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Abstract: Detecting surgical tools is an essential task for analyzing and evaluating surgical videos.
However, most studies focus on minimally invasive surgery (MIS) and cataract surgery. Mainly
because of a lack of a large, diverse, and well-annotated dataset, research in the area of open surgery
has been limited so far. Open surgery video analysis is challenging because of its properties: varied
number and roles of people (e.g., main surgeon, assistant surgeons, and nurses), a complex interaction
of tools and hands, various operative environments, and lighting conditions. In this paper, to handle
these limitations and difficulties, we introduce an egocentric open surgery dataset that includes
15 open surgeries recorded with a head-mounted camera. More than 67k bounding boxes are labeled
to 19k images with 31 surgical tool categories. Finally, we present a surgical tool detection baseline
model based on recent advances in object detection. The results of our new dataset show that our
presented dataset provides enough interesting challenges for future methods and that it can serve as
a strong benchmark to address the study of tool detection in open surgery.

Keywords: surgical tool detection; open surgery; egocentric camera; surgical video analysis; deep
neural network

1. Introduction

Automated analysis of surgery videos has been indispensable for collecting informa-
tion about surgery. Combined with computer vision and machine learning, it can improve
performance and contribute to enhancing surgical safety and efficiency. A great deal of
attention to surgical video analysis has sparked active research in the medical computer
vision community.

Most research on surgery video analysis has been conducted in the area of minimally
invasive surgery (MIS) and cataract surgery. MIS has especially gained great attention, and many
tasks have been proposed to analyze surgery, such as workflow analysis [1], phase recognition [2],
type recognition [3], video segmentation [4], and video summarization [5].

Here, we focus on surgical tool detection, which can provide an estimation of the
identification and position of each surgical tool that appears in a frame (Figure 1). This task
is fundamental for recognizing the surgical scene. It can be used for a lot of downstream
applications, such as tool tracking [6–8], tool pose estimation [9–11], prediction of the
remaining surgery duration [12], and surgical technical skill assessment [13]. Surgical tool
detection has also been well investigated in MIS [13–16] and cataract surgery [17] as there
are various datasets available in public.

However, tool detection in the open surgery field has been limited because of the
dataset collection and privacy-preserving costs. In MIS and cataract surgery, the sur-
geon sees the surgery through an endoscope camera, and videos can be easily recorded.
The recordings only include surgical fields and tools and do not contain information that
may identify individuals. This enables large and well-annotated datasets in MIS [18–20]
and cataract surgery [17]. On the other hand, in open surgery, the surgeon sees the surgery
with their own eyes. Thus, head-mounted cameras or cameras in the operating room are
needed for recording videos. The recordings may include surgeon and patient faces and
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information that may identify individuals. Thus, the datasets annotated for open surgery
are small and often collected in simulations [21–23], which is difficult to be transferred
for use in real-world surgery. Moreover, the computer vision task in open surgery has
challenging inherent properties: varied number and roles of people (e.g., surgeons, anes-
thesiologists, perfusionists, nurses), the complex interaction of tools and hands, various
operative environments, and lighting conditions. Hence, a diverse and large-scale dataset
is indispensable.

In this paper, we introduce a large-scale egocentric open surgery dataset that contains
densely annotated bounding boxes and their categories of tools. Compared with the con-
ventional open surgery dataset for tool detection [22–25], our dataset contains a tremendous
number of annotated frames and is captured at an actual surgery scene. The exampled
images in the dataset are shown in Figure 1. Our data were collected by six surgeons in real-
world open surgery at our university’s school of medicine. We recorded 15 videos of seven
different types of surgery. Different from MIS and cataract surgery, there are several choices
of the recording viewpoint (e.g., view from the head-mounted camera, the camera attached
to the light [26], the surveillance camera). We choose a first-person view as the viewpoint
of recording because the data from an egocentric viewpoint are suitable for capturing the
details during the surgery. The dataset has 15 h of recording from a camera attached to the
surgeon’s head, densely annotated bounding boxes, and the corresponding category of the
surgical tool. In total, there are 19,560 frames with the bounding boxes of the 31 categories,
which is relatively large-scale compared to conventional open surgery datasets.

Figure 1. An example of surgical tool detection in an open surgery video.

We provide an extensive evaluation of the conventional object detection methods that
have been trained with our proposed dataset. Because only a few prior works have tackled
object detection with large-scale open surgery datasets, we employ two well-known object
detection methods—Faster R-CNN [27] and RetinaNet [28] —with different backbones.

2. Related Work
2.1. Surgical Tool Detection in Mis and Cataract Surgery

Surgical tool detection has been worked on using various approaches. These include
sensor-based methods such as radiofrequency identification (RFID) [29] or endoscopic
image-based methods. The most conventional image-based methods rely on the defined
handcrafted features, such as color [30,31], gradient [32], and texture [33].

With the rapid development of convolutional neural networks (CNN), most surgical
tool detection algorithms started to utilize deep learning techniques. Twinanda et al. [18]
introduced a baseline model called EndoNet that performs both tool presence detection
and phase recognition tasks in a multi-task manner. Choi et al. [14] employed the YOLO
architecture [34], which can directly predict the location of tools as a representation of the
boundary box in real-time but has no outstanding accuracy. Sarikaya et al. [15] utilized
a region proposal network and a multi-modal two-stream convolutional network for the
surgical tool detector. Kurmann et al. [9] proposed a U-Net architecture-based model
performing tool detection and 2D pose estimation jointly. A. Jin et al. [13] achieved high
detection accuracy using a region-based CNNs (R-CNNs) [27].
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Moreover, many approaches that consider the long-term temporal information and
model the temporal dependency between the frames have been proposed. Particularly,
a method combining CNN with a recurrent neural network (RNN) has been a trend [6,35,36].
Al Hajj et al. [36] applied a CNN-RNN model to detect a tool used in the surgical videos;
they employed a boosting mechanism instead of end-to-end training. Nwoye et al. [6]
developed an end-to-end approach composed of CNN + convolutional LSTM (ConvLSTM)
neural networks that can perform tool presence detection and tool tracking using tool
binary labels. Wang et al. [37] proposed taking advantage of both 3D CNNs and graph
convolutional networks (GCNs) for tool presence detection, thereby considering the re-
lationship between tools. Y. Jin et al. [38] presented a multi-task recurrent convolutional
network with correlation loss (MTRCNet-CL) for tool presence detection and surgical
phase recognition.

2.2. Computer Vision Research in the Open Surgery Domain

A small body of research exists in the open surgery domain. Most works have been re-
lated to recording techniques. Shimizu et al. [26] proposed a novel surgical recording system
using multiple cameras mounted on a surgical lump where computer vision-based region
segmentation and recognition techniques are applied to automatically select the camera
with the best view, hence producing a single video without occlusion. Hachiuma et al. [39]
improved this camera selection algorithm using CNNs. Saito et al. [40] presented self-
supervised learning for camera selection by taking advantage of a first-person view.
Yoshida et al. [41] estimated the incision scenes in long-duration open surgery videos
using learning gaze speed, hand movements, number of hands, and background move-
ments in egocentric surgical videos.

Few studies have focused on research related to surgical tool detection in open surgery
videos [22–25,42]. Ref. [42] performs operating hands detection and tracking in open
surgery videos. Ref. [24] proposed detecting two similar surgical tools using hand in-
formation in an open surgery video recorded by an egocentric camera. Basiev et al. [22]
performed surgical tool detection using a multi-camera setting that can help prevent the
surgical tool from being totally invisible in open surgery videos, where occlusion often
occurs. In the same approach as MIS, the multi-task framework has been often utilized
in open surgery video analysis. Goodman et al. [25] proposed a multi-task network for
action segmentation, tool detection, hands detection, and hand pose keypoints estimation.
Goldbraikh et al. [23] proposed a multi-task network that solves both tool localization and
tool hand interaction detection task.

2.3. Surgical Dataset

Because a large-scale dataset is essential for the improvement of the data-driven deep
learning algorithms, a dataset for surgical tool detection in the open surgery domain is not
available; however, several datasets in other surgical domains for various tasks have been
released in recent years.

Most datasets released so far are related to MIS or cataract surgery. The Cholec80
dataset [18] consists of endoscopic videos of 80 cholecystectomy procedures labeled with
phase and tool presence annotations. There are seven categories of surgical tools, including
grasper, hook, clipper, bipolar, irrigator, scissors, and specimen bag. Some of the videos
in Cholec 80 are included in the M2CAI16-tool dataset [19], which consists of 15 chole-
cystectomy videos with ground truth binary annotations of the tools. A. Jin et al. [13]
introduced a new dataset, M2CAI16-tool-locations, which extends the M2CAI16- tool
dataset with the coordinates of spatial bounding boxes around surgical tools. In the same
way, Shi et al. [43] extended the Cholec80 dataset [18] with spatial annotations of surgical
tool. ATLAS Dione [15] consists of 99 action video clips recorded in a simulated surgical
scene of 10 surgeons performing six surgical tasks on the da Vinci Surgical System (dVSS)
with surgical tool annotations. The JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) [44,45] was released as the first public dataset containing video and kinematic
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recordings of robotic surgical demonstrations, as well as gesture and skill annotations.
Bawa et al. [20] introduced the ESAD dataset for surgeon action detection in real-world
endoscopic videos. This dataset is annotated with a surgical tool bounding box and its
action label. The CATARACTS dataset [17] contains 50 videos of cataract surgeries, which
involves removing a clouded natural lens and replacing it with an artificial lens. Here, the
presence of 21 surgical tools was manually annotated by two experts.

Recently, some datasets for open surgery video analysis have been proposed to per-
form object detection. Surgery hands [42] was developed for hand detection in open surgery
videos composed of publicly available videos of open surgery collected from YouTube
and the annotation of spatial bounding boxes of the surgeon’s hands. Shimizu et al. [24]
recorded seven different types of actual open surgery with an egocentric camera for detect-
ing two similar surgical tools: scissors and needle holders. Basiev et al. [22] collected the
videos taken from two different angles simulating injured open bowel repairing surgery
for a tool and hand detection task. These videos contain four surgical tools: needle holder,
forceps, scissors, and mosquito forceps. Another open surgery dataset is Annotated Videos
of Open Surgery (AVOS), which contains 1997 videos scraped from YouTube and annotated
with bounding boxes for surgical tools, including electrocautery, needle drivers, forceps,
and hands, and 21 joint key points for hands and action. Goldbraikh et al. [23] introduced
a dataset recorded by the open surgery suturing simulation system and provided tool
bounding box and tool and hand bounding box annotations including three surgical tools:
needle drivers, forceps, and scissors. In these existing open surgery datasets, unlike ours,
the videos are often collected from a simulator [22,23], and if the videos are collected
from actual open surgery, they only provide, at most, four types of surgical tool class
annotations [24,25].

Behavioral analysis during surgery also has many potential applications for research,
quality improvement, and education. The Multi View Operating Room (MVOR) dataset [46]
is the first multi-view pose estimation dataset generated from real surgery recordings
obtained in an operating room (OR) using three different views. The dataset has been
manually annotated to provide both 2D and 3D upper-body poses.

3. Dataset

In this section, we present the details of the collection, annotation, statistics, and quality
of the dataset, respectively.

3.1. Dataset Collection and Annotation

Because there is no dataset available that contains open surgery recordings via an
egocentric camera, we record our own dataset. The actual plastic surgeries were recorded
using Tobii cameras attached to the surgeon’s head. The surgeries were recorded at Keio
University Hospital. Video recording of the patients was approved by the Keio University
School of Medicine Ethics Committee, and written informed consent was obtained from all
patients or their parents.

Our dataset contains 15 videos of seven different types of surgery, including serial resection
of skin lesions, skin tumor resection, posterior pharyngeal flap, subcutaneous tumor resection,
alveolar bone grafting, scar revision, and open reduction and internal fixation, which were
performed by six surgeons. Images from each type of open surgery video are shown in Figure 2.
Each surgery video is about 30 to 90 min long and was recorded at 25 frames per second (FPS).
The videos are downsampled to 1 fps for processing to avoid frames where the scene changes
very little. Each instance is annotated using a bounding box and its surgical tool category label.
The frame size of each video is 1920 × 1080 (pixels).
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(a) Serial Resection of (b) Skin Tumor Resection

(c) Posterior Pharyngeal Flap (d) Subcutaneous Tumor

(e) Alveolar Bone Grafting (f) Scar Revision

(g) Open Reduction and Internal Fixation

Figure 2. Examples of each type of open surgery in seven different types of surgery.

We conducted the annotation using the coordinates of spatial bounding boxes around the
tools using eight graduate students in the Department of Information and Computer Science;
all annotations have been examined by an expert surgeon. We used the Virtual object Tagging
Tool (VoTT) for annotation. VoTT is a Microsoft open-source tool for the annotation and labeling
of image and video assets. A screenshot of its graphical user interface is shown in Figure 3.

Figure 3. Screenshot captured while using VoTT for annotation.
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All surgical tool categories that appeared in the recording video are annotated. Then,
we eliminated the surgical tool categories that appear less than 10 times. As a result, our
dataset contains 31 surgical tool categories for initial annotation. The list of categories is
shown in Table 1, and examples of each surgical tool category are shown in Figure 4. We
have focused on the annotation of the surgical tool in use and excluded the annotation of
the surgical tool not in use (e.g., surgical tools placed on the operating table).

Table 1. List of surgical tool categories in our dataset, with the number of instances in each of the
training, validation, and test sets.

Category Training Set Validation Set Test Set Total

BiClamp 297 0 0 297
Bipolar Forceps 453 55 205 713

Chisel 42 0 11 53
Cup 65 18 11 94
Drill 75 0 0 75

Electric Cautery 1460 101 162 1723
Forceps 2885 155 4038 7078
Gauze 5480 469 1921 7870

Hammer 26 0 2 28
Hook 1114 191 167 1472

Kidney Dish 33 0 34 67
Malleable Retractor 121 0 0 121

Mouth Gag 4596 1208 1325 7129
Nasogastric Tube 1672 0 0 1672
Needle Holders 3449 531 1327 5307

Pen 21 0 0 21
Petri Dish 106 0 44 150
Raspatory 750 86 105 941
Retractor 3423 45 364 3832

Ruler 14 0 0 14
Scalpel 784 168 173 1125
Scissors 1869 422 620 2911

Screwdriver 79 0 0 79
Skewer 212 103 29 344
Spoon 27 0 0 27

Suction Cannula 3911 622 827 5360
Suction Tube 24 0 46 70

Suture, Suture Needle 3979 419 2023 6421
Syringe 347 96 144 587

Trephine 6 0 34 40
Tweezers 8114 1119 2833 12,066

Total Object Instances 45,434 5808 16,445 67,687
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(a)

(b)

(1) BiClamp (2) Bipolar Forceps (3) Chisel (4) Cup (5) Drill

(a)

(b)

(6) Electric Cautery (7) Forceps (8) Gauze (9) Hammer (10) Hook

(a)

(b)

(11) Kidney Dish (12)MalleableRetractor (13) Mouth Gag (14)NasogastricTube (15)Needle Holders

(a)

(b)

(16) Pen (17) Petri Dish (18) Raspatory (19) Retractor (20) Ruler

(a)

(b)

(21) Scalpel (22) Scissors (23) Screwdriver (24) Skewer (25) Spoon

(a)

(b)

(26) Suction Cannula (26)SuctionTube (27)SutureandNeedle (28) Syringe (29) Trephine

(a)

(b)

(29) Tweezers

Figure 4. (a) Examples of the 31 surgical tools in our open surgery dataset; (b) Example frames with
their spatial tool annotations. Color of the bounding box corresponds to tool identity.

Surgical tool detection in open surgery exhibits several specific features. First, in open
surgery, the surgical tools are severely occluded by the surgeon’s hand or other surgical
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tools (Figure 5). Second, even though there is no occlusion of the tools, it is difficult to
classify the tools because some have similar shapes and textures (Figure 6). These features
make surgical tool detection in open surgery challenging.

Figure 5. Comparison of typical occlusion between the images of endoscopic surgery [13] (left) and
open surgery (right). In endoscopic surgery, the tools are often occluded by tissues. On the other
hand, in open surgery, the tools are often occluded by the surgeon’s hands and tools.

Figure 6. An example of two different surgical tools that have a similar shape and texture.

3.2. Statistics

Based on the setting of Section 3.1, we annotated 19,560 images among the 27,208 total
frames. As a result, 13,537 instances are annotated in our dataset. The size of the dataset is
comparable, and the number of annotated instances is the largest, even in the existing MIS
surgical tool detection dataset, as shown in Table 2.

Table 2. A survey table of the surgical tool detection dataset and a comparison with our pro-
posed dataset.

Dataset Real
Env.?

Bbox
Annotated?

Number of
Annotated Frames

Number of
Annotated Instances

Avg. Instances
per Frame

Number of Surgical
Tool Categories

Minimally invasive surgery (MIS): - - - -
m2cai16-tool [19] X 23,000 - - 1

Cholec80 [18] X 86,000 - - 7
ATLAS Dione dataset [15] X 22,467 43,227 1.9 1
m2cai16-tool-locations [13] X X 2532 3141 1.2 7

Cholec80-locations [43] X X 4011 6471 1.6 7

Cataract surgery:
CATARACTS dataset. [17] X 957,884 - - 21

Open surgery:
Shimuzu et al. [24] X X 2300 - - 2

Basiev et al. [22] X 11,500 - - 4
Goldbraikh et al. [23] X 1124 - - 3

AVOS dataset [25] X X 3348 2843 0.85 3
Ours X X 19,560 67,687 3.5 31

3.3. Data Splits

The dataset was divided into a training set (10 videos), a validation set (two videos),
and a test set (three videos). There are 12,715 images for a training set (65%), 1807 images for
a validation set (9%), and 5038 images for a test set (26%). The distribution of the number
of instances per surgical tool category in the three splits is shown in Figure 7. Because not
all categories appear in all videos, we ensured all categories were present in the training
set. We split the rest of the videos between the validation and test sets. The distribution of
the category in each set is different because data are split by the video-based split , as shown
in Figure 7. Another way to perform a split, the frame-based split, can generate a more
uniform distribution among the three sets. However, the frame-based split would have the
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model be trained and evaluated on almost the same data. In real-world surgery, the data
distribution drastically change every surgery, or video due to the various surgery type,
operative environments, and lighting conditions. To tackle the tool detection in these
challenging settings, we chose video-based split.

Figure 7 indicates that the dataset is highly imbalanced; consequently, accurate instru-
ment classification is more challenging. Tweezers contains the largest number of instances
because surgeons use them commonly for all procedures. On the other hand, Ruler con-
tains the smallest number of instances, as surgeons use it only for specific purposes (e.g.,
measuring tumors). Furthermore, there are other visual challenges because of the high
inter-category similarity among tools. For instance, Forceps, Needle Holders, and Scissors
categories have similar appearances, as shown in Figure 4.
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Figure 7. Distribution of the number of samples per surgical tool category in our training, validation,
and test sets, represented by blue, red, and orange bars in the diagram, respectively. Our dataset has
a high class imbalance.

3.4. Number of Instances per Frame

We provide a comparison between our dataset and M2CAI16-tool-locations [13], which
is a common dataset for surgical tool detection for MIS in terms of the number of instances
per image. According to Figure 8, our dataset is more dense than m2cai16-tool-locations [13].
In general, MIS contains three surgeons performing operations. Two surgeons operate the
laparoscopic tools, and one surgeon controls the laparoscopic camera. Thus, the number of
surgical tools that appear in a frame is at most four. On the other hand, in open surgery,
in addition to the surgeons, other people (e.g., anesthesiologists, perfusionists, and nurses)
controlling surgical tools can appear in a frame at the same time. The maximum number
of surgical tools that appear in our dataset is 15. Moreover, the number of surgical tools
appear in a frame drastically varies based on the surgery type. This makes the variance of
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the number of instances per image from our open surgery dataset significantly larger than
the existing MIS dataset.

00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of instances on an image

0%

10%

20%

30%

40%

50%

60%

70%

Im
ag

e 
di

st
rib

ut
io

n

M2CAI16-tool-locations
Ours

Figure 8. A comparison between M2CAI16-tool-locations, the endoscopic surgical spatial tool
detection dataset [13] , and our open surgery dataset based on the statistics of the number of instances
per image. Our dataset is denser with a modal of five categories per image with a flatter curve.
Although the maximum number of instances per image of M2CAI16-tool-locations is four, that of our
dataset is fifteen.

3.5. Co-Occurrences of the Surgical Tools

We also study the co-occurrences in our dataset. In Figure 9a, the co-occurrence matrix
of surgical tools and surgical types, we can see some tools are only used in particular
surgery types. As is obvious, we can see Mouth Gag is only used in the types of surgery
performed around the mouth (Posterior Pharyngeal Flap and Alveolar Bone Grafting), and
Skewer is only used for Scar Revision. On the other hand, we can confirm Tweezers are used
in all surgeries. Therefore, since the surgical tool type can be the main indicator of the
type of surgery performed, it is important to distinguish between the types of surgical
tools. In Figure 9b, the c0-occurrence matrix of the surgical tools and surgical tools, we
can see some sets of tools appear at the same time. For example, Cup and Skewer, Chisel
and Hammer and Needle Holders and Suture, Suture Needle are often used together. On the
other hand, Gauze, Suction Cannula and Tweezers appear with any type of tool. Therefore, it
indicates that the information of one tool can help the detection of other tools.
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Figure 9. We showthe co-occurrence matrix of surgical tools and surgical types and surgical tools
and surgical tools.

4. Experiments
4.1. Object Detection Models

We provide the baseline results on two widely used detectors, Faster R-CNN [27] and
RetinaNet [28], as our benchmark testing algorithms.Faster R-CNN [27] is a two-stage-
based object detection method. A feature extraction network takes an RGB image as input
and extracts features. Then, a region proposal network (RPN) is used to generate regions
of interest (ROIs) and features are pooled over these ROIs before being passed to a final
classification and bounding box refinement network. We employ the FPN feature extraction
backbone to extract the features from multiple-resolution feature maps. RetinaNet [28] is a
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single-stage-based object detection method. A RetinaNet detector is made up of a backbone
network and two subnets, one for object classification and the other for object localization.
FPN is used at the end of a RetinaNet backbone network. RetinanNet adopts Focal Loss
which is designed to handle the problem of class imbalance. For the experiment, we exploit
three kinds of backbones, i.e., ResNet-50, ResNet-101 [47], and ResNe-X101 [48].

4.2. Experiment Setup

We used the latest PyTorch implementations of Faster R-CNN and RetinaNet, released
by Facebook research [49]. For training, we fine-tune models pretrained on MS-COCO [50]
with our training data. We trained our detector on an NVIDIA RTX A5000 GPU, with a
batch size of 8. The input image size is 1920 × 1080. For training, we use the same setting
defined in detectron2 [49] for COCO except for the learning rate schedule. We set the
learning rate to 0.02. The networks were trained for 50K iterations with a learning rate drop
of a factor of 10 after 33K and 44K iterations.

5. Results

The performance of the baseline models for the validation and test sets is represented
in Table 3. Overall, Faster-RCNN, which is a two-stage detector, clearly outperforms
RetinaNet, which is a single-stage detector. In general, two-stage models are considered to
be able to provide better detection accuracy. We can find this tendency in our results. The
average precision (AP) of the test set was found to be much lower than that of the validation
set for all models. This is caused by the way of performing a split. Because we split
training, validation, and test sets with video-based split considering the practical scenario,
the distribution of categories in the three-set is different. Therefore, a gap in AP between
validation and test sets occurs.

We conducted experiments with different backbones to explore the dependency of
performance from the backbone. Faster-RCNN with a ResNet-X101 backbone presents
the highest AP, and RetinaNet with a ResNet-50 backbone presents the lowest for both
validation and test sets. The increase in depth and parameters slightly improves the AP
in Faster-RCNN. On the other hand, for RetinaNet, the increase in depth and parameters
have little effect on the AP.

Table 3. AP, AP50 and AP75 per model for validation and test sets. The best results are highlighted
in bold.

Model Backbone Iters Validation Set Test Set
AP AP50 AP75 AP AP50 AP75

ResNet-50 40K 48.9 63.6 55.0 27.2 41.7 29.7
Faster-RCNN ResNet-101 37K 51.3 66.0 56.6 28.6 42.9 32.0

ResNet-X101 40K 51.3 64.5 57.0 29.7 44.2 32.8

RetinaNet ResNet-50 41K 48.1 62.4 52.2 26.7 41.0 29.1
ResNet-101 42K 48.0 61.8 52.1 27.8 41.5 29.9

The AP per category given in Tables 4 and 5 shows that each surgical tool was detected
with varying degrees of accuracy. This is mainly because of heavily imbalanced data,
which naturally incur bias in the model. As a whole, the greater the number of annotated
instances we can get, the better AP. For example, the baseline models successfully detected
Mouth Gag, Needle Holders, Suction Cannula, and Tweezers categories, which have a relatively
large number of instances. On the other hand, they fail to detect Chisel, Hammer, Pen,
and Suction Tube categories, which have a small number of instances. The class imbalance
is the main reason why there is a large gap between the AP of validation data and test data.
As shown in Table 1, compared to the validation data, the test data includes the category in
which the number of instances is relatively small. This may result in better AP of validation
sets rather than that of the test set.
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There are cases where the models fail to detect the categories that have profound
instances because of their challenging characteristics. First, the deformable surgical tool
category is difficult to be detected. Gauze has the second largest number of instances in
the dataset, but the AP of the best baseline model, Faster-RCNN ResNet-X101, is 15.7.
This is much worse than the Mouth Gag category, which has almost the same number of
instances in the dataset. The reason for this may be that the Gauze category is deformable
and its appearance drastically changes every scene. Suture, Suture Needle also has this
characteristic. Second, the surgical tool category that has a variety of appearances through
instances is difficult to detect. Retractor, which is used to separate the edges of a surgical
incision, has a different shape and size depending on the situation. The Retractor category
also has a relatively large number of instances, but the AP of the best baseline model is
only 11.3. Finally, the surgical tool category, which has different usages is difficult to detect.
For instance, the Forceps category, which is used to grasp and hold objects, is mainly utilized
to grasp the tissues or organs but sometimes surgical drape. In the former usage, Forceps is
handled by the surgeon’s hand, and in the latter usage, Forceps is laid down around the
surgical fields. Thus, depending on the usage, the visual feature drastically changes. This
affects the surgical tool detection results.

Table 4. AP of baseline models per category for validation set.

Category
Faster-RCNN RetinaNet

ResNet-50 ResNet-101 ResNet-X101 ResNet-50 ResNet-101

BiClamp - - - - -
Bipolar Forceps 62.9 59.5 59.4 55.4 57.8

Chisel - - - - -
Cup 0.1 0.2 0.0 0.6 0.6
Drill - - - - -

Electric Cautery 86.3 86.2 89.2 88.1 88.6
Forceps 14.7 20.0 22.8 17.2 14.1
Gauze 19.4 18.3 18.9 23.8 19.1

Hammer - - - - -
Hook 32.8 34.9 42.2 39.6 37.9

Kidney Dish - - - - -
Malleable Retractor - - - - -

Mouth Gag 71.4 72.8 71.5 73.2 73.3
Nasogastric Tube - - - - -
Needle Holders 74.4 77.6 78.6 76.3 78.9

Pen - - - - -
Petri Dish - - - - -
Raspatory 61.5 66.9 61.7 57.2 56.7
Retractor 1.7 14.3 3.9 1.0 5.4

Ruler - - - - -
Scalpel 78.8 82.0 87.7 75.9 72.8
Scissors 56.33 59.5 58.7 57.4 57.6

Screwdriver - - - - -
Skewer 83.8 83.6 83.5 84.9 61.5
Spoon - - - - -

Suction Cannula 67.8 70.8 67.3 63.3 65.3
Suction Tube - - - - -

Suture, Suture Needle 4.5 7.1 7.0 4.5 6.5
Syringe 48.3 49.2 51.6 39.1 52.4

Trephine - - - - -
Tweezers 66.6 68.3 63.9 65.8 65.0

Average 48.9 51.3 51.3 48.1 48.0
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Table 5. AP of baseline models per category for test set.

Category
Faster-RCNN RetinaNet

ResNet-50 ResNet-101 ResNet-X101 ResNet-50 ResNet-101

BiClamp - - - - -
Bipolar Forceps 46.4 48.7 50.2 39.8 47.6

Chisel 0.19 0.0 0.5 0.3 0.1
Cup 18.5 14.7 11.0 22.0 19.1
Drill - - - - -

Electric Cautery 49.7 46.7 58.4 49.4 45.4
Forceps 6.8 8.9 8.9 7.1 7.6
Gauze 17.3 18.5 15.7 19.1 16.7

Hammer 0.0 0.0 0.0 0.0 0.0
Hook 28.5 44.9 46.2 29.4 29.5

Kidney Dish 10.4 12.3 14.2 17.3 3.7
Malleable Retractor - - - - -

Mouth Gag 73.3 73.1 73.7 73.9 74.0
Nasogastric Tube - - - - -
Needle Holders 30.6 29.1 30.3 29.2 31.1

Pen - - - - -
Petri Dish 0.5 0.3 0.0 3.7 2.8
Raspatory 56.1 56.0 60.9 54.5 56.4
Retractor 12.1 12.6 11.3 8.7 10.2

Ruler - - - - -
Scalpel 61.0 59.4 64.0 55.2 59.9
Scissors 19.4 21.4 24.6 19.5 21.6

Screwdriver - - - - -
Skewer 63.5 71.6 77.3 60.6 66.2
Spoon - - - - -

Suction Cannula 46.1 48.9 46.9 42.3 42.8
Suction Tube 0.6 1.1 0.9 1.2 0.5

Suture, Suture Needle 0.9 0.5 0.3 0.7 0.7
Syringe 25.0 21.9 27.9 14.5 18.0

Trephine 0.0 0.0 0.0 1.1 0.5
Tweezers 57.9 58.3 58.1 55.9 57.2

Average 27.2 28.6 29.7 26.7 27.8

6. Conclusions

Surgical tool detection is an indispensable task to be tackled for the surgical scene.
However, mainly because of the lack of a large-scale and diverse dataset, there is only
a small body of research work on open surgery videos. We presented our large-scale
egocentric dataset for open surgery and the extensive evaluation of conventional object
detection methods. We collected 15 open surgery videos of 7 different types of surgery
using a camera attached to the surgeon’s head. The dataset consists of 67,687 annotated
images with a bounding box around the surgical tool and its category label. Our dataset is
superior in size and number of tool types compared with the existing open surgery dataset,
which is often collected using a simulator. The statistics presented for the dataset illustrate
that the dataset is imbalanced because many surgical tools are used for various purposes.

Despite the baseline experiments showing promising results for the detection of
surgery tools in open surgery, the AP is not still acceptable for critical medical applications.
One promising direction in future work is finding strategies to overcome the difficulty in
the detection of heavily imbalanced data. Planned future work will collect surgery videos
of which surgery type is less frequent in our dataset considering the revealed fact that the
occurrence of some surgery tools depends on the surgery type.
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