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Abstract: Lipreading refers to the task of decoding the text content of a speaker based on visual
information about the movement of the speaker’s lips. With the development of deep learning in
recent years, lipreading has attracted extensive research. However, the deep learning method requires
a lot of computing resources, which is not conducive to the migration of the system to edge devices.
Inspired by the work of Spiking Neural Networks (SNNs) in recognizing human actions and gestures,
we propose a lipreading system based on SNNs. Specifically, we construct the front-end feature
extractor of the system using Liquid State Machine (LSM). On the other hand, a heuristic algorithm
is used to select appropriate parameters for the classifier in the backend. On small-scale lipreading
datasets, our recognition accuracy achieves good results. We claim that our network performs better
in terms of accuracy and ratio of learned parameters compared to other networks, and has superior
advantages in terms of network complexity and training cost. On the AVLetters dataset, our model
achieves a 5% improvement in accuracy over traditional methods and a 90% reduction in parameters
over the state-of-the-art.

Keywords: lipreading; liquid state machine; STDP

1. Introduction

Language perception is a multimodal process, which is one of the most effective ways
of conveying information. Communication can be achieved not only through sound but
also through visual observation, such as the movement of lips, teeth, and body. Lipreading
is the task of recognizing speech by observing lip movements, also known as visual
speech recognition. Lipreading is useful in many situations. For example, in extremely
harsh acoustic environments, visual information plays a more important role than audio
features, and lipreading can improve intelligibility in noisy conditions [1]. In the field of
security, lip-language passwords are generated using lipreading technology as biometric
identification [2]. In addition, hearing-impaired listeners can understand spoken language
more effectively with visual clues [3].

Lipreading systems have evolved from traditional hand-crafted methods to end-to-
end deep learning networks, which mainly consist of three parts: preprocessing, extraction,
and classification. Petridis et al. [4] propose a method to extract deep bottleneck features
directly from pixels, using long short-term memory (LSTM) to train the model, which
achieves 58.1% accuracy on the AVLetters dataset. Mesbah et al. [5] proposed a new
structure HCNN based on Hahn moments and Convolutional Neural Networks (CNN),
which achieved 59.23% accuracy on the AVLetters dataset. However, most models ignore
the temporal features of the input, transforming the time-dependent input into a static input.
The latest lipreading research focuses on large-scale datasets, such as the LRW English word
dataset and the LRS2 sentence dataset. Martinez et al. [6] proposed Multi-Scale Temporal
Convolutional Networks (MS-TCN) to improve temporal encoding and improve word-
level lipreading performance. Afouras et al. [7] used the Transformer model combined with
the Connectionist Temporal Classification (CTC) [8] loss function to achieve sentence-level
recognition tasks, and achieved good results on the LRS2 sentence dataset. Due to the data
sample size, these methods are not suitable for tasks with small data volumes.
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In addition, traditional CNNs require a lot of computing resources, so it is necessary to
explore alternative lightweight and energy-efficient lipreading methods. Neil et al. [9] used
dynamic visual sensors and dynamic auditory sensors to transcribe an existing lipreading
dataset into an event data stream and used a CNN network to fuse the data streams of the
two sensors. This work is the first time to introduce the lip language problem into event
domain processing, which is different from the traditional image and video processing.
However, this work adopts the method of the artificial neural network and does not explore
the method of spiking neural networks that is more suitable for neuromorphic sensors.

Spiking Neural Network (SNN) [10] is a third-generation artificial neural network
inspired by brain science, which is composed of biological neuron models. Because of its
event-driven characteristics and low power consumption, it has received more and more
attention. LSM [11] is a recurrent neural network based on spiking neurons. It can convert
the input spike train into a liquid state. LSM has strong advantages in spatiotemporal
data processing, such as gesture recognition and speech signals. These studies [12,13]
show the superior performance of LSM in processing spatiotemporal data. However,
the method based on a spiking neural network has not been deeply studied in the field of
lipreading tasks.

Communication between people is not only through voice communication but also
involves the interaction of various information such as lipreading, movements, and expres-
sions, and the human brain can handle such tasks well. The spiking neural network as the
third-generation neural network inspired by the brain should be more suitable for such
tasks. So this paper introduces the spiking neural network into the field of lipreading. In
particular, this work considers the spiking neural network’s ability to model spatiotemporal
sequences and the characteristics of low computational consumption. Based on Liquid State
Machines (LSM), we propose a spiking lipreading network model for small-scale lipreading
tasks. To improve model performance, we apply STDP rules to our model. Furthermore,
we explore the best classifier structures using a heuristic algorithm. In summary, the main
contributions of this paper are as follows:

• We design an LSM structure model with STDP-tuning, which consists of 512 spiking
neurons, for the lipreading task.

• Under the condition that the LSM structure is fixed, we employ a heuristic search
algorithm to search for the best classifier structure parameters.

• On the AVLetters dataset, our model achieves a 5% improvement in accuracy over
traditional methods. In comparison with state-of-the-art models, the number of
parameters of our model is reduced by 90%.

2. Background
2.1. Liquid State Machine

The liquid state machine (LSM) is one specific form of reservoir computing. Maass
et al. [11] first proposed an LSM that uses randomly interconnected spiking neurons as a
feature extractor. The structure of LSM is shown in Figure 1, which mainly consists of three
parts: an input layer, a liquid layer of recursively connected spiking neurons, and a readout
layer (through training to decode the liquid layer information), the core of which is the
liquid layer.
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Figure 1. The structure of LSM.

The input layer is sparsely connected to the neurons in the liquid layer, which provides
input spike trains into the liquid layer. For the liquid layer, each input produces a response
in the liquid layer, and different inputs produce different responses, which are called liquid
states. The readout layer is the function f that converts this liquid state into a feature vector.
The function should be a memoryless function [14]- it has no memory. The output y(t) can
be written as a function of the liquid xM(t) in Equation (1).

y(t) = f M(xM(t)) (1)

2.2. STDP Learning Rules

The Spike-time-dependent plasticity (STDP) learning rule proposed by Henry
Markram [15], is an improvement on the classic Hebbian learning rule [16] with improved
temporal asymmetry. It adjusts the strength of the connection between neurons according
to the order of neuron learning. If the presynaptic neuron fires a spike before a postsynaptic
neuron, the connection between the two neurons strengthens. Conversely, if a presynaptic
neuron spikes after a postsynaptic neuron, there is no correlation between the two neurons.
The connection weights between neurons are weakened. Equation (2) gives the weight
correction model under the STDP rule.

∆W = ∑
tpre

∑
tpost

W(tpre − tpost) (2)

In the above formula, the ∆W of synaptic weight change is the sum of all pre-synaptic
spike time and post-synaptic spike time on the function W, and the W is defined by
Equation (3).

W(∆t) =


Apree−∆t/τpre ∆t > 0

Aposte−∆t/τpost ∆t < 0

(3)

The connection weights between neurons in early LSM architectures are randomly
generated. Some researchers have applied STDP learning rules to the synaptic weight
update process of LSM. Srinivasan et al. [17] introduced STDP to modulate synaptic weights
between the input and liquid layer. Wang et al. [18] introduced STDP to modulate synaptic
weight within the liquid layer.

3. Methodology

The overall processing flow of the lipreading algorithm is shown in Figure 2. The work-
flow is mainly divided into three parts: the transformation of the lipreading datasets, using
LSM extract lipreading features, and genetic algorithm searching for optimal classifier
architecture. We utilize ESIM [19], which is an event camera simulator, to convert a dataset
of ordinary cameras into a dataset in the form of event cameras. In the part of lipreading
feature extraction, we input the transformed samples as spike trains into the LSM. The LSM
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will generate the corresponding liquid and read it out at the readout layer to get the feature
vector. In the classifier architecture search part, we use the idea of a genetic algorithm
with an elite strategy to automatically search for the optimal classifier network architecture
suitable for this problem.

Figure 2. Workflow of proposed method.

3.1. Lipreading Datasets Transformation

ESIM is an event-based camera simulator [19], which can convert video data captured
by traditional cameras into event stream data. Its implementation principle is different
from the event-based camera principle. The ESIM samples each pixel independently and
proposes an adaptive sampling strategy that dynamically adjusts the sampling speed
according to the prediction of the visual signal.

We transform existing lipreading datasets using the ESIM simulator. Separate the
grayscale video frames as input to the ESIM simulator. After processing by ESIM, a series
of pixel-level event outputs are generated, one of which is denoted as (x, y, t, P). (x, y) is
the coordinate position of the event in the two-dimensional space, and t is the timestamp
of the event, indicating the moment when the event occurred. P is the polarity of the event
and the polarity represents whether the pixel is brighter or darker than before.

3.2. Lipreading Feature Extraction
3.2.1. Liquid Structure

The LSM model in this paper uses a total of 512 neurons, which is composed of a
neuron model with a cubic structure of 8 × 8 × 8, which simplifies the model structure
to a certain extent. Neurons are of two types: excitatory neurons and inhibitory neurons.
The spikes of excitatory neurons can increase the membrane potential of postsynaptic
neurons, while the spikes of inhibitory neurons can decrease the membrane potential of
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postsynaptic neurons. In the liquid layer, we randomly divided 80% of them into excitatory
neurons and 20% into inhibitory neurons. Both excitatory and inhibitory neurons are
modeled as leaky integral-firing neurons. The kinetic Equation (4) is as follows:

τ
dV
dt

= (Erest − V) + ge(Eexc − V) + gi(Einhi − V) (4)

V is the variable of membrane potential and τ is the time constant. Erest is the rest-
ing membrane potential. Eexc and Einhi are the equilibrium potentials of excitatory and
inhibitory synapses, respectively, and ge and gi are the total conductance of the excitatory
and inhibitory synapses, respectively, of all connections that transmit the spike.

Synaptic connections are used between neurons and neurons, and the connection
probability of synapses is affected by the distance between neurons. The connection
probability Pi,j between the ith neuron and the jth neuron can be defined as follows:

Pi,j = C × e−(Di,j/λ) (5)

The scale factor C is a parameter used to control the connection probability between
neurons, which determines the upper limit of the connection probability. λ is a parameter
that controls the connection distance. The connection distance between different types of
neurons is determined by the value of λ.

3.2.2. STDP Learning

Based on previous work [18], we use STDP to modify some synaptic weights, including
the synaptic connection weights between the input layer and the liquid layer and the
synaptic connection weights inside the liquid layer, to improve the sensitivity of the network
to specific pattern inputs. To achieve the effect of “strengthening causal connections and
weakening non-causal connections”. This improves the separation and approximation
of liquids. Specifically, the input spike trains we get from the training examples are
sequentially fed into the liquid. Under the STDP rule, all synaptic weights are modified
and in the following training and testing process, the synaptic weights remain fixed.

3.3. Readout Layer

In the readout layer, the liquid state is converted into a feature vector, which is used
for classification. Liquid state [20] refers to the state of the liquid neuron after the sample is
input into the LSM. There are many ways to read the state of liquid neurons, and Figure 3a
presents a traditional method, which obtains the length of the state vector of each sample
equal to the number of liquid neurons.

The key to affecting the lipreading task is whether the lip motion information can be
effectively extracted. In order to extract the neuron state information more finely, we adopt
the time window division sampling technique [21]. As shown in Figure 3b, we divide the
input time of a sample into four sub-windows equally. In each sub-window, the number of
spikes of each neuron is calculated separately, so that four liquid vectors can be obtained.
Finally, these four liquid vectors are spliced into a larger liquid vector as the extracted
feature vector. Compared with the traditional method, the state vector generated by the
time window division sampling theoretically provides more time dimension information,
which is more conducive to the classification of the classifier.

In the selection of the classifier, this paper not only considers the efficiency of the
classification algorithm but also considers the implementation of the algorithm on the
hardware platform. On the one hand, LSM can extract the features of the data well and can
get better results without more complex classifiers [22]. On the other hand, the classifier
of ANN represented by MLP is relatively more friendly to hardware implementation.
Therefore, we chose three commonly used classifiers. We selected three commonly used
classifiers for this task. They are Multilayer Perceptron (MLP), Support Vector Machine
(SVM), and K-NearestNeighbor (KNN). We compared the accuracy of these three classifiers
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on the datasets. For the exploration of the structural parameters of the perceptron network,
we adopted an automated method for optimization in the follow-up.

(a) (b)

Figure 3. Two ways to generate the liquid state. (a) Traditional liquid state generation method. (LS
represents the liquid state vector). (b) Time window division sampling technique.

3.4. Classifier Structure Exploration

It is well known that the number of hidden layers and nodes in a Multilayer Perceptron
(MLP) will directly affect the performance of classification. The parameters for MLP are
generally determined based on historical experience. Inspired by heuristic algorithm [23],
this paper adopts a genetic algorithm with an elitism strategy to search for the optimal num-
ber of MLP layers and nodes. The overall frame is shown in Figure 4. First, an initial MLP
network structure is randomly given. Then, according to the fitness function, the fitness
score of the individual is calculated to determine whether it is good or bad, and the genetic
operations of selection, crossover, and mutation are carried out to obtain a new generation
of offspring. Among them, the best individuals in each generation are saved to the Hall of
Fame using an elite strategy. Keep iterating until convergence or limit is reached.

Genetic 
manipulation

MLP 
Layers

Number of 
neurons in each 

layer of MLP

[𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐, 𝒎𝒎𝟑𝟑, 𝒎𝒎𝟒𝟒]

Reservoir 
state vector

Parent arch，accuracy

Child arch

Hall of 
Fameinitialization

Figure 4. Exploration of classifier architecture based on heuristics.

3.4.1. Initialize

The number of layers of MLP and the number of neurons in each layer are represented
by chromosomes, and we fixed the length of chromosomes, setting the maximum number
of layers to four layers. We also set a “null” bit on the chromosome to enable the con-
structed model to terminate early. For example, to build a network with four hidden layers,
the chromosome shape is as follows:

[m1, m2, m3, m4] (6)
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Among them, mi represents the number of neurons in the ith hidden layer. It is
stipulated that when mi is zero or negative, it is regarded as a termination signal. At the
same time, in order to ensure that there is at least one hidden layer, it is mandatory to set
the first parameter to always be greater than zero.

3.4.2. Fitness and Genetic Manipulation

The fitness function is also called the evaluation function, which is mainly used to
measure and distinguish the quality of individuals in the group [24]. In this paper, the clas-
sification accuracy of the classifier is directly used as the fitness function. Selection [25]
refers to randomly selecting a part of individuals from the parent generation to survive
according to a pre-selected strategy regarding the fitness function. The tournament selec-
tion [26] method is adopted in this paper. The strategy selects the best individual from the
population to keep each time. The intersection operation in this paper uses the two-point
intersection, randomly setting two intersection points in an individual, and then swap-
ping some genes. The mutation operation selects the boundary mutation and randomly
selects one of the two corresponding boundary genes on the gene to replace the original
gene value.

3.4.3. Elite Retention Strategy

The elite retention strategy is used to ensure that the optimal individuals appearing
in the evolutionary process will not be lost and destroyed due to selection, crossover,
and mutation operations [27]. Furthermore, adopting the elite retention strategy can speed
up the speed and ability of global convergence of network search.

4. Experimental Setup
4.1. Experimental Platform Settings

The experiments in this paper utilize the open-source SNN simulator Brain2 [28]. It
provides a description implementation of the neuron and synaptic behavior on which our
model network can be built. Mainly the implementation of the input layer and the liquid
layer. The implementation of the classifier uses the Keras library. The optimal classifier
architecture search based on a genetic algorithm mainly uses the genetic algorithm toolbox
of deap. These are implemented based on python 3.6. All SNN simulation and classifier
optimization software programs in this paper are run on the CPU. The MLP classifier uses
GPU to accelerate the training. The specific configuration is shown in Table 1.

Table 1. Configuration information of the experimental platform.

Hardware Software

NVIDIA GeForce RTX 2060 CUDA 10.0 cudnn 7.6.5
Inter(R) Core i7 11700K Ubuntu 18.04 Python 3.6 Brian2.4CPU @3.6GHz

4.2. Datasets
AVLetters

This dataset is the first audiovisual speech dataset. The data set initially contains 10
speakers, each of whom stated 26 English letters 3 times independently, for a total of 780
utterance instances [29]. After manually locating the position of the lips in each image,
the entire image is cropped to 80 × 60 pixels to form the final dataset. For division of
the training set, this paper adopts the same partitioning principle as in Ngiam et al. [30]
and Matthews et al. [29]. The first two speaking videos of each speaker are used for
training and the last one is used for testing. This means there are 520 training utterances
and 260 test utterances. Under such a principle, Mesbah et al. [5] proposed a novel
structure based on Hahn moments as the first layer of the convolutional neural network
structure—Hahn Convolutional Neural Network (HCNN), and achieved an accuracy of
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59.23%. Petridis et al. [31] proposed an end-to-end visual speech recognition system based
on fully connected layers and long-short memory (LSTM) network and achieved the highest
accuracy of 69.2%.

5. Experimental Result
5.1. Accuracy

Table 2 compares our method with other works on the AVLetters dataset. The experi-
mental configuration in the table adopts the best configuration (STDP-Tuning, Classifier:
a layer MLP with 240 neurons). We compared the model size and the accuracy. Our
model improves accuracy by about 5% over traditional methods. Compared with some
deep learning methods, we lose some accuracy, but greatly reduce the number of neurons
and network model parameters. Furthermore, we performed ablation experiments for
STDP-tuning. The results show that the accuracy of LSM with STDP-tuning is about 2-3%
higher than the traditional LSM.

Table 2. Results on the AVLetters Dataset

Method Parameters or Number of Max AccuracyModel Size Neurous

HMM - - 44.6%
DCT + DBNF [4] - - 58.1%

HCNN [5] - 2340 59.23%
Raw + Diff
Images [31] >5 M 8900 69.2%

Our (LSM + MLP) 0.5 M 512 + 240 61.85%
Our (LSM + MLP +

STDP) 0.5 M 512 + 240 64.65%

5.2. Classifier Selection

We chose three common classifiers. The first category is Support Vector Machines
(SVM), a generalized linear classifier for binary classification of data. This article uses
an SVM with a Gaussian kernel. The second classifier is KNN. The third classifier is an
MLP classifier with only one hidden layer as a baseline for comparison, where the number
of neurons is 150. We train our network using SGD (learning rate 0.01, learning rate
decay factor 1 × 10−6, batch-size 256). During training, we also used a dropout parameter
of 0.1. Figure 5 shows a comparison of classification accuracy, recall, and F1 score for
three classifiers.

52.90 53.15 53.40 52.30 50.72 51.68 

61.33 61.12 61.27 
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Figure 5. Performance of different classifiers on the AVLetters Dataset.
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5.3. MLP Structure Parameter Search

Next, we use a heuristic to search for the number of layers of the MLP and the number
of neurons in each layer. During the search process, we fix other parts of the model,
including the settings of the input layer and the LSM structure, and only change the
structure of the MLP. In the genetic algorithm, we set a total of 20 iterations, and each
iteration has 50 individuals. In Table 3, we list part of the MLP structures found during
the search (number of layers and number of neurons in each layer) and the final accuracy.
Through our experimental results, it is found that increasing the number of hidden layers
alone does not improve the accuracy, or even affects the accuracy. The main reason is that
the number of hidden layers in the last layer is too small, which will seriously affect the
accuracy of the classifier. Therefore, the reasonable number of layers and the number of
neurons in each layer restrict the final model accuracy.

Table 3. Performance of different MLP structures on the AVLetters dataset.

Layers Number of Neurous Accuracy (%)

4 237-128-93-28 50.93
3 246-107-6 30.45
2 173-55 55.32
1 143 60.76

Figure 6 shows the change in the overall lipreading accuracy of the model with each
child generation update during the genetic search process. From the observation of the
results, it can be found that the average precision of the first generation is often very low
due to random selection. However, after five iterations, the average precision initially
tends to be stable. Because of the elite strategy, the outstanding individuals that appear in a
certain generation can save the good structure and speed up the convergence speed of the
search. The final convergence accuracy is also significantly higher than that of the MLP
structure we set with human experience.

Figure 6. Iterative Algebra and Accuracy.

5.4. Discussion
5.4.1. Confusion Matrix

We observed the confusion matrix of the AVLetters dataset, as shown in Figure 7. We
can find that the letters W, Y, Z, O, and A have a higher accuracy of correct recognition.
However, the most common confusion is in (B, P), (C, D, T), and (Q, U) among these letter
pairs, this is similar to the conclusion of Barnard. M et al. [32]. The main reason for this
phenomenon is that lipreading is performed through a single visual modality by distin-
guishing the visemes of these letters, but different letters may produce the same visemes.
This is also the reason why it is so hard for lipreading experts to solve lipreading problems.
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Figure 7. Confusion Matrix on the AVLetters Dataset.

5.4.2. Speakers Differences

Figure 8 shows the recognition accuracy of each speaker in AVLetters dataset. There
is a significant difference in the accuracy with which different speakers are recognized,
with the largest difference between speakers being around 30%. Among them, S2 and S7
have lower recognition degrees. The possible reason is that they have beards. In particular,
the S2 beards lead to a decrease in the definition of the mouth contour, which may lead
to a decrease in the final recognition accuracy. On the other hand, the mouth cropping of
the original dataset is also not standardized. Some speakers may crop leaving part of the
nose contour, while others do not. This may be the introduction of these invalid redundant
information, which brings about the difference in accuracy.

Figure 8. Per-speaker recognition accuracy on the AVLetters Dataset.

5.4.3. Limitations

The method in this paper has achieved certain results on the existing alphabet datasets,
but there is still a certain gap between the actual application scenarios. On the one hand,
the alphanumeric datasets are small in scale, and the effects and capabilities of spiking
neural networks on large-scale datasets cannot be tested. On the other hand, the effect of
practical application also depends on the generalization ability of the model. The method
in this paper only stays on the data set, and the consideration of generalization ability is
also the direction we will strengthen in the next step.
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In addition, we conclude from the experiment that the liquid state machine is more
like a feature extractor with a simple structure, which has certain advantages for timing
problems. However, it can achieve certain effects for different types of problems, which is
still difficult to explain and prove from the mechanism. At present, spiking neural networks
are still unable to solve the difficult problems of lipreading tasks, which also explains why
it is difficult for human experts to achieve completely accurate results on the problem of lip
recognition.

6. Conclusions

In this paper, a Spiking Neural Network (SNN) structure based on a liquid state
machine (LSM) and MLP classifier are proposed to solve the lipreading problem. This paper
also uses a heuristic algorithm to search for the best MLP network structure parameters for
classifying liquid states and compares the impact of different classifiers on the final accuracy.
The results on the AVLetters dataset show that our method has an accuracy advantage over
traditional methods, a computational advantage over partial-depth methods, and is more
suitable for small-scale datasets.

As a continuation of this work, we will further explore the network structure of LSM
to improve the recognition accuracy of the network. We also plan to use the idea of Spiking
Neural Network (SNN) to try to solve the large-scale lipreading problem.
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