical
role in the success of the model. Therefore, deep learning models should be verified
on larger datasets.

• Class imbalance scenarios are mostly found in the domain of health [90], especially
in diagnostics and disease detection. Data deficiency resulting from class imbalance
has a significant impact on the performance of deep learning models, increasing the
difficulty of the learning process and reducing the accuracy [91]. Although there are
different ways to solve this problem, it is better to avoid having a large difference in
the numbers of images in different classes.

• Most studies in this field have been tested and evaluated using public datasets that are
available online, which contain COVID-19 image samples. There is no guarantee that
the included cases are COVID-19 cases, and there is also a possibility of duplicating
images across these repositories. This makes it difficult to guarantee the performance
of the tested models, especially on large datasets. In contrast, private datasets tend to
be more reliable and authenticated.

• Model performance should not be evaluated based on accuracy alone, despite the im-
portance of accuracy as a basic evaluation metric. As is well known, each classification
scheme has a different number of evaluation metrics (e.g., a multi-class classification
model is based on eight criteria, a multi-label classification has four criteria, and a hier-
archical classification involves six criteria) [92]. In summary, the assessment measures
for COVID-19 classification models require consideration of all related criteria [2,49].

6. Conclusions and Future Perspectives

Despite substantial improvements in AI models and the emergence of extensive
research in healthcare applications, there is still a shortage in applying and utilizing AI
models in healthcare. Many studies have explored the problem of the classification and
detection of COVID-19, especially in light of the influence of the ongoing pandemic. This
review shows that most prior studies of COVID-19 image classification are misleading
because they used multi-class classifiers (i.e., with only three or four classes) with larger
samples for the COVID-19 class compared to the samples for other classes; this gives
the algorithm an incorrectly high percentage of sensitivity. In addition, most studies
addressing the detection and classification of pneumonia in medical images have focused on
differentiating between two or three classes, e.g., viral, bacterial, and COVID-19 infections.
Despite this, the ability of AI systems to differentiate between various classes is increasing as
they learn from a greater number of classes. Moreover, all approaches that have been used
in the literature are based on classifying the dataset using a flat structure; only one study has
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addressed the efficiency of hierarchical classification compared to flat classification. In the
literature, CNN-based classifiers have also been applied on the hierarchical ETHEC dataset.
The results demonstrated that the hierarchical structure incorporated the loss function and
enhanced generalization across classes. This can be attributed to the exploitation of shared
features between classes at different levels, which assists in overcoming the data scarcity
problem [93]. In addition, in multiple domains, classifiers in hierarchical models have been
shown to reduce classification errors and break down the problem; this leads to a better
performance compared to flat models [94].

Surprisingly, several techniques have been used for the detection and classification
of COVID-19, but limited research has addressed multimodal deep learning models for
heterogeneous data types. It is also notable that most existing models focus on a single
feature modality (i.e., medical images), while multimodal features (i.e., those combining
more than one aspect of COVID-19 health information, such as medical images, diagnostic
data, medication data, and laboratory data) contribute to a superior performance in disease
diagnostic processes [35,95]. Furthermore, prior studies have primarily considered the CT
scan as the main radiological imaging modality for all infected cases during the ongoing
pandemic. Finally, regarding the approaches mentioned earlier in this review, and taking
into account its limitations, there is clearly still room to enhance and improve research
in this field. By considering the gaps and exploiting the remarkable successes of each
prior approach, it is expected that these can be combined into one model that may see
widespread clinical adoption in the future.
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