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Abstract: Motivated by the fact that electrical transients are rather fast compared with mechanical
response, the traditional cascade control structure constituted by the inner current and outer speed
loops is usually employed in the permanent magnet synchronous motors (PMSMs) servo control
community. According to the above-mentioned time-scale characteristic of the PMSMs drive systems,
this technique addresses the problems of the non-cascade sliding mode control (SMC) strategy for the
surface-mounted PMSMs. Firstly, by appropriately introducing the singular perturbation theory, the
corresponding mathematical equations are modeled as a singular perturbation system. Meanwhile,
a composite sliding mode surface is constructed based on the Lyapunov equation, such that the
system stability can be also guaranteed. Then, according to the exponential reaching law, a standard
non-cascade SMC law is designed. Furthermore, an optimal nonlinear function-based tracking
differentiator (TD) is presented to smooth the reference velocity value, while providing differential
signals. As a result, a novel TD-based SMC strategy is synthesized by incorporating a nonlinear
function, thus improving the inherent chattering phenomenon. Finally, a surface-mounted PMSM
servo system is performed to illustrate the advantages and effectiveness of the proposed approaches.
The main contribution of this paper is to present an alternative non-cascade SMC framework based
on the singular perturbation approach, which provides a novel control structure for a PMSM speed
regulation system.

Keywords: permanent magnet synchronous motors (PMSMs); sliding mode control (SMC); singular
perturbation approach; non-cascade; tracking differentiator (TD); composite sliding mode surface

1. Introduction

As an important electromagnetic device, the permanent magnet synchronous motors
(PMSMs) are usually characterized by many excellent features such as high efficiency, large
torque/inertia ratio, and maintenance-free capability [1]. Meanwhile, with the develop-
ment of power electronics and the increasing requirements of higher performance indices,
the speed regulation systems have been extensively receiving much more attention in
practical industrial applications [2]. For example, a nonlinear fast dynamic terminal sliding
mode control (SMC)-based maximum power point tracking strategy was presented in a
wind energy conversion system, where equipped with a permanent magnet synchronous
generator [3]. On the other hand, the multi-objective optimization techniques of the low-
speed permanent magnet motors were presented in [4], while the low-speed high-torque
PMSM was employed in a direct-driven mining scraper conveyor transmission system [5].
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On the contrary, four high-speed PMSMs with different rotor topologies were compara-
tively designed and analyzed in details [6], which were aimed at driving the air compressor
of a fuel cell vehicle.

In the past decades, numerous literatures have been reported to develop the pow-
erful approaches for the PMSMs drive systems (see [7–18] and the references therein). It
should be emphasized that the advanced nonlinear control technologies can greatly im-
prove the system performances and robustness against internal parametric perturbations
and external load disturbances, simultaneously. With the series structure, an improved
model predictive control (MPC) method was proposed in [7], thus improving the control
performance under the conventional finite control set MPC strategy. The robust H∞ control
methodology was employed in the design of disturbance observer-based feedforward and
feedback controllers [8], and thus a two degree of freedom (DOF) composite speed control
framework was synthesized. The discrete-time active disturbance rejection control (ADRC)
method was presented to suppress the disturbances [9], where incorporated the repetitive
controller and operated in parallel with the extended state observer (ESO). In order to
decrease the approximate error of the speed loop, a second-order model description was
proposed in [10], and then a composite controller comprised of the SMC feedback law
and ESO-based feedforward compensation was conducted. Among the above-mentioned
nonlinear control strategies, the SMC technique is famous as its particularly strong robust-
ness, and has attracted much more attention in recent years [11]. The traditional feedback
control approaches usually suffer from the contradiction between the rapidity and over-
shoot, and thus the composite nonlinear feedback (CNF) technique was introduced in the
designed integral SMC speed controller [12]. An ESO-based continuous terminal SMC
speed regulation problem was addressed in [13], the proposed composite SMC method
obtained the fast convergence and satisfactory tracking performances. By taking the time-
varying disturbances into account, the generalized proportional integral observer (GPIO)
was constructed to estimate various disturbances, whose estimation values were incorpo-
rated into the continuous SMC law. Based on the novel reaching law, an extended sliding
mode disturbance observer-based SMC speed controller was implemented in [15], thus
compensating for the adverse influence of the lumped uncertainties. It is worth mentioning
that the above-mentioned approaches mainly concentrate on the design and analysis of the
speed controller [10–15], thus improving the PMSM drive system performance. In addition,
the traditional cascade control structure is employed in these researches, where a PI-type
controller will usually act as the inner current loop. A speed current single loop control
scheme was proposed to a PMSM drive system [16], which also involved the nonlinear
disturbance observer. The single loop non-cascade control simplifying the system structure
was presented in [17], where the dual disturbance observers-based feedforward and the
integral SMC feedback were individually designed and eventually synthesized. However,
the presented non-cascade control structure still requires a PI controller for the direct axis
current regulation [16,17]. Based on the feedback linearization technology and nonlinear
disturbance observer, the composite single-loop terminal SMC structure was investigated
to realize the speed and the current tracking regulations, simultaneously, thus replacing
the conventional cascade control framework [18]. Inspiring by the above discussions,
the investigation about non-cascade SMC design for PMSMs has the important significance.

For the large-scale industrial processes, there usually exist small time constants, para-
sitic inductances and capacitance, thus separating the eigenvalues of system state space
variables into the different regions [19]. As a result, the multi-time-scale plants can be mod-
eled as the singular perturbation systems (SPSs), while the powerful singular perturbation
theory is employed to controller design and stability analysis [20]. The advanced heavy
water reactor characterized by 38 slow, 35 fast, and 17 fastest state variables was presented
in [21], which was eventually modeled as a three-time-scale SPS. An extended high gain
observer-based output feedback control strategy for the nonlinear SPSs was addressed [22],
and the single link manipulator with several uncertain terms were discussed, respectively.
In addition, the continuous SMC for compliant robot arms was formulated as a SPS [23],
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which was comprised by the slow rigid robot and a fast series elastic actuator dynamics.
For an electric motor, the singular perturbation theory-based rigorous analysis for the
augmented system was presented in [24], and the dual PI observers-based cascade control
scheme was conducted in details. By constructing the disturbance observer and modeling
the PMSM as a dual-time-scale SPS [25], the non-cascade SMC strategy was exhibited. It
can be concluded from the reported literatures that the singular perturbation theory is a
powerful tool to design and analyze the controlled system, and by modeling the PMSM as
an SPS is still an open research field.

Motivated by the above-mentioned researches, this paper considers the problems of
the non-cascade SMC for surface-mounted PMSMs speed regulation systems. By selecting
the singular perturbation parameter as the electrical time constant, a SPS is eventually
modeled. According to eigenvalue placement technique, the exact decoupled subsystem
dynamics are stable, thus resulting a composite sliding mode surface. Then, a standard non-
cascade SMC law is designed based on the exponential reaching law. Furthermore, a novel
tracking differentiator (TD)-based SMC is synthesized by incorporating a nonlinear function.
Finally, the advantages and effectiveness of the proposed approaches are illustrated by
research results. The contributions of this study can be summarized as follows. (1) The
singular perturbation decomposition approach-based composite sliding mode surface is
constructed, which involves the Lyapunov equation and rigorous theoretical analyses.
(2) An alternative non-cascade SMC strategy has been proposed in detail, where an optimal
nonlinear function based-TD is presented to arrange the transition dynamic. (3) The
conventional signum function is replaced by a nonlinear function, thus improving the
inherent chattering phenomenon in the SMC community.

The rest of this paper is organized as follows. In Section 2, the singular perturbation-
based modeling and preliminaries are presented. The main results are given in Section 3,
including the design and analysis of the sliding mode surface and non-cascade SMC laws in
details. Some simulation results are exhibited in Section 4. Section 5 concludes this paper.

2. System Modeling and Preliminaries

The classical mathematical model of a surface-mounted PMSM can be established
in terms of the two-phase synchronous rotating orthogonal d − q reference coordinate
system [14], which is comprised by electrical dynamics{

Ls
d
dt id = ud − Rsid + ωeLsiq

Ls
d
dt iq = uq − Rsiq −ωeLsid −ωeψf

(1)

and mechanical dynamic equation

J
d
dt

ωm = KTiq − Fωm − Tm (2)

where Ls is the stator inductance; id and iq denote d and q axes stator currents, respectively;
ud and uq represent d and q axes stator voltages, respectively; Rs is stator resistance; ψf is the
flux linkage of permanent magnets; J is the moment of the rotational inertia; KT = 3pnψf

/
2

is the electromagnetic torque coefficient, and pn is the number of pole pairs; F is the viscous
friction coefficient; Tm represents the load torque disturbance; ωe and ωm are electrical and
mechanical angular velocities, respectively, which satisfying ωe = pnωm.

It is worth mentioning that the nonlinear back electromotive forces (EMFs) produced
by products of electrical angular velocity ωe with d and q axes stator currents id and
iq, increasing the complexity of controller design and analysis. In order to eliminate
the adverse effect of the above-mentioned back EMFs, we can actively compensate their
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influences through the feedforward channel, and thus the following simplified linear
electrical dynamics can be easily obtained:{

Ls
d
dt id = udo − Rsid

Ls
d
dt iq = uqo − Rsiq − pnωmψf

(3)

where udo and uqo are the nominal control inputs in the absence of ωeLsiq and ωeLsid,
respectively, which also satisfying the following relationship:[

ud
uq

]
=

[
udo
uqo

]
+ ωeLs

[
−iq
id

]
(4)

The objective of this study is to design the novel SMC laws udo and uqo for a surface-
mounted PMSM, such that ωm can be regulated to its desired signal ω∗m in the pres-
ences of the external disturbances. To this end, we can introduce the following velocity
tracking error:

ew = ωm −ω∗m (5)

Substituting the velocity tracking error ew (5) into the mechanical dynamic Equation (2)
and electrical dynamics (3), yields

J d
dt ew = KTiq − Few + fm

Ls
d
dt id = udo − Rsid

Ls
d
dt iq = uqo − Rsiq − pnewψf + fq

(6)

where fm = −
(

Jdω∗m
/

dt + Fω∗m + Tm
)

and fq = −pnω∗mψf represent the mechanical and
q axis disturbances, respectively.

To our best knowledge, the electrical transients (namely, currents id and iq) are rather
faster comparing with the mechanical response (i.e., angular velocity ωm) [10], which can
also be characterized by the following inequality:

Tc � Ts (7)

where Tc = Ls/Rs and Ts = J/F denote the electrical and mechanical time constants, re-
spectively.

According to the above relationship, it can be concluded that the surface-mounted
PMSM is an typical dual-time-scale system. As a result, by selecting the singular perturba-
tion parameter ε = Tc, the Equation (6) can be modeled as the following SPS:

E(ε)
d
dt

ψ = Aψ + Bu + D f (8)

where the system matrices and parameters are presented as follows.

E(ε) =

 1 0 0
0 ε 0
0 0 ε

, ψ =

[
x
z

]
=

 ew
id
iq


A =

[
A11 A12
A21 A22

]
=

 −F/J 0 KT/J
0 −1 0

−pnψf
/

Rs 0 −1


B =

[
B1
B2

]
=

 0 0
1/Rs 0

0 1/Rs

, u =

[
udo
uqo

]

D =

[
D1
D2

]
=

 1/J 0
0 0
0 1/Rs

, f =

[
fm
fq

]
(9)



Appl. Sci. 2022, 12, 10500 5 of 18

where ψ is the system state vector, the separation degree between the slow mode x = ew and
fast-time state variables z =

[
id iq

]T is indicated by the small parameter ε; f denotes the
disturbances, which satisfying ‖ f‖ ≤ M (M > 0 is the upper bound), and ‖·‖ represents
the Euclidean norm.

Remark 1. It can be concluded from time constant difference (7) that the surface-mounted PMSM
speed regulation system is characterized by the obvious dual-time-scale, which can be formulated as
a typical SPS (8). This study presents an alternative way to build the mathematical model, and thus
the non-cascade control scheme can be subsequently performed.

3. Singular Perturbation Approach-Based SMC

In this section, we will firstly construct a novel composite sliding mode surface based
on the exact decoupled subsystems, where involves singular perturbation decomposition
method. And then, the sliding mode controller is presented, while the reachability condition
is guaranteed. Finally, the TD-based eventual SMC strategy for a surface-mounted PMSM
is synthesized in details.

3.1. Composite Sliding Mode Surface Design and Stability Analysis

In the subsection, we will mainly concern on the design and analysis of a novel
composite sliding mode surface, which is integrated by decoupled subsystem dynamics.
For the purpose of satisfying individual desired performances, the Lyapunov equations are
involved for singular perturbation decomposition-based exact subsystems.

For convenience, we can obtain the following assumption and lemmas motivated by [20]:

Assumption 1. The matrix pairs (A0, B0) and (A22, B2) are controllable, where

A0 = A11 − A12 A−1
22 A21, B0 = B1 − A12 A−1

22 B2 (10)

Lemma 1. According to eigenvalue placement technique, it is reasonable to assume that there exist
state feedback gain matrices K0 and K2, thus stabilizing the slow and fast subsystems, respectively.
That is to say, their system matrices A0 + B0K0 and A22 + B2K2 will be arbitrarily assigned to
become Hurwitz stable. As a result, the following nominal control law can be synthesized:

uo =
[

K1 K2
][ x

z

]
(11)

where K1 = K0 + K2 A−1
22 B2K0 + K2 A−1

22 A21.

Proof. For the SPS (8), if we do not take the disturbances f into account, the corresponding
nominal system can be obtained. According to the quasi-steady theory, one can firstly
derive the following quasi-steady solution by setting ε = 0:

zs = −A−1
22 (A21x + B2us) (12)

where the subscript “s” represents the slow variable components of the corresponding
physical quantities, and x = xs.

Based on (12), the original full-order SPS (8) can be approximately equivalent by the
following slow-time subsystem:

d
dt

x = A0x + B0us (13)

and the fast-time subsystem, which is as follows.

ε
d
dt

zf = A22zf + B2uf (14)
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where the subscript “f” denotes the fast variable components of the above-mentioned corre-
sponding physical quantities, which satisfying z = zs + zf and uo = us + uf, respectively.

According to Assumption 1, one can design the following slow-time control effort:

us = K0x (15)

which is employed to stabilize the slow-time subsystem (13), resulting in

λ(A0 + B0K0) < 0 (16)

where λ(·) represent the eigenvalue.
Obeying the same procedure as for the slow-time scale subsystem, we can also find

the following fast-time control law:

uf = K2zf (17)

which will stabilize the fast-time subsystem (14), namely the closed-loop system matrix
A22 + B2K2 is asymptotically stable.

Finally, we can synthesize the nominal controller by combining the individual slow-
time and fast-time linear feedback control law (15) and (17), which is as follows.

uo = us + uf = K0x + K2zf = K0x + K2(z− zs) (18)

Substituting quasi-steady solution (12) into (18) leads to the following nominal control
law for the full-order SPS (8) in the original coordinate:

uo = K0x + K2 A−1
22 (A21x + B2us) + K2z

=
(

K0 + K2 A−1
22 A21

)
x + K2 A−1

22 B2K0x + K2z

=
[

K0 + K2 A−1
22 B2K0 + K2 A−1

22 A21 K2
][ x

z

]
(19)

=
[

K1 K2
][ x

z

]
This completes the proof.

Lemma 2 (Singular Perturbation Approach). Incorporating an extra control input v into the
nominal control law (11) results in the composite control law u = uo + v. Substituting the actual
u into the original full-order system (8), and introducing the following Chang transformation:

ϕ =

[
ξ
η

]
= N(ε)ψ =

[
1− εHL −εH

L I

][
x
z

]
(20)

where ϕ is the completely decoupled system state vector comprising by the new slow mode ξ and

fast dynamics η; ψ = N−1(ε)ϕ, and N−1(ε) =

[
1 εH
−L I − εLH

]
; I is the identity matrix with

appropriate dimensions; L ∈ R2×1 and H ∈ R1×2 are the corresponding solutions of the following
algebraic equations:

εR(L) = T21 − T22L + εLAs = 0, R(H) = εAsH − H Af + T12 = 0 (21)

where T11 = A11 + B1K1, T12 = A12 + B1K2, T21 = A21 + B2K1 and T22 = A22 + B2K2;
As = T11 − T12L and Af = T22 + εLT12; 0 is the zero matrix with appropriate dimensions.
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As a result, the exactly complete decoupling subsystems with the principal diagonal form can
be eventually derived as

E(ε)
d
dt

ϕ = Āϕ+ B̄v + D̄ f (22)

where the corresponding matrices are listed as follows

Ā =

[
As 0
0 Af

]
, B̄ =

[
Bs
Bf

]
=

[
(1− εHL)B1 − HB2

εLB1 + B2

]
D̄ =

[
Ds
Df

]
=

[
(1− εHL)D1 − HD2

εLD1 + D2

] (23)

Remark 2. According to the algebraic Equation (21), we can easily obtain that T21− T22L + εLAs =
T21 − T22L + O(ε) and εAsH − H(T22 + εLT12) + T12 = T12 − HT22 + O(ε), resulting in
the initial matrix values L(0) = T−1

22 T21 and H(0) = T12T−1
22 , respectively, where O(ε) repre-

sent the ε-dependent infinitesimal value. In addition, by employing the fixed-point recursive algo-
rithm, one can calculate the solutions of the above formulations, which are as follows: L(i+1) =

T−1
22

[
T21 + εL(i)T11− εL(i)T12L(i)

]
and H(j+1) =

[
ε(T11− T12L)H(j) + T12

]
(T22 + εLT12)

−1,
where i ≥ 0 and j ≥ 0 are the iteration numbers (non-negative integers) for L and H, respectively.

For the presented exact decoupled SPSs (22), we have the following theorem.

Theorem 1. Under Lemmas 1 and 2 , the diagonal system matrix Ā in (22) is asymptotically stable.
To this end, there exists a positive definite symmetric matrix P satisfying the following Lyapunov
equation for the any given positive definite symmetric matrix Q:

ĀTP + PĀ = −Q (24)

Proof. First of all, we can easily obtain the following closed-loop system matrix from the
reduced-order subsystem dynamic ξ:

As = T11 − T12L = A11 + B1K1 − (A12 + B1K2)L (25)

Because the feedback gain K2 only contributes to the fast-time states, which can be
ignored in (25). Meanwhile, substituting L(0) = T−1

22 T21 into the above equation, it can be
concluded that

As = A11 + B1K1 − A12L

= A11 + B1K1 − A12(A22 + B2K2)
−1(A21 + B2K1)

= A11 + B1K1 − A12 A−1
22 (A21 + B2K1) (26)

=
(

A11 − A12 A−1
22 A21

)
+
(

B1 − A12 A−1
22 B2

)
K1

= A0 + B0

[
K0 + K2 A−1

22 (B2K0 + A21)
]

= A0 + B0K0

which indicates that λ(As) < 0. Furthermore, for the any given positive constant Qs, there
exists a Ps > 0 satisfying the following Lyapunov equation:

AsPs + Ps As = −Qs (27)

On the other hand, for the fast-time dynamic η in (22), the corresponding system
matrix is presented as follows.

Af = T22 + εLT12 = A22 + B2K2 + O(ε) (28)
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It can be concluded form Lemma 1 that the matrix A22 + B2K2 is asymptotically stable,
and thus there exists a small ε∗ > 0 such that the eigenvalues of Af have negative real parts
for all ε ∈ (0, ε∗]. Therefore, for the any given positive definite symmetric matrix Qf, there
exists a positive definite symmetric matrix Pf satisfying the following Lyapunov equation:

AT
f Pf + Pf Af = −Qf (29)

As a result, according to the well-known separation principle, the closed-loop system
matrix Ā is asymptotically stable. At the same time, according to individual Lyapunov
Equations (27) and (29), it can be summarized that there exists the following Lyapunov
equation for system (22):

ĀTP + PĀ = −Q (30)

where the diagonal matrix P = diag{Ps, Pf} and Q = diag{Qs, Qf}, respectively.
This completes the proof.

Remark 3. The above-mentioned theorem indicates that the eigenvalues of the diagonal system
matrix Ā can be approximately equivalent to the eigenvalue combinations of the corresponding
slow-subsystem matrix As and fast-subsystem matrix Af. According to Assumption 1, both of
their matrix pairs can be stabilized based on the eigenvalue placement technique. As a result,
the corresponding subsystem dynamics are asymptotically stable, simultaneously.

According to Theorem 1, we can conclude that the singular perturbation decomposi-
tion method-based exact decoupled system state vector ϕ are asymptotically stable with
satisfying the Lyapunov Equation (24). In order to guarantee the desired system perfor-
mance, we construct a novel composite sliding mode surface associating with the system
dynamics (22), which results the following theorem.

Theorem 2. Based on the Lyapunov approach, a novel composite sliding mode surface is constructed
for original SPS (8), which is as follows

S = PN(ε)ψ (31)

Meanwhile, the system (22) is asymptotically stable on the above designed sliding mode surface
during the sliding mode.

Proof. First of all, we can construct the following sliding mode surface:

S = Pϕ (32)

When the sliding mode is arrived, the equivalent control method will be commonly
adopted to analyze the system stability. As a result, the following formulation will be obtained:

S = Ṡ = 0 (33)

Introducing the following Lyapunov function:

VS = ϕTPE(ε)ϕ (34)

Calculating the time-derivative of the VS, leads to
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V̇S = [E(ε)ϕ̇]TPϕ+ϕTP[E(ε)ϕ̇]

=

 ϕ
v
f

T ĀT

B̄T

D̄T

[ P 0 0
] ϕ

v
f

+

 ϕ
v
f

T P
0
0

[ Ā B̄ D̄
] ϕ

v
f



=

 ϕ
v
f

T
 ĀT

B̄T

D̄T

[ P 0 0
]
+

 P
0
0

[ Ā B̄ D̄
]
 ϕ

v
f

 (35)

=
[

ϕT vT f T
] ĀTP + PĀ PB̄ PD̄

B̄TP 0 0
D̄TP 0 0


 ϕ

v
f


= ϕT

(
ĀTP + PĀ

)
ϕ+ vTB̄TPϕ+ f TD̄TPϕ+ϕTPB̄v +ϕTPD̄ f

= −ϕTQϕ+ 2
(

vTB̄T
+ f TD̄T

)
S

According to the Lyapunov Equation (30) and the formulation (33), it can be concluded
that the system (22) is asymptotically stable, when the system state trajectory is driven and
strictly restricted onto the sliding mode surface (32).

On the other hand, based on the Chang transformation matrix N(ε) presented in (20),
we can rewrite the sliding mode surface (32) into the original coordinate, which is shown
as (31).

This completes the proof.

3.2. Sliding Mode Controller Design and Reachability Analysis

In this subsection, we will mainly focus on the design of the sliding mode controller,
while the reachability condition is guaranteed.

According to the commonly employed exponential reaching law [11], one can design
the following sliding mode controller:

u = −(εS1B1 + S2B2)
−1[(εS1 A11 + S2 A21)x + (εS1 A12 + S2 A22)z + ΓSc + (γ + σ)sgn(Sc)] (36)

where S1 = BT
s Ps(1− εHL) + BT

f PfL and S2 = −εBT
s PsH + BT

f Pf, respectively; Γ > 0
and σ > 0 are the exponential and switching gains, respectively; γ = ‖εS1D1 + S2D2‖M;
Sc = B̄TS; sgn(·) denotes the signum function.

For the the proposed SMC (36), we have the following theorem.

Theorem 3. Under the designed SMC law (36), the system state variables will be globally driven
onto the above-mentioned composite sliding mode surface Sc in a finite time. Namely, the reachability
condition can be guaranteed.

Proof. First of all, it can be easily obtained the following formulation from (31):

B̄TPN(ε) =
[

BT
s Ps(1− εHL) + BT

f PfL −εBT
s PsH + BT

f Pf
]

⇓
Sc =

[
S1 S2

]
ψ = S1x + S2z

(37)

On the other hand, it can be concluded from (8) that

ε
d
dt

[
x
z

]
=

[
εA11 εA12
A21 A22

][
x
z

]
+

[
εB1
B2

]
u +

[
εD1
D2

]
f (38)



Appl. Sci. 2022, 12, 10500 10 of 18

And then, taking the time-derivative of the Sc in terms of ψ, yields

εṠc = S1εẋ + S2εż
= (εS1 A11 + S2 A21)x + (εS1 A12 + S2 A22)z + (εS1B1 + S2B2)u + (εS1D1 + S2D2) f

(39)

Introducing the following Lyapunov function:

VC =
ε

2
ST

c Sc (40)

Calculating the time-derivative of the VC, leads to

V̇C = ST
c
(
εṠc
)

= −ΓST
c Sc − σST

c sgn(Sc) + ST
c (εS1D1 + S2D2) f − γST

c sgn(Sc) (41)

≤ −Γ‖Sc‖2 − σ‖Sc‖ − ‖Sc‖(γ− ‖εS1D1 + S2D2‖M)

where ‖Sc‖2 = ST
c Sc. The inequality (41) imply that V̇C ≤ 0, while VC is a positive scalar

function. According to the Lyapunov stability theory, it can be concluded that the composite
sliding mode surface (37) can be attained in a finite time.

This completes the proof.

Remark 4. Although the Lyapunov equation-based composite sliding mode surface satisfying the
stable condition is constructed in terms of the state space ϕ, it is recommended to be transformed
into the original coordinate. Because the state variables ψ can be directly measured and calculated,
the design and analysis of the SMC law is implemented (36).

3.3. TD-Based Eventual SMC for a PMSM Servo System

In this subsection, the TD-based eventual SMC strategy for a surface-mounted PMSM
will be synthesized in details.

It is worth mentioning that the presented disturbances f in (9) can be rewritten as

−
[

Jdω∗m
/

dt + Fω∗m + Tm
pnω∗mψf

]
= −

[
Jdω∗m

/
dt + Fω∗m

pnω∗mψf

]
+

[
−Tm

0

]
⇓

f = f o + f T

(42)

where f o can be defined as the nominal disturbances in the absence of external load
torque Tm.

For the above-mentioned f o, we can incorporate it into the SMC law (36), if the
favorable differential signal is provided. In addition, it is an effective way to improve the
tracking performance by arranging a smooth transition dynamic for reference velocity [26].
To these ends, an optimal nonlinear function-based TD is employed in this study, which is
as follows: [

x̂1(k + 1)− x̂1(k)
x̂2(k + 1)− x̂2(k)

]
= To

[
x̂2(k)

fhan(e(k), x̂2(k), r, h)

]
(43)
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where x̂1 and x̂2 are the tracking estimation values for x1 and its differential signal x2,
respectively; To is the discrete step; e(k) = x̂1(k)− x1(k) is the estimation error; r is the
velocity factor; h is the filtering factor; The nonlinear function ur = fhan(·) is presented as

d = rh, do = hd
y = e(k) + hx̂2(k)
ao =

√
d2 + 8r|y|

a =

{
x̂2(k) + ao−d

2 sgn(y), |y| > do
x̂2(k) +

y
h , |y| ≤ do

fhan(e(k), x̂2(k), r, h) = −
{

rsgn(a), |a| > d
r a

d , |a| ≤ d

(44)

On the other hand, it is well known that the discontinuous function sgn(·) is the
essential reason to cause the chattering phenomenon, which is a challenging problem in
SMC community. In order to address the existing issue, a nonlinear function Fal(·) is
adopted as

Fal(eo, αn) =

{
|eo|αnsgn(eo), |eo| > 0.1

0.1αn−1eo, |eo| ≤ 0.1
(45)

where eo is the input variable, and αn > 1 is the design parameter to be determined later.
For the above introduced function Fal(·), if we constrain the corresponding output

within the bound value ±1, resulting in fal(·) = Sat(Fal), where Sat(·) is the satura-
tion function.

By taking the above-mentioned improvements into account, the TD-based eventual
SMC can be synthesized as follows.

u = −(εS1B1 + S2B2)
−1[(εS1 A11 + S2 A21)x + (εS1 A12 + S2 A22)z

+(εS1D1 + S2D2) f o + ΓSc + (γ + σ)fal(Sc)]
(46)

where γ = ‖εS1D1 + S2D2‖ · ‖ f T‖.
As a result, the corresponding schematic block diagrams of the different non-cascade

SMC strategy for a PMSM regulation system are individually shown as Figure 1, which are
distinguished with each other by using the abbreviations of “SMC” and “TD-SMC”, respectively.

Remark 5. There are three differences between the presented SMC (36) and the novel TD-based
SMC (46): (1) The presented TD-based transition dynamic ω̂∗m is employed to design the control law,
rather than the actual reference velocity ω∗m. (2) The nominal disturbances f o are adopted to reduce
the switching gain value γ, which is inspired by the upper bound relationship ‖ f T‖ ≤ ‖ f‖ ≤ M.
(3) A nonlinear function fal(·) is introduced to replace the signum function, thus improving the
chattering phenomenon. Such configurations can promote the regulation performances for a PMSM
drive system, which can be demonstrated by the subsequent results.

Remark 6. This study proposes the singular perturbation approach-based non-cascade SMC strat-
egy for a surface-mounted PMSM drive system, which is symbolized by Figure 1. It should be
emphasized that the conventional cascade control structure is popular among the PMSMs speed
regulation systems [10–15], which is usually comprised of the inner current and outer speed loops,
respectively. Although some recent literature has presented a non-cascade control framework for a
PMSM servo system [16], a PI controller for the d axis current loop is still required [17]. It can be
concluded that the non-cascade control for PMSM is of great important significance. By employing
the singular perturbation theory, a complete non-cascade SMC approach that obviously different
from the traditional vector control method developed in this paper, whose effectiveness and feasibility
are demonstrated by the following researches.
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Figure 1. The schematic block diagrams of the different non-cascade SMC strategy.

In the last, the whole block control structure for a PMSM servo system is shown as
Figure 2. In Figure 2, a DC voltage source with Udc is firstly provided as the power supply,
and then the three-phase inverter drives the PMSM based on the pulse signals. Meanwhile,
the three-phase currents iA, iB and iC are individually measured by the sensors, which
are transformed into the d and q axes stator currents id and iq by the well-known Clark
and Park components (where the iα and iβ are intermediate current values without using
the angle information). On the other hand, according to the mechnical encoder, the motor
speed and electrical angle θe will be calculated, simultaneously. Therefore, the different
non-cascade control SMC strategy shown as Figure 1 can be implemented. Eventually,
the controller output ud and uq will be transformed into uα and uβ based on the Park
inverse module, thus generating the modulating waves for the well-known space vector
pulse width modulation (SVPWM) element. Finally, the close-loop control scheme for a
PMSM servo system is realized.
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Figure 2. The whole block control structure for a PMSM servo system.

4. Simulation Results

A surface-mounted PMSM is considered in this section to illustrate the effectiveness
and advantages of the presented approach, whose specification parameters has been ex-
hibited in Table 1. The subsequent research results are conducted on the well-known
Matlab/Simulink platform, which involves the discrete-time model. According to the corre-
sponding parameters, one can calculate the individual time constants as Tc = 9.89× 10−3

and Ts = 0.7309, which indicates the relationship (7) is strictly guaranteed.

Table 1. Specification parameters of a surface-mounted PMSM.

Symbol Value Unit

Rs 0.454 Ω
Ls 4.492 mH
ψf 0.1435 Wb

Rated voltage (Un) 220 V
J 2.77× 10−3 kg ·m2

F 3.79× 10−3 −
pn 4 −

Then, the singular perturbation parameter is determined as ε = Tc. In addition,
the matrices presented in Assumption 1 are as follows.

A0 = −394.3564, B0 =
[

0 684.6483
]

(47)

According to Lemma 1, one can artificially assign the individual eigenvalues of
the corresponding slow and fast subsystem matrices as λ(A0 + B0K0) = −4.1068 and
λ(A22 + B2K2) = {−34.0396,−34.0396}, respectively. The above-mentioned eigenvalues
can be realized by employing the following state feedback gain matrices:

K0 =

[
0.57
0.57

]
, K2 = −15×

[
1 0
0 1

]
, K1 =

[
19.4026
0.4378

]
(48)
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In order to illustrate the effectiveness of the fixed-point recursive algorithm presented
in Remark 2, we introduce the norm-variables ‖∆L‖ and ‖∆H‖ (both of their initial val-
ues are set as 0.1) to denote the recursive errors between the current and last iteration
values. In the procedure of program realization, the iteration operations will be immedi-
ately finished if the above-mentioned norm-variables are greater than 10−5. As a result,
the corresponding iteration procedures are exhibited as Figure 3.

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

1.5 2 2.5 3

0

5

10
10

-4

Figure 3. The recursive procedures of solving the transformation matrices L and H.

It can be concluded form Figure 3 that the transformation matrix calculation results
will gradually converge their actual values when the iteration numbers are i = 2 and j = 3,
respectively. Eventually, the following transformation matrices can be obtained:

L =

[
−1.257
0.0088

]
, εR(L) = 10−6 ×

[
0.2023
−0.0014

]
H =

[
0 −9.1496

]
, R(H) = 10−8 ×

[
0 0.1058

] (49)

Thus, the system matrix and control input matrix presented in (23) can be obtained
according to the above calculation results, which are as follows.

Ā = −

 4.1101 0 0
0 34.0396 3.8659
0 0 34.0125

, B̄ =

 0 20.1534
2.2026 0

0 2.2026

 (50)

Furthermore, it can found that λ(Ā) = {−4.1101,−34.0396,−34.0125}, which are
very approximate to the above-mentioned subsystem eigenvalues λ(A0 + B0K0) and
λ(A22 + B2K2).

By choosing the matrix as Q = 10I, we can obtain the solution of the Lyapunov
Equation (24), which is as follows.

P =

[
Ps 0
0 Pf

]
=

 1.2165 0 0
0 0.1469 −0.0083
0 −0.0083 0.148

 (51)

which indicates that λ(P) = λ(Ps) ∪ λ(Pf) = {1.2165, 0.1558, 0.1391}, which are all posi-
tive, thus guaranteeing the Theorem 1.
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Finally, the corresponding coefficients for constructing the sliding mode surface Sc
(37) and the different SMC laws are individually calculated, which are as follows.

S1 =

[
−0.4069
24.562

]
, S2 =

[
0.3236 −0.0183
−0.0183 2.5455

]
(εS1B1 + S2B2)

−1 =

[
1.4037 0.0101
0.0101 0.1784

]
, εS1 A11+S2 A21 =

[
0.0286
−3.5508

]
εS1 A12+S2 A22 =

[
−0.3236 −1.2331
0.0183 0.0183

]
, εS1D1+S2D2 =

[
−1.4534 −0.0403
87.7341 5.6067

] (52)

On the other hand, in order to implement the whole block control scheme for a PMSM
servo system shown as Figure 2, the DC-link capacitor voltage is set as Udc = Un ×

√
2V,

while the carrier frequency is determined as fPWM = 10 kHz. Meanwhile, the associated
design parameters of the different control laws are listed in Table 2, where their output
magnitude values are limited as ±0.9×Un.

Table 2. Associated design parameters of the different control laws.

Γ γ + σ To h r αn

100 10 1× 10−6 10× To 2× 104 3.5

For the purpose of realizing the TD-based eventual SMC law (46), we carefully explore
the tracking performance by employing different velocity factor, as shown in Figure 4.
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Figure 4. The tracking performance and differential signal of the presented TD.

It should be emphasized that the response time of the favourable transition dynamic
ω̂∗m can be adjusted by determining an appropriate r, while the corresponding high quality
differential signal ˆ̇ω∗m is subsequently obtained. On the other hand, for the presented
nonlinear function fal(·), its characteristic curves with respect to sgn(·) are comprehensively
compared with different αn, which are shown as Figure 5.
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Figure 5. The characteristic curves of fal(·) and sgn(·).

It can be seen form Figure 5 that the function fal(·) is smoother than sgn(·) along
with the input variable eo, thus improving the chattering phenomenon and the speed
regulation performances, simultaneously. According to the above-mentioned discussions,
the important parameters are selected as r = 2× 104 and αn = 3.5, respectively, which are
also listed in the above-presented Table 2.

In order to validate the effectiveness and advantages of the presented approaches,
the reference velocity value ω∗m is set as a step signal, which changes from 50 rad/s (initial
value) to 80 rad/s at 0.2 s. In addition, a sudden load torque 1.5 N ·m is employed at 0.3 s,
which is aimed at illustrating the speed regulation system robustness against the external
disturbances. As a result, the velocity responses ωm under the different non-cascade SMC
strategies are shown in Figure 6, while the regulation errors are characterized by Figure 7.
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Figure 6. The velocity response ωm with different non-cascade control strategies.

It can be concluded from Figures 6 and 7 that the presented TD-SMC (46) possesses a
smaller steady-state regulation error than that of SMC (36). In addition, benefitting from
the constructed TD (44), the velocity response performance is characterized by no obvious
overshoot. Meanwhile, by combining Figures 4 and 6, it can be founded that the arranged
transition dynamic ω̂∗m has about 0.1 s time delay when the velocity factor is determined
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as r = 2× 104. It is worth mentioning that, for the above-mentioned reference signal
ω̂∗m, which can be quickly and accurately tracked by the speed regulation system under
the proposed TD-SMC strategy. In summary, the satisfactory system performance can be
guaranteed based on the presented approach.
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Figure 7. The characteristic curves of the regulation errors.

5. Conclusions

This paper has investigated the problem of the non-cascade SMC strategy for the
surface-mounted PMSMs speed regulation systems with disturbances. A singular per-
turbation decomposition approach is firstly presented to construct the composite sliding
surface, while the fixed-point recursive algorithm is employed to calculate the solutions
of transformation matrices. By incorporating the TD and a nonlinear function into the
designed SMC law, the eventual TD-based SMC strategy has been presented in details.
The simulation results demonstrate that the TD can arrange the favorable transition dy-
namic, while the effective differential signal can be provided, simultaneously. In addition,
the closed-loop PMSM regulation system performances are characterized by small over-
shoot and steady-state error. Our future work will concentrate on the design and analysis of
disturbance observer (DO), and we will devote ourselves to conducting the DO-based SMC,
thus promoting the tracking performances in the presence of the parametric uncertainties
and external disturbances.
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